PHYS 4xx Flexible filaments

Mathematical description of curvature

- describe a line by positions $\mathbf{r}(s)$ where arc length s runs from 0 to L_{c}, the contour length

- unit tangent vector \mathbf{t} has components $\left(\Delta r_{x} / \Delta s, \Delta r_{y} / \Delta s, \Delta r_{z} / \Delta s\right)=\left(\partial r_{x} / \partial s, \partial r_{y} / \partial s, \partial r_{z} / \partial s\right)$ in the infinitesimal limit. Hence

$$
\begin{equation*}
\mathbf{t}(s)=\partial \mathbf{r} / \partial s \tag{1}
\end{equation*}
$$

- curvature C measures the rate of change of \mathbf{t} with s

$$
\begin{equation*}
\partial t / \partial s \equiv C n \tag{2}
\end{equation*}
$$

- $\Delta \mathbf{t}=\mathbf{t}_{2}-\mathbf{t}_{1}$ is perpendicular to the curve at small separations
---> $\Delta \mathbf{t} \| \mathbf{n} \quad(\mathbf{n}=$ normal; hence, \mathbf{n} points to center of curvature if $C>0)$
- (1) + (2) gives
$\mathrm{Cn}=\partial^{2} \mathrm{r} / \partial s^{2}$
or
$C=1 / R_{\mathrm{c}}$
(proof: $\Delta s=R_{\mathrm{c}} \Delta \theta \quad+\quad(R=$ the radius of curvature)
$\Delta \theta=|\Delta t| \quad$

Bending energy of a thin rod
A straight rod of length L_{c} with uniform density and cross section, bent into an arc with constant curvature C has a deformation energy per unit length which is quadratic in C
[energy] / [length] $=\left(\kappa_{f} / 2\right) C^{2}$.

The energy per unit length is $E_{\mathrm{arc}} / L_{\mathrm{c}}$ and the curvature is $1 / R_{\mathrm{c}}$, so we also have

$$
\begin{equation*}
E_{\mathrm{arc}} / L_{\mathrm{c}}=\kappa_{\mathrm{f}} / 2 R_{\mathrm{c}}^{2}=Y \mathbb{I} / 2 R_{\mathrm{c}}^{2} \tag{5}
\end{equation*}
$$

- $\kappa_{\mathrm{f}} \equiv$ flexural rigidity; units of [energy]•[length]
- one can show from continuum elasticity theory that $\kappa_{\mathrm{f}}=Y_{1}$
Y is Young's modulus; units of [energy] / [length] ${ }^{3}$; [stress] $=Y$ [strain]
$Y \sim 10^{9} \mathrm{~J} / \mathrm{m}^{3}$ for plastics $Y \sim 10^{11} \mathrm{~J} / \mathrm{m}^{3}$ for metals
$\mathcal{I}=$ moment of inertia of the cross section (like moment of inertia of mass) area-weighted integral of the squared distance from an axis (of bending) where the $x y$ plane of the integral is perpendicular to the length of the rod $I_{y}=\int x^{2} \mathrm{~d} A$
For example: $\quad \mathcal{I}=\pi R^{4} / 4 \quad$ (solid cylinder)
- if the curvature varies along the arc, then the local energy per unit length is

$$
\begin{equation*}
\text { [energy / length] }=\kappa_{\mathrm{f}}(\partial \mathrm{t} / \partial s)^{2} / 2 \tag{7}
\end{equation*}
$$

and the general expression for the total energy becomes

$$
E_{\text {bend }}=\left(\kappa_{f} / 2\right) \int_{0}^{L_{\mathrm{C}}}(\partial \mathrm{t} / \partial s)^{2} d s
$$

(Kratky-Porod model)
(doesn't include torsion resistance of rod)

Thermal fluctuations and persistence length

- at $T>0$, shape of a filament can fluctuate:

- shape of a gentle curve of constant curvature is characterized by angle θ between the unit tangent vectors $\mathbf{t}(0)$ and $\mathbf{t}(s)$

