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PHYS 4xx Flexible filaments 
 
Mathematical description of curvature 
 
• describe a line by positions r(s) where arc length s runs from 0 to Lc, the contour 

length 
 

t(s) = unit tangent vector
at point r(s)

s = arc length

r(s) = position
of point on curve

!
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• unit tangent vector t has components (Δrx/Δs, Δry/Δs, Δrz/Δs) = (∂rx/∂s, ∂ry/∂s, ∂rz/∂s) 

in the infinitesimal limit.  Hence 
 t(s) = ∂r / ∂s      (1) 

 
• curvature C measures the rate of change of t with s 
 ∂t/∂s ≡ Cn         (2) 

 
 
 
 
 

• Δt = t2 - t1 is perpendicular to the curve at small separations 
 --->  Δt || n     (n = normal; hence, n points to center of curvature if C > 0) 
 
• (1) + (2) gives 
 Cn = ∂2r/∂s2         (3) 
or 
 C = 1/Rc  (R = the radius of curvature)   (4) 
(proof: Δs = Rc Δθ      +      Δθ = |Δt|    --->      1/Rc = Δt /Δs) 
  
Bending energy of a thin rod 
 
A straight rod of length Lc with uniform density and cross section, bent into an arc with 
constant curvature C has a deformation energy per unit length which is quadratic in C 
 
 [energy] / [length] = (κf/2)C2. 
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The energy per unit length is Earc/Lc and the curvature is 1/Rc, so we also have 
 
 Earc / Lc = κf / 2Rc

2 = YI / 2Rc
2,      (5) 

 
• κf ≡ flexural rigidity; units of [energy]•[length] 
• one can show from continuum elasticity theory that κf = YI  

Y is Young's modulus; units of [energy] / [length]3; [stress] = Y [strain] 
Y ~ 109 J/m3 for plastics  Y ~ 1011 J/m3 for metals 

 
 I = moment of inertia of the cross section (like moment of inertia of mass) 
 area-weighted integral of the squared distance from an axis (of bending)  
 where the xy plane of the integral is perpendicular to the length of the rod 
 Iy = ∫x2 dA         (6) 
 For example:           I = πR4/4  (solid cylinder) 
 
• if the curvature varies along the arc, then the local energy per unit length is 

[energy / length] = κf (∂t/∂s)2 /2      (7) 
 

and the general expression for the total energy becomes   

 
Ebend  = (! f/2) ! ("t/"s)2 ds

0

Lc

  (Kratky-Porod model) (8) 
 
(doesn't include torsion resistance of rod) 
 
 
Thermal fluctuations and persistence length 
 
• at T > 0, shape of a filament can fluctuate: 

 
 
 
 
 
 
 

 
• shape of a gentle curve of constant curvature is characterized by angle θ between 

the unit tangent vectors t(0) and t(s) 
 
 

increasing energy 
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• arc s of a circle with radius Rc:  θ = s/Rc 
• (5) says this configuration has an energy: 

Earc = κfs / 2Rc
2 = κfθ 2 / 2s       (9) 

• probability P(E) of the filament being found with energy E is proportional to the  
 Boltzmann factor exp(-βE), where β = kBT 
• for arcs of circles, the probability of each configuration is equal to P(Earc), and 
 <θ2> = ∫θ2P(Earc)dΩ /  ∫P(Earc)dΩ,      (10) 
 
• fixed end of the filament defines the z-axis, free end is described by the  
 angles θ and φ; integral over the solid angle dΩ = sinθ dθ dφ       (in 3D) 
• Earc is independent of φ, so the azimuthal integral cancels out, leaving 
 
 <θ2> = ∫ θ2 exp(-βEarc) sinθ dθ /  ∫ exp(-βEarc) sinθ dθ   (11) 
 
• using the small angle approximation sinθ ~  θ. 
 
