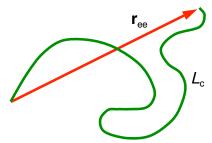
PHYS 4xx Poly 2 - Sizes of polymer chains

Ideal chains and filaments

A flexible filament or polymer has an end-to-end displacement vector \mathbf{r}_{ee} that is less than the contour length L_c of the polymer.



• **r**(s) = position at arc length s, so that

$$\langle \mathbf{r}_{ee}^2 \rangle = \langle [\mathbf{r}(L_c) - \mathbf{r}(0)]^2 \rangle$$
 <....> = ensemble average (1)

• cast (1) into an integral using the unit tangent vector $\mathbf{t}(s) = \partial \mathbf{r} / \partial s$

$$\mathbf{r}(s) = \mathbf{r}(0) + \int_0^s du \, \mathbf{t}(u), \tag{2}$$

then

$$<\mathbf{r}_{ee}^{2}> = \int_{0}^{Lc} du \int_{0}^{Lc} dv < \mathbf{t}(s) \cdot \mathbf{t}(0)>.$$
 (3)

• replace the correlation function $\langle \mathbf{t}(s) \cdot \mathbf{t}(0) \rangle$ by $\exp(-s/\xi_0)$

$$<\mathbf{r}_{ee}^2> = \int_0^{Lc} du \int_0^{Lc} dv \exp(-|u-v|/\xi_p).$$
 (4)

 the argument of the exponential must be negative: break the integral into two pieces where one integration variable is kept less than the other:

$$\langle \mathbf{r}_{ee}^2 \rangle = 2 \int_0^{Lc} du \int_0^u dv \exp(-[u-v]/\xi_0),$$
 (5)

solve this integral using a few changes of variables

$$2\int_{0}^{L_{c}} du \exp(-u/\xi_{p}) \int_{0}^{u} dv \exp(v/\xi_{p}) = 2\int_{0}^{L_{c}} du \exp(-u/\xi_{p}) \cdot \xi_{p} \cdot [\exp(u/\xi_{p}) - 1]$$

$$= 2\xi_{p}^{2} \int_{0}^{L_{c}/\xi_{p}} dw [1 - \exp(-w)].$$
(6)

evaluating the last integral gives

$$\langle \mathbf{r}_{ee}^2 \rangle = 2\xi_p^2 \{ (L_c/\xi_p - 0) + [\exp(-L_c/\xi_p) - 1] \}.$$

or

$$\langle \mathbf{r}_{ee}^2 \rangle = 2\xi_{p}L_{c} - 2\xi_{p}^2 [1 - \exp(-L_{c}/\xi_{p})].$$
 (7)

• rod-like limit $\xi_0 >> L_c$:

or

$$\langle r_{ee}^2 \rangle = 2\xi_p L_c - 2\xi_p^2 \left\{ 1 - \left[1 + \left(-L_c / \xi_p \right) + \left(-L_c / \xi_p \right)^2 / 2 \right] \right\}$$

 $= 2\xi_p L_c - 2\xi_p L_c + 2L_c^2 / 2$
 $\langle r_{ee}^2 \rangle^{1/2} = L_c$

• <u>spaghetti-like limit</u> $\xi_p \ll L_c$: the exponential in (7) vanishes and $\langle r_{ee}^2 \rangle = 2\xi_p L_c - 2\xi_p^2 \cong 2\xi_p L_c$ (8)

CONCLUSION: the size of the polymer grows like $L_{\rm c}^{1/2}$.

<u>Discrete representation</u>: polymer is a set of bond vectors \mathbf{b}_i with the same magnitude and direction as the monomers

• construct \mathbf{r}_{ee} from all N vectors along the chain

$$\mathbf{r}_{ee} = \Sigma_{i=1,N} \; \mathbf{b}_{i}, \tag{9}$$

• take the ensemble average over all chains with the same N $<\mathbf{r}_{ee}^2>=\Sigma_i\Sigma_i<\mathbf{b}_i\cdot\mathbf{b}_i>.$ (10)

now assume that all b_i have the same length b. Break the sum up into 2 parts

$$\langle \mathbf{r}_{ee}^2 \rangle = \Sigma_{i=j} \langle \mathbf{b}_i \cdot \mathbf{b}_j \rangle + \Sigma_i \Sigma_{j \neq i} \langle \mathbf{b}_i \cdot \mathbf{b}_j \rangle$$
 (11)

the first summation has N terms, all of the form $\mathbf{b}_i \cdot \mathbf{b}_i = b^2$.