- \quad arc s of a circle with radius $R_{c}: \theta=s / R_{c}$
- (5) says this configuration has an energy:
$E_{\text {arc }}=\kappa_{\mathrm{f}} S / 2 R_{\mathrm{c}}^{2}=\kappa_{\mathrm{f}} \theta^{2} / 2 s$
- probability $\mathcal{P}(E)$ of the filament being found with energy E is proportional to the Boltzmann factor $\exp (-\beta E)$, where $\beta=k_{\mathrm{B}} T$
- for arcs of circles, the probability of each configuration is equal to $\mathcal{P}\left(E_{\text {arc }}\right)$, and

$$
\begin{equation*}
\left\langle\theta^{2}\right\rangle=\int \theta^{2} \mathcal{P}\left(E_{\text {arc }}\right) \mathrm{d} \Omega / \int \mathcal{P}\left(E_{\text {arc }}\right) \mathrm{d} \Omega, \tag{10}
\end{equation*}
$$

- fixed end of the filament defines the z-axis, free end is described by the
angles θ and ϕ; integral over the solid angle $\mathrm{d} \Omega=\sin \theta \mathrm{d} \theta \mathrm{d} \phi \quad$ (in 3D)
- $E_{\text {arc }}$ is independent of ϕ, so the azimuthal integral cancels out, leaving

$$
\begin{equation*}
<\theta^{2}>=\int \theta^{2} \exp \left(-\beta E_{\text {arc }}\right) \sin \theta \mathrm{d} \theta / \int \exp \left(-\beta E_{\text {arc }}\right) \sin \theta \mathrm{d} \theta \tag{11}
\end{equation*}
$$

- using the small angle approximation $\sin \theta \sim \theta$.

$$
\begin{align*}
\left.<\theta^{2}\right\rangle= & \int \theta^{3} \exp \left(-\left[\beta \kappa_{\mathrm{f}} / 2 s\right] \theta^{2}\right) \mathrm{d} \theta / \int \theta \exp \left(-\left[\beta \kappa_{\mathrm{f}} / 2 s\right] \theta^{2}\right) \mathrm{d} \theta \\
& =\left(2 s / \beta \kappa_{\mathrm{f}}\right) \int x^{3} \exp \left(-x^{2}\right) \mathrm{d} x / \int x \exp \left(-x^{2}\right) \mathrm{d} x \tag{12}\\
& \text { where } x=\left(\beta \kappa_{\mathrm{f}} / 2 s\right)^{1 / 2} \theta
\end{align*}
$$

- in the small oscillation approximation, the upper limits of the integrals in (12) can be taken to be infinite, whence

$$
\begin{equation*}
\int x^{3} \exp \left(-x^{2}\right) d x=\int x \exp \left(-x^{2}\right) d x=1 / 2 \tag{13}
\end{equation*}
$$

$\left.---><\theta^{2}\right\rangle \cong 2 s / \beta \kappa_{\mathrm{f}} \quad$ (small oscillations in 3D).

- combination $\beta \kappa_{\mathrm{f}}$ is defined as the persistence length ξ_{p} of the filament:

$$
\begin{equation*}
\xi_{\mathrm{p}} \equiv \beta \kappa_{\mathrm{f}} \text { (units of [length]) } \tag{14}
\end{equation*}
$$

- Note that the persistence length decreases with increasing temperature.

Correlation function

The correlation function $\langle\mathbf{t}(0) \cdot \mathbf{t}(s)\rangle=\langle\cos \theta\rangle$ describes the correlation between the
direction of the tangent vectors at different positions along the curve. At low temperature, θ is small and $\cos \theta \sim 1-\theta^{2} / 2$, so

$$
\begin{align*}
<t(0) \cdot t(s)> & \sim 1-<\theta^{2}>/ 2 \\
& =1-s / \xi_{p} \quad\left(s / \xi_{p} \ll 1\right) . \tag{15}
\end{align*}
$$

This is a first-order approximation to an exponential via $\exp (-x) \sim 1-x$ at small x; the complete correlation function is

$$
\begin{equation*}
\left\langle\mathbf{t}(0) \cdot \mathbf{t}(s)>=\exp \left(-s / \xi_{p}\right)\right. \tag{16}
\end{equation*}
$$

(which can also be built up segment by segment).

