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PHYS 4xx Flexible filaments
Mathematical description of curvature

* describe a line by positions r(s) where arc length s runs from 0 to L., the contour
length

t(s) = unit tangent vector

at point r(s) W

s=arc length <>

r(s) = position ¢ Ary

of point on curve

* unit tangent vector t has components (Ar/As, Ar,/AS, Ar/AS) = (dr/ds, dr,/ds, dr,/ds)
in the infinitesimal limit. Hence

t(s) =dr/ds (1)
* curvature C measures the rate of change of t with s
dt/ds = On (2)
\\T w n /
At
t,

* At=t, -ty is perpendicular to the curve at small separations
---> Atlln (n =normal; hence, n points to center of curvature if C> 0)

* (1) +(2) gives

Cn = 9°r/ds° (3)
or

C=1/R, (R = the radius of curvature) (4)
(proof: As=R. A6 + AO=IAtl --->  1/R, = At/AS)

Bending energy of a thin rod

A straight rod of length L, with uniform density and cross section, bent into an arc with
constant curvature C has a deformation energy per unit length which is quadratic in C

[energy] / [length] = (k/2) C°.
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The energy per unit length is E, /L. and the curvature is 1/R,, so we also have
E../L,=x/2R?=Y1/2R? (5)

* x5 = flexural rigidity; units of [energy]*[length]
* one can show from continuum elasticity theory that ks = Y1

Yis Young's modulus; units of [energ)] / [length)®; [stress] = Y [strain]
Y ~10° J/m® for plastics Y~10" J/m?® for metals

7 = moment of inertia of the cross section (like moment of inertia of mass)
area-weighted integral of the squared distance from an axis (of bending)
where the xy plane of the integral is perpendicular to the length of the rod

1, =X dA (6)
For example: 1= nR%Y4 (solid cylinder)

» if the curvature varies along the arc, then the local energy per unit length is
[energy | length] = k; (3t/ds)? /2 (7)
and the general expression for the total energy becomes

Lc
Ebend = (x/2) f (t/0s)? ds
0 (Kratky-Porod model) (8)

(doesn't include torsion resistance of rod)

Thermal fluctuations and persistence length

* at 7> 0, shape of a filament can fluctuate:

(X

increasing energy ———»

* shape of a gentle curve of constant curvature is characterized by angle 6 between
the unit tangent vectors t(0) and t(s)
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* arc sof a circle with radius R,: 6= s/R,

* (5) says this configuration has an energy:
Earc = KfS/ ZRCZ = Kf02 /2s (9)

* probability P(E) of the filament being found with energy E is proportional to the
Boltzmann factor exp(-SE), where = kg T

» for arcs of circles, the probability of each configuration is equal to P(E,,.), and

<t’> = [(FP(E,)dR/ [P(E,.)dL, (10)
» fixed end of the filament defines the z-axis, free end is described by the

angles 6 and ¢; integral over the solid angle dQ2 = sin6 d6 d¢ (in 3D)
* E,.isindependent of ¢, so the azimuthal integral cancels out, leaving

<> = [ & exp(-BE,.) sin6do/ [exp(-BE,.) sinddo (11)

* using the small angle approximation sinf ~ 6.

<> =[ & exp(-[Br/2s]F) dO | [ 0 exp(-[Bri/2s]6F) dO
= (2s/ Big) [ X° exp(-x¢) dx / [ x exp(->¢) dx, (12)

where x = (Bki/2s)"?0

* in the small oscillation approximation, the upper limits of the integrals in (12) can be
taken to be infinite, whence
X exp(-X) dx = [xexp(-X) dx =1/2
> <> =25/ Bi; (small oscillations in 3D). (13)

* combination Bk is defined as the persistence length &, of the filament:
&, = Px¢ (units of [length]) (14)

* Note that the persistence length decreases with increasing temperature.
Correlation function

The correlation function <t(0):t(s)> = <cosf> describes the correlation between the
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direction of the tangent vectors at different positions along the curve. At low
temperature, 6is small and cosf ~ 1 - /2, so
<t(0)t(s)>~ 1 - <F>/2
=1-5s/§, (s/&, << 1). (15)

This is a first-order approximation to an exponential via exp(-x) ~ 1 - x at small x; the
complete correlation function is

<t(0)t(s)> = exp(-s/ &) (16)

(which can also be built up segment by segment).
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Extras
1. Filament in 2D

For the fluctuating filament problem, if the tip is confined to a plane, the angular integral
in the calculation of <> involves d6, not the solid angle d©. Thus,
<> = (2s/ Bxy) [ X exp(-X) dx/ [ exp(-x°) dx

where x = (Bk /25)"?0

Integrated from O to «, the integrals are

[ X exp(-X2) dx=Vrn/4 fexp(-¥) dx=Vr /2
SO

<> = (ZS/ﬁKf) 12 = S//J)Kf.

This is half of <6’> in 3D, meaning that the persistence length is
&, = 2Pk (2 dimensions).

2. Tangent correlations in 2D

The tangent correlation function is easy to obtain in 2D without recourse to the small
angle expansion sind ~ 6. Starting with <t(0)-t(s)> = <cos6@>, the correlation function is

<t(0)-t(s)> = [ cosO exp(-y6F) dO / [ exp(-y6F) dO (two dimensions)
where y = Bk / 2s.

With the limits 0 < 6 < «, the integrals are
[exp(-y&) d6 = Vr / 2vy
[ cosO exp(-y?) do={Vn / 2Vy}exp(-1/4y)  Gradshteyn and Ryzhik, 3.896

so we have exactly
<cos6> = exp(-2s/ 4 Sxy)

or
<t(0)-t(s)> = exp(-s/ 2fxy) and & = 20K (2 dimensions)
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3. Equipartition theorem

Some students may be familiar with the theorem for the equipartition of energy
<BE>=KkT/2 per degree of freedom.

This can be applied directly to <¢*> using
<tF>=(2s/ky) <E,>

two dimensions three dimensions
<E,.>= kT /2 for 1 angle <E,.>= kg T for 2 angles
<6’>=s/ B¢ <t’>=2s/ k.

§p = 2/J)Kf §p = ﬁKf.
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