 <θ2> = ∫ θ3 exp(-[βκf/2s]θ2) dθ   /  ∫ θ exp(-[βκf/2s]θ2) dθ 
  = (2s / βκf) ∫ x3 exp(-x2) dx / ∫ x exp(-x2) dx,   (12) 
 

where x = (βκf/2s)1/2θ  
 
• in the small oscillation approximation, the upper limits of the integrals in (12) can be 

taken to be infinite, whence 
 ∫ x3 exp(-x2) dx  =  ∫ x exp(-x2) dx  = 1/2 
 
----> <θ2> ≅ 2s / βκf  (small oscillations in 3D).   (13) 
 
• combination βκf is defined as the persistence length ξp of the filament: 
 ξp ≡ βκf (units of [length])       (14) 
 
• Note that the persistence length decreases with increasing temperature. 
 
Correlation function 
 
The correlation function <t(0)•t(s)> = <cosθ> describes the correlation between the 

t(s) 

t(0) 
s 

Rc 

θ 

θ 



PHYS 4xx Polymers 1    4 

© 2010 by David Boal, Simon Fraser University.  All rights reserved; further resale or copying is strictly prohibited. 

direction of the tangent vectors at different positions along the curve.  At low 
temperature, θ is small and cosθ ~ 1 - θ2/2, so 
 <t(0)•t(s)> ~ 1 - <θ2>/2 
   = 1 - s / ξp  (s/ξp << 1).    (15) 
 
This is a first-order approximation to an exponential via exp(-x) ~ 1 - x at small x; the 
complete correlation function is 
 
 <t(0)•t(s)> = exp(-s / ξp)       (16) 
 
(which can also be built up segment by segment). 
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Extras 
 
1.  Filament in 2D   
 
For the fluctuating filament problem, if the tip is confined to a plane, the angular integral 
in the calculation of <θ2> involves dθ, not the solid angle dΩ.  Thus, 
 <θ2> = (2s / βκf) ∫ x2 exp(-x2) dx / ∫ exp(-x2) dx 
 

where x = (βκ f/2s)1/2θ  
 
Integrated from 0 to ∞, the integrals are 
 ∫ x2 exp(-x2) dx = √π / 4  ∫ exp(-x2) dx = √π / 2 
so 
 <θ2> = (2s / βκf) • 1/2 = s / βκf. 
 
This is half of <θ2> in 3D, meaning that the persistence length is 
 ξp = 2βκf    (2 dimensions). 
 
 
2.  Tangent correlations in 2D 
 
The tangent correlation function is easy to obtain in 2D without recourse to the small 
angle expansion sinθ ~ θ.  Starting with <t(0)•t(s)> = <cosθ>, the correlation function is 
 
 <t(0)•t(s)> = ∫ cosθ exp(-γθ2) dθ / ∫ exp(-γθ2) dθ (two dimensions) 
  where γ = βκf / 2s. 
 
With the limits 0 ≤ θ ≤ ∞, the integrals are 
 ∫ exp(-γθ2) dθ = √π / 2√γ 
  ∫ cosθ exp(-γθ2) dθ = {√π / 2√γ} exp(-1 / 4γ) Gradshteyn and Ryzhik, 3.896 
 
so we have exactly 
 <cosθ> = exp(-2s / 4βκf) 
or 
 <t(0)•t(s)> = exp(-s / 2βκf)  and   ξp = 2βκf (2 dimensions) 
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3.  Equipartition theorem 
 
Some students may be familiar with the theorem for the equipartition of energy 
 <E> = kBT /2  per degree of freedom. 
 
This can be applied directly to <θ2> using 
 <θ2> = (2s /κ f) <Earc> 
 
 two dimensions    three dimensions 
 <Earc> = kBT /2 for 1 angle   <Earc> = kBT  for 2 angles 
 <θ2> = s / βκ f    <θ2> = 2s / βκ f. 
 ξp = 2βκf     ξp = βκf. 


