PHYS 4xx Net 4 - Elasticity in three dimensions

Random chain networks

- model for vulcanized rubber (Flory, 1953; Treloar, 1975)
- scale factors $\Lambda_{\mathrm{x}}, \Lambda_{\mathrm{y}}, \Lambda_{\mathrm{z}}$ characterize the deformation:

- extension (compression) of the network corresponds to $\Lambda>1(\Lambda<1)$
- after a lot of algebra (given in Mech of Cell or the extra material on networks):

$$
\begin{equation*}
S=-\left(k_{\mathrm{B}} n / 2\right)\left[\Lambda_{\mathrm{x}}{ }^{2}+\Lambda_{\mathrm{y}}{ }^{2}+\Lambda_{\mathrm{z}}{ }^{2}-3-\ln \left(\Lambda_{\mathrm{x}} \Lambda_{\mathrm{y}} \Lambda_{\mathrm{z}}\right)-\ln (n / 2)!-(n / 2) \ln \left(2 \delta V / V_{\mathrm{o}}\right)\right] \tag{1}
\end{equation*}
$$

n is the total number of chains, V_{0} is the undeformed volume and δV specifies the volume of the weld between chains; note that the last two terms are independent of the deformation

- ΔS with respect to the reference state $\Lambda_{\mathrm{x}}=\Lambda_{\mathrm{y}}=\Lambda_{\mathrm{z}}=1$ is

$$
\begin{equation*}
\Delta S=-\left(k_{B} n / 2\right)\left[\Lambda_{x}^{2}+\Lambda_{y}^{2}+\Lambda_{z}^{2}-3-\ln \left(\Lambda_{x} \Lambda_{y} \Lambda_{z}\right)\right] . \tag{2}
\end{equation*}
$$

- the chains have no internal energy scale, so $\Delta F=-T \Delta S$, and

$$
\begin{equation*}
\Delta F=\left(k_{\mathrm{B}} T n / 2\right)\left[\Lambda_{x}{ }^{2}+\Lambda_{y}^{2}+\Lambda_{z}^{2}-3-\ln \left(\Lambda_{x} \Lambda_{y} \Lambda_{z}\right)\right] . \tag{3}
\end{equation*}
$$

- under a uniform change of scale $\Lambda_{\mathrm{x}}=\Lambda_{\mathrm{y}}=\Lambda_{\mathrm{z}}=\Lambda$, (3) becomes

$$
\begin{equation*}
\Delta F=\left(3 k_{\mathrm{B}} T n / 2\right) \cdot\left(\Lambda^{2}-1-\ln \Lambda\right) \quad \text { (uniform scaling) } \tag{4}
\end{equation*}
$$

- note: $\Delta F=0$ at $\Lambda_{\mathrm{x}}=\Lambda_{\mathrm{y}}=\Lambda_{\mathrm{z}}=1$, but the minimum of ΔF is at $\Lambda=1 / \sqrt{ } 2$.
- extract the shear modulus from ΔF by performing a pure shear on (3), with $\Lambda_{\mathrm{x}}=\Lambda=$ $1 / \Lambda_{\mathrm{y}}$ and $\Lambda_{\mathrm{z}}=1$, yielding

$$
\begin{equation*}
\Delta F=\left(k_{B} T n / 2\right) \cdot\left(\Lambda^{2}+1 / \Lambda^{2}-2\right) \quad \text { (pure shear). } \tag{5}
\end{equation*}
$$

- but $\left(\Lambda^{2}+1 / \Lambda^{2}-2\right)=(\Lambda-1 / \Lambda)^{2}=4 \delta^{2}$ when $\Lambda=1+\delta$ and δ is small
- divide (5) by the volume V_{0} (unchanged by shear)

$$
\Delta \mathcal{F}=2 \delta^{2} \rho k_{\mathrm{B}} T, \quad(\rho=\text { density of chains }=n / V)
$$

- evaluate $\Delta \mathcal{F}$ in terms of strain tensor under pure shear conditions of $\Lambda=1+\delta$,

$$
\cdots-->u_{x x}=\delta, u_{y y}=-\delta, u_{z z}=0
$$

then

$$
\begin{equation*}
\Delta \mathcal{F}=2 \delta^{2} \mu \tag{7}
\end{equation*}
$$