Extras

1. Filament in $2 D$

For the fluctuating filament problem, if the tip is confined to a plane, the angular integral in the calculation of $\left\langle\theta^{2}\right\rangle$ involves $\mathrm{d} \theta$, not the solid angle $\mathrm{d} \Omega$. Thus,

$$
<\theta^{2}>=\left(2 s / \beta \kappa_{\mathrm{f}}\right) \int x^{2} \exp \left(-x^{2}\right) \mathrm{d} x / \int \exp \left(-x^{2}\right) \mathrm{d} x
$$

where $x=\left(\beta \kappa_{\mathrm{f}} / 2 s\right)^{1 / 2} \theta$

Integrated from 0 to ∞, the integrals are

$$
\int x^{2} \exp \left(-x^{2}\right) \mathrm{d} x=\sqrt{ } \pi / 4
$$

$$
\int \exp \left(-x^{2}\right) \mathrm{d} x=\sqrt{ } \pi / 2
$$

SO

$$
<\theta^{2}>=\left(2 s / \beta \kappa_{\mathrm{f}}\right) \cdot 1 / 2=s / \beta \kappa_{\mathrm{f}} .
$$

This is half of $\left\langle\theta^{2}\right\rangle$ in 3D, meaning that the persistence length is

$$
\xi_{\mathrm{p}}=2 \beta \kappa_{\mathrm{f}} \quad \text { (2 dimensions). }
$$

2. Tangent correlations in $2 D$

The tangent correlation function is easy to obtain in 2D without recourse to the small angle expansion $\sin \theta \sim \theta$. Starting with $\langle\mathbf{t}(0) \cdot \mathbf{t}(s)>=<\cos \theta>$, the correlation function is

$$
\begin{aligned}
& <\mathbf{t}(0) \cdot \mathbf{t}(s)>=\int \cos \theta \exp \left(-\gamma \theta^{2}\right) \mathrm{d} \theta / \int \exp \left(-\gamma \theta^{2}\right) \mathrm{d} \theta \text { (two dimensions) } \\
& \quad \text { where } \gamma=\beta \kappa_{\mathrm{f}} / 2 s .
\end{aligned}
$$

With the limits $0 \leq \theta \leq \infty$, the integrals are

$$
\begin{aligned}
& \int \exp \left(-\gamma \theta^{2}\right) \mathrm{d} \theta=\sqrt{ } \pi / 2 \sqrt{ } \gamma \\
& \int \cos \theta \exp \left(-\gamma \theta^{2}\right) \mathrm{d} \theta=\{\sqrt{ } \pi / 2 \sqrt{ } \gamma\} \exp (-1 / 4 \gamma) \quad \text { Gradshteyn and Ryzhik, } 3.896
\end{aligned}
$$

so we have exactly

$$
<\cos \theta>=\exp \left(-2 s / 4 \beta \kappa_{\mathrm{f}}\right)
$$

or

$$
<\mathbf{t}(0) \cdot \mathbf{t}(s)>=\exp \left(-s / 2 \beta \kappa_{f}\right) \quad \text { and } \quad \xi_{p}=2 \beta \kappa_{f} \quad \text { (2 dimensions) }
$$

3. Equipartition theorem

Some students may be familiar with the theorem for the equipartition of energy $<E>=k_{B} T / 2$ per degree of freedom.

This can be applied directly to $\left\langle\theta^{2}\right\rangle$ using $\left.<\theta^{2}\right\rangle=\left(2 s / \kappa_{f}\right)<E_{\text {arc }}>$
two dimensions
$<E_{\text {arc }}>=k_{\mathrm{B}} T / 2$ for 1 angle
$<\theta^{2}>=s / \beta \kappa_{f}$
$\xi_{\mathrm{p}}=2 \beta \kappa_{\mathrm{f}}$
three dimensions
$\left.<E_{\text {arc }}\right\rangle=k_{\mathrm{B}} T$ for 2 angles
$\left.<\theta^{2}\right\rangle=2 s / \beta \kappa_{\mathrm{f}}$.
$\xi_{\mathrm{p}}=\beta \kappa_{\mathrm{f}}$.

