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PHYS 4xx Poly 2 - Sizes of polymer chains 
 
Ideal chains and filaments 
 
A flexible filament or polymer has an end-to-end displacement vector ree that is less than 
the contour length Lc of the polymer. 

 
 
 
 
 
 
 

 
• r(s) = position at arc length s, so that  
 <ree

2> = <[r(Lc) - r(0)]2>  <....> = ensemble average   (1) 
 
• cast (1) into an integral using the unit tangent vector t(s) = ∂r / ∂s   
 r(s) = r(0) + ∫0s du t(u),        (2) 

then 
 <ree

2> = ∫0Lc du ∫0Lc dv <t(s)•t(0)>.       (3) 
 
• replace the correlation function <t(s)•t(0)> by exp(-s/ξp) 
 <ree

2> = ∫0Lc du ∫0Lc dv exp( -|u-v| /ξp).      (4) 
 
• the argument of the exponential must be negative: break the integral into two pieces 

where one integration variable is kept less than the other: 
•  
 <ree

2> = 2 ∫0Lc du ∫0u dv exp( -[u-v] /ξp),      (5) 
 
• solve this integral using a few changes of variables 
 

 
2 ! du  exp(-u /"p) ! dv exp(v /"p) = 2 ! du  exp(-u /"p) • "p • [exp(u /"p) - 1]

0 0

Lc u Lc

0  

      
 = 2!p

2 " dw  [1 - exp(-w)].
0

Lc/!p

   (6) 
 
• evaluating the last integral gives 
 <ree

2> = 2ξp
2 { (Lc/ξp - 0) + [ exp(-Lc/ξp) - 1] }. 

or 
 <ree

2> = 2ξpLc - 2ξp
2 [1 - exp(-Lc /ξp) ].      (7) 

 

ree 

Lc 
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• rod-like limit ξp >> Lc: 
 <ree

2> = 2ξpLc - 2ξp
2 {1 - [1 + (-Lc /ξp) + (-Lc /ξp)2/2....] } 

   = 2ξpLc - 2ξpLc + 2Lc
2/2 

or <ree
2>1/2 = Lc 

 
• spaghetti-like limit  ξp << Lc: the exponential in (7) vanishes and 
 <ree

2> = 2ξpLc - 2ξp
2 ≅ 2ξpLc        (8) 

 
CONCLUSION: the size of the polymer grows like Lc

1/2. 
 
 
Discrete representation: polymer is a set of bond vectors bi with the same magnitude 
and direction as the monomers 

ree

b2 b3

b4

b1

 
• construct ree from all N vectors along the chain 
 ree = Σi=1,N bi,         (9) 
 
• take the ensemble average over all chains with the same N 
 <ree

2> = Σi Σj <bi•bj>.        (10) 
 
• now assume that all bi have the same length b.  Break the sum up into 2 parts  
 <ree

2> = Σi=j <bi•bj> + Σi Σj≠i <bi•bj>      (11) 
 

the first summation has N terms, all of the form bi•bi = b2. 
the second term is a sum over randomly oriented vectors, with any bi being 

uncorrelated with respect to any other bj.  Thus 
 Σi Σj≠i <bi•bj> = 0 
 
• add two contributions in (11) to give 
 <ree

2> = Nb2    (random chain)     (12) 
 

or, since Lc = Nb 
 <ree

2> = Lcb          (13) 
 
• the form of Eq. (13) is the same as Eq. (8), and we can identify 
 ξp = b /2    (random chain)    (14) 
  
• in Eqs. (8) and (13), the power law behavior 
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is called ideal scaling 

 
 
 
Other chain geometries 
 
• physical systems have an excluded volume that enforces self-avoidance of the chain 

 
 
 
 
 
 

    random  self-avoiding 
• example: a self-avoiding chain in one dimension cannot reverse on itself from one 

step to the next, so that ree ~ Lc
1 (vs. <ree

2>1/2 ~ Lc
1/2 for all ideal chains) 

 
• Flory developed a model for self-avoiding chains which gave the scaling behavior 
 

        (15) 
 
 
Diffusion 
 
The trajectory of an individual molecule diffusing through a medium has the form of a 
random walk.  If the diffusing molecule travels a distance l before it collides with some 
other component of the system, then the end-to-end displacement ree of the trajectory of 
a specific diffusing particle obeys 

<ree
2> = l2N,          (16) 

 
where N is the number of steps.  If there is one step per unit time, then N = t and 

<ree
2> = l2t.          (17) 

 
Now, the units of Eq. (17) aren't quite correct, in that the left-hand-side has units of 
[length2] while the right hand side has [length2]•[time].  We accommodate this by writing 
the displacement as 
 

<ree
2> ≡ 6Dt        (18) 

 
where D is the diffusion coefficient. 
 
The factor of 6 in Eq. (18) is dimension-dependent: for each Cartesian axis, the mean 
squared displacement is equal to 2Dt.  That is, if an object diffuses in one dimension 

 <ree
2>1/2 ~ N1/2  

r ~ N ν    with   ν = 3 / (2+d)         (Flory)
  

diffusion in three dimensions 
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only (for example, a molecule moves randomly along a track) then 
 
<ree

2> = 2Dt             (19) 
 
and if it is confined to a plane, such as a protein moving in the lipid bilayer of the cell's 
plasma membrane, then 

<ree
2> =  <ree,x

2> + <ree,y
2>   

= 2Dt + 2Dt = 4Dt.  (20)   
 
 A molecule diffusing in a liquid of like objects has a diffusion coefficient D in the range 
10-14 to 10-10 m2/s, depending on the size of the molecule.  Some examples: 
 

System     D (m2/s) 
Xenon      5760 × 10-9 
Water      2.1 × 10-9 

Sucrose in water     0.52 × 10-9 
Serum albumin in water    0.059 × 10-9 

(All measurements are at 25 oC, except xenon gas at 20 oC) 
 
The diffusion coefficient can be determined analytically for a few specific situations.  
One case is the random motion of a sphere of radius R subject to Stokes' Law for drag: 
F = 6πηRv where v is the speed of the sphere and η is the viscosity of the fluid. 
 
 D = kBT / 6πηR.           (21) 
 
A molecule like a protein can rotate around its axis at the same time as it travels.  A 
random "walk" in angle θ as an object rotates around its axis can be written as 
 <θ 2> = 2Drt,          (22) 
 
where Dr is the rotational diffusion coefficient. 
 
For a sphere rotating in a viscous medium, there is an expression for Dr just like the 
translational diffusion of Eq. (21), namely 
 

Dr = kBT / 8πηR 3.           (23) 
 
Note, the units of Dr are [time -1], whereas D is [length2]/[time]; hence, there is an extra 
factor of R 2 in the denominator of Eq. (23) compared to Eq. (21). 

diffusion in one dimension 

diffusion in two dimensions 

Einstein relation 

rotational diffusion 