- comparing (6) and (7)

$$
\begin{equation*}
\mu=\rho k_{\mathrm{B}} T \tag{8}
\end{equation*}
$$

Spring networks

- as an example, we consider a three dimensional network with cubic symmetry

- go through the usual reduction of elastic constants and deformation modes to find the volume compression modulus:

$$
\begin{equation*}
K_{\mathrm{v}}=k_{\mathrm{sp}} / 3 s_{\mathrm{o}} \quad \text { (rigid cubic symmetry) } \tag{9}
\end{equation*}
$$

Example: peptidoglycan

network "bonds" are drawn as heavy lines and their junctions are shown as disks The rectangular box:

- has a volume of $a \times a \times 4 b=4 a^{2} b$
- contains four vertices; the eight vertices at the corners are each shared with eight adjoining boxes, while the twelve vertices along the edges are shared with four adjoining boxes, giving a net total of $8 / 8+12 / 4=4$ vertices
- ---> the density of vertices $=1 / a^{2} b$.
- a vertex joins two glycans and one peptide - each of which is shared by another vertex - so there are 3/2 bonds per vertex; ---> bond density $\rho=3 / 2 a^{2} b$
- if $a=1.3 \mathrm{~nm}$ and $b=1 \mathrm{~nm}$, we expect $\mu=\rho k_{\mathrm{B}} T=3.6 \times 10^{6} \mathrm{~J} / \mathrm{m}^{3}$.
- for many materials, $Y=(8 / 3) \mu-->Y=1 \times 10^{7} \mathrm{~J} / \mathrm{m}^{3}$ in this representation
- $Y=2-3 \times 10^{7} \mathrm{~J} / \mathrm{m}^{3}$ is observed experimentally

Polymer solutions

What happens if there are no permanent cross-links between filaments? Then the network can relax when subjected to a shear, although the relaxation time may be long. There are several concentration regimes, each with different properties:

- dilute regime $\left(\rho<\rho^{*}\right)$: filaments do not touch, on average
rods: \quad density $<1 / L_{c}{ }^{3}$
chains: \quad density $<3 / 4 \pi R_{g}^{3}$
- concentrated regime ($\rho>\rho^{\star \star}$): filaments in frequent contact

$$
\text { rods: } \quad \text { density }>1 / D_{\mathrm{f}} L_{\mathrm{c}}{ }^{2} \quad\left(D_{\mathrm{f}}=\text { filament diameter, as below }\right)
$$

chains: \quad density $>v_{\mathrm{ex}} b^{6} \quad\left(v_{\mathrm{ex}}, b\right.$ are the excluded volume and chain segment length; proof not trivial; see Doi and Edwards)

- semidilute regime lies between ρ^{\star} and $\rho^{\star *}$

Viscoelasticity

- time evolution of polymer solution characterized by frequency-dependent elastic moduli
- apply a periodic strain $u_{\mathrm{xy}}(t)$ and measure the corresponding stress $\sigma_{\mathrm{xy}}(t)$

- system driven at an angular frequency ω
- introduce two new moduli
$G^{\prime}(\omega)=$ shear storage modulus: $\quad G^{\prime} \rightarrow \mu$ as $\omega \rightarrow 0$
$G^{\prime \prime}(\omega)=$ shear loss modulus: $\quad G^{\prime \prime} \rightarrow \eta / \omega$ as $\omega \rightarrow 0$
- response of system is
$\sigma_{\mathrm{xy}}=G^{\prime}(\omega) u_{\mathrm{xy}}(t)+G^{\prime \prime}(\omega) \cdot\left(\mathrm{d} u_{\mathrm{xy}} / \mathrm{d} t\right) / \omega$
for $1 \mathrm{mg} / \mathrm{ml}$ actin:
$G^{\prime} \sim 10^{0}$ to $10^{2} \mathrm{~J} / \mathrm{m}^{3}$ at $10^{-2} \ll 10^{+2} \mathrm{rad} / \mathrm{sec}$
rises to $10^{9} \mathrm{~J} / \mathrm{m}^{3}$ like plastics at high frequencies