the second term is a sum over randomly oriented vectors, with any \mathbf{b}_i being uncorrelated with respect to any other \mathbf{b}_i . Thus

$$\Sigma_i \Sigma_{i\neq i} < \mathbf{b}_i \cdot \mathbf{b}_i > 0$$

add two contributions in (11) to give

$$\langle \mathbf{r}_{ee}^2 \rangle = Nb^2$$
 (random chain) (12)

or, since
$$L_c = Nb$$

 $\langle \mathbf{r}_{ee}^2 \rangle = L_c b$ (13)

• the form of Eq. (13) is the same as Eq. (8), and we can identify $\xi_{\rm p} = b/2$ (random chain) (14)

in Eqs. (8) and (13), the power law behavior

PHYS 4xx Poly 2

$$<\mathbf{r}_{ee}^{2}>^{1/2} \sim N^{1/2}$$

is called ideal scaling

Other chain geometries

physical systems have an excluded volume that enforces self-avoidance of the chain

random

self-avoiding

- example: a <u>self-avoiding chain</u> in one dimension cannot reverse on itself from one step to the next, so that $r_{ee} \sim L_c^{-1}$ (vs. $<\mathbf{r}_{ee}^2>^{1/2} \sim L_c^{-1/2}$ for all ideal chains)
- Flory developed a model for self-avoiding chains which gave the scaling behavior

$$r \sim N^{v}$$
 with $v = 3 / (2+a)$ (Flory)

Diffusion

The trajectory of an individual molecule diffusing through a medium has the form of a random walk. If the diffusing molecule travels a distance ℓ before it collides with some other component of the system, then the end-to-end displacement \mathbf{r}_{ee} of the trajectory of a specific diffusing particle obeys

$$\langle \mathbf{r}_{ee}^2 \rangle = \ell^2 N, \tag{16}$$

where *N* is the number of steps. If there is one step per unit time, then N = t and $\langle \mathbf{r}_{ee}^2 \rangle = \ell^2 t$. (17)

Now, the units of Eq. (17) aren't quite correct, in that the left-hand-side has units of [length²] while the right hand side has [length²] [time]. We accommodate this by writing the displacement as

$$\langle \mathbf{r}_{ee}^2 \rangle = 6Dt$$
 diffusion in three dimensions (18)

where D is the diffusion coefficient.

The factor of 6 in Eq. (18) is dimension-dependent: for each Cartesian axis, the mean squared displacement is equal to 2Dt. That is, if an object diffuses in one dimension

PHYS 4xx Poly 2

only (for example, a molecule moves randomly along a track) then

$$\langle \mathbf{r}_{ee}^2 \rangle = 2Dt$$
 diffusion in one dimension (19)

and if it is confined to a plane, such as a protein moving in the lipid bilayer of the cell's plasma membrane, then

$$\langle \mathbf{r}_{ee}^2 \rangle = \langle \mathbf{r}_{ee,x}^2 \rangle + \langle \mathbf{r}_{ee,y}^2 \rangle$$

= $2Dt + 2Dt = 4Dt$. diffusion in two dimensions (20)

A molecule diffusing in a liquid of like objects has a diffusion coefficient D in the range 10^{-14} to 10^{-10} m²/s, depending on the size of the molecule. Some examples:

<u>System</u>	<u>D (m²/s)</u>
Xenon	5760×10^{-9}
Water	2.1×10^{-9}
Sucrose in water	0.52×10^{-9}
Serum albumin in water	0.059×10^{-9}

(All measurements are at 25 °C, except xenon gas at 20 °C)

The diffusion coefficient can be determined analytically for a few specific situations. One case is the random motion of a sphere of radius R subject to Stokes' Law for drag: $F = 6\pi \eta R v$ where v is the speed of the sphere and η is the viscosity of the fluid.

$$D = k_{\rm B}T / 6\pi \eta R.$$
 Einstein relation (21)

A molecule like a protein can rotate around its axis at the same time as it travels. A random "walk" in angle θ as an object rotates around its axis can be written as

$$\langle \theta^2 \rangle = 2D_r t, \tag{22}$$

where D_r is the rotational diffusion coefficient.

For a sphere rotating in a viscous medium, there is an expression for D_r just like the translational diffusion of Eq. (21), namely

$$D_{\rm r} = k_{\rm B}T/8\pi\eta R^3$$
. rotational diffusion (23)

Note, the units of D_r are [time $^{-1}$], whereas D is [length²]/[time]; hence, there is an extra factor of R^2 in the denominator of Eq. (23) compared to Eq. (21).