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PHYS 4xx Net 4 - Elasticity in three dimensions 
 
Random chain networks 
 

 
 
 
 
• model for vulcanized rubber (Flory, 1953; Treloar, 1975) 
• scale factors Λx, Λy, Λz characterize the deformation: 
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• extension (compression) of the network corresponds to Λ > 1 (Λ < 1) 
• after a lot of algebra (given in Mech of Cell or the extra material on networks): 
 
       S = -(kBn/2)[Λx

2 + Λy
2 + Λz

2 - 3 - ln(ΛxΛyΛz) - ln (n/2)! - (n/2)ln(2δV / Vo)]    (1) 
 

n is the total number of chains, Vo is the undeformed volume and δV specifies the 
volume of the weld between chains; note that the last two terms are independent of 
the deformation 

 
• ΔS with respect to the reference state Λx = Λy = Λz = 1 is 
 ΔS =  -(kBn/2)[Λx

2 + Λy
2 + Λz

2 - 3 - ln(ΛxΛyΛz)].     (2) 
 
• the chains have no internal energy scale, so ΔF = -TΔS, and 
 ΔF =  (kBTn/2)[Λx

2 + Λy
2 + Λz

2 - 3 - ln(ΛxΛyΛz)].     (3) 
 
• under a uniform change of scale Λx = Λy = Λz = Λ, (3) becomes 
  ΔF =  (3kBTn/2)•(Λ2 - 1 - lnΛ)  (uniform scaling)   (4) 
 
• note: ΔF = 0 at Λx = Λy = Λz = 1, but the minimum of ΔF is at Λ = 1/√2. 
 
• extract the shear modulus from ΔF by performing a pure shear on (3), with Λx = Λ = 

1/Λy and Λz = 1, yielding 
 ΔF =  (kBTn/2)•(Λ2 + 1/Λ2 - 2)  (pure shear).    (5) 
 
• but (Λ2 + 1/Λ2 - 2) = (Λ - 1/Λ)2  = 4δ2 when Λ = 1+δ and δ is small 
 
• divide (5) by the volume Vo (unchanged by shear) 
 ΔF = 2δ2ρkBT,  (ρ = density of chains = n / V)   (6) 
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• evaluate ΔF in terms of strain tensor under pure shear conditions of Λ = 1+δ,  
 ---->uxx = δ, uyy = -δ, uzz = 0 

then 
 ΔF = 2δ2µ          (7) 
 
• comparing (6) and (7) 
 µ = ρkBT.          (8) 
 
 
Spring networks 
 
• as an example, we consider a three dimensional network with cubic symmetry 

 
• go through the usual reduction of elastic constants and deformation modes to find 

the volume compression modulus: 
 KV = ksp / 3so   (rigid cubic symmetry),    (9) 
 
 
Example: peptidoglycan 
 
 
 
 
 
 
 
 
 
 
network "bonds" are drawn as heavy lines and their junctions are shown as disks 
The rectangular box: 
• has a volume of a x a x 4b = 4a2b  
• contains four vertices; the eight vertices at the corners are each shared with eight 

adjoining boxes, while the twelve vertices along the edges are shared with four 
adjoining boxes, giving a net total of 8/8 + 12/4 = 4 vertices 

• --->  the density of vertices = 1 / a2b.   

b 

b = 1 nm 
b 

b 

a 

peptide 
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• a vertex joins two glycans and one peptide – each of which is shared by another 
vertex - so there are 3/2 bonds per vertex; --->  bond density ρ = 3 / 2a2b 

  
• if a = 1.3 nm and b = 1 nm, we expect µ = ρkBT = 3.6 x 106 J/m3.   
• for many materials, Y = (8/3)µ  --> Y = 1 x 107 J/m3 in this representation 
• Y = 2-3 x 107 J/m3 is observed experimentally 
 
 
Polymer solutions 
 
What happens if there are no permanent cross-links between filaments?  Then the 
network can relax when subjected to a shear, although the relaxation time may be long.  
There are several concentration regimes, each with different properties: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
• dilute regime (ρ < ρ*): filaments do not touch, on average 
 rods:  density <  1 / Lc

3 
 chains: density <  3 / 4πRg

3 
 
• concentrated regime (ρ > ρ**): filaments in frequent contact 
 rods:  density >  1 /  DfLc

2  (Df = filament diameter, as below) 
 chains: density >  vexb6 (vex, b are the excluded volume and chain 
       segment length; proof not trivial; see 
       Doi and Edwards) 
 
• semidilute regime lies between ρ* and ρ** 
 

dilute semi-dilute 

isotropic nematic 

concentrated ρ** ρ* 
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Viscoelasticity 
 
• time evolution of polymer solution characterized by frequency-dependent elastic 

moduli 
• apply a periodic strain uxy(t) and measure the corresponding stress σxy(t) 

y
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• system driven at an angular frequency ω 
• introduce two new moduli 
 G'(ω) = shear storage modulus: G' → µ as ω → 0 
 G"(ω) = shear loss modulus: G" → η /ω  as ω → 0 
• response of system is 
 σxy = G'(ω)uxy(t) + G"(ω)•(duxy/dt )/ω 
 

 
for 1 mg/ml actin: 
 G'  ~ 100 to 102 J/m3 at 
 10-2 <  < 10+2 rad/sec 
 
rises to 109 J/m3 like plastics 
 at high frequencies 
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