PHYS 4xx Net 4 - Elasticity in three dimensions

Random chain networks

- model for vulcanized rubber (Flory, 1953; Treloar, 1975)
- scale factors Λ_x , Λ_y , Λ_z characterize the deformation:

- extension (compression) of the network corresponds to $\Lambda > 1$ ($\Lambda < 1$)
- after a lot of algebra (given in *Mech of Cell* or the extra material on networks):

$$S = -(k_{\rm B}n/2)[\Lambda_{\rm x}^2 + \Lambda_{\rm y}^2 + \Lambda_{\rm z}^2 - 3 - \ln(\Lambda_{\rm x}\Lambda_{\rm y}\Lambda_{\rm z}) - \ln(n/2)! - (n/2)\ln(2\delta V/V_{\rm o})]$$
(1)

n is the total number of chains, V_{\circ} is the undeformed volume and δV specifies the volume of the weld between chains; note that the last two terms are independent of the deformation

- ΔS with respect to the reference state $\Lambda_x = \Lambda_y = \Lambda_z = 1$ is $\Delta S = -(k_B n/2)[\Lambda_x^2 + \Lambda_y^2 + \Lambda_z^2 - 3 - \ln(\Lambda_x \Lambda_y \Lambda_z)].$ (2)
- the chains have no internal energy scale, so $\Delta F = -T\Delta S$, and $\Delta F = (k_{\rm B}Tn/2)[\Lambda_x^2 + \Lambda_y^2 + \Lambda_z^2 - 3 - \ln(\Lambda_x\Lambda_y\Lambda_z)].$ (3)
- under a uniform change of scale $\Lambda_x = \Lambda_y = \Lambda_z = \Lambda$, (3) becomes $\Delta F = (3k_BTn/2) \cdot (\Lambda^2 - 1 - \ln\Lambda)$ (uniform scaling) (4)
- note: $\Delta F = 0$ at $\Lambda_x = \Lambda_y = \Lambda_z = 1$, but the minimum of ΔF is at $\Lambda = 1/\sqrt{2}$.
- extract the shear modulus from ΔF by performing a pure shear on (3), with $\Lambda_x = \Lambda = 1/\Lambda_y$ and $\Lambda_z = 1$, yielding $\Delta F = (k_B T n/2) \cdot (\Lambda^2 + 1/\Lambda^2 - 2)$ (pure shear). (5)
- but $(\Lambda^2 + 1/\Lambda^2 2) = (\Lambda 1/\Lambda)^2 = 4\delta^2$ when $\Lambda = 1 + \delta$ and δ is small
- divide (5) by the volume V_{o} (unchanged by shear) $\Delta \mathcal{F} = 2\delta^{2}\rho k_{B}T$, (ρ = density of chains = n / V) (6)

• evaluate $\Delta \mathcal{F}$ in terms of strain tensor under pure shear conditions of $\Lambda = 1 + \delta$,

---->
$$u_{xx} = \delta$$
, $u_{yy} = -\delta$, $u_{zz} = 0$
then
 $\Delta \mathcal{F} = 2\delta^2 \mu$ (7)

• comparing (6) and (7) $\mu = \rho k_{\rm B} T.$

Spring networks

• as an example, we consider a three dimensional network with cubic symmetry

 go through the usual reduction of elastic constants and deformation modes to find the volume compression modulus:

 $K_{\rm v} = k_{\rm sp} / 3s_{\rm o}$ (rigid cubic symmetry),

Example: peptidoglycan

network "bonds" are drawn as heavy lines and their junctions are shown as disks The rectangular box:

- has a volume of $a \ge a \ge 4a^2b$
- contains four vertices; the eight vertices at the corners are each shared with eight adjoining boxes, while the twelve vertices along the edges are shared with four adjoining boxes, giving a net total of 8/8 + 12/4 = 4 vertices
- ---> the density of vertices = $1 / a^2 b$.

(8)

(9)

- a vertex joins two glycans and one peptide each of which is shared by another vertex so there are 3/2 bonds per vertex; ---> bond density $\rho = 3 / 2a^2b$
- if a = 1.3 nm and b = 1 nm, we expect $\mu = \rho k_{\rm B} T = 3.6 \times 10^6 \text{ J/m}^3$.
- for many materials, $Y = (8/3)\mu \rightarrow Y = 1 \times 10^7 \text{ J/m}^3$ in this representation
- $Y = 2.3 \times 10^7 \text{ J/m}^3$ is observed experimentally

Polymer solutions

What happens if there are no permanent cross-links between filaments? Then the network can relax when subjected to a shear, although the relaxation time may be long. There are several concentration regimes, each with different properties:

- dilute regime ($\rho < \rho^*$): filaments do not touch, on average rods: density < 1 / L_c^3 chains: density < 3 / $4\pi R_a^3$
- concentrated regime ($\rho > \rho^{**}$): filaments in frequent contact
 - rods:density > 1 / $D_f L_c^2$ $(D_f = filament diameter, as below)$ chains:density > $v_{ex}b^6$ $(v_{ex}, b are the excluded volume and chain segment length; proof not trivial; see Doi and Edwards)$
- semidilute regime lies between ρ^* and ρ^{**}

Viscoelasticity

- time evolution of polymer solution characterized by frequency-dependent elastic moduli
- apply a periodic strain $u_{xv}(t)$ and measure the corresponding stress $\sigma_{xv}(t)$

- system driven at an angular frequency ω
- introduce two new moduli
 G'(ω) = shear storage modulus: G' → μ as ω → 0
 G''(ω) = shear loss modulus: G'' → η /ω as ω → 0
 - $G''(\omega)$ = shear loss modulus: $G'' \rightarrow$ response of system is

$$\sigma_{xy} = G'(\omega)u_{xy}(t) + G''(\omega) \cdot (du_{xy}/dt)/\omega$$

