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PHYS 4xx Poly 2 - Sizes of polymer chains
Ideal chains and filaments

A flexible filament or polymer has an end-to-end displacement vector r,, that is less than
the contour length L, of the polymer.

ree

* r(s) = position at arc length s, so that
<r..> = <[r(L,) - r(0)]> <....>=ensemble average (1)

* cast (1) into an integral using the unit tangent vector t(s) =dr / ds

r(s) =r(0) +fo* du t(u), (2)
then
<r.> = [,/ du[,” dv <t(s)-t(0)>. (3)

* replace the correlation function <t(s)-t(0)> by exp(-s/&,)
<r.>> = [ du [ dvexp( -lu-ul /&,). (4)

* the argument of the exponential must be negative: break the integral into two pieces
where one integration variable is kept less than the other:

<r,.™>=2 [, dufy’ dvexp( -{u-v /&), (5)

* solve this integral using a few changes of variables

Le u Le
2fdu exp(u /gp){dvexp(v/gp) - Z{du exp( /5p) * & * [expl /&) - 1]
0
Le/Ep
=252 [ dw [1 - exp(w)].
0 (6)
* evaluating the last integral gives
<reez> = 2§p2{ (Lclgp - O) + [ exp('Lclgp) - 1] }
or
<reez> = 2§ch - 2§p2 [1 - exp('Lc /gp) ] (7)
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* rod-like limit §, >> L.
<re> =251 - 282 {1 - [1 + (L, 1E) + (L, IE)2/2....] }
=2E L -2 L, + 2122
or < >"=1L,

* spaghetti-like limit & << L.: the exponential in (7) vanishes and
<ree2> = 2§ch - 2§p2 = 2§ch (8)

CONCLUSION: the size of the polymer grows like L,".

Discrete representation: polymer is a set of bond vectors b; with the same magnitude
and direction as the monomers

* construct r,, from all Nvectors along the chain
Foe = Zi=1,N bj; (9)

* take the ensemble average over all chains with the same N
<reez> = Zi Z] <bi‘bj>. (1 O)

* now assume that all b; have the same length b. Break the sum up into 2 parts
<reez> = Zi:j <bi‘bj> + Zi Zj;ti <bi‘bj> (1 1)

the first summation has Nterms, all of the form b;*b; = £°.

the second term is a sum over randomly oriented vectors, with any b; being
uncorrelated with respect to any other bj. Thus

2 2, <bjsb>=0

* add two contributions in (11) to give
<r..>>= Nb° (random chain) (12)

or, since L, = Nb
<r.>=Lb (13)

* the form of Eq. (13) is the same as Eq. (8), and we can identify
E=bl2 (random chain) (14)

* in Egs. (8) and (13), the power law behavior
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2112 12
<Fee > N is called ideal scaling

Other chain geometries

* physical systems have an excluded volume that enforces self-avoidance of the chain

random self-avoiding
* example: a self-avoiding chain in one dimension cannot reverse on itself from one
step to the next, so that r,, ~ L' (vs. <r,.>"* ~ L' for all ideal chains)

* Flory developed a model for self-avoiding chains which gave the scaling behavior

r~N' with v=3/(2+d) (Flory) (15)

Diffusion

The trajectory of an individual molecule diffusing through a medium has the form of a
random walk. If the diffusing molecule travels a distance ¢ before it collides with some
other component of the system, then the end-to-end displacement r,, of the trajectory of
a specific diffusing particle obeys

<r,>>=(°N, (16)

where Nis the number of steps. If there is one step per unit time, then N= tand
<r,’>=/(°t (17)

Now, the units of Eq. (17) aren't quite correct, in that the left-hand-side has units of

[length?] while the right hand side has [length?]+[time]. We accommodate this by writing
the displacement as

<r..>= 6Dt diffusion in three dimensions (18)

where D is the diffusion coefficient.

The factor of 6 in Eq. (18) is dimension-dependent: for each Cartesian axis, the mean
squared displacement is equal to 2Dt. That is, if an object diffuses in one dimension
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only (for example, a molecule moves randomly along a track) then

<r..>>=2Dt diffusion in one dimension (19)

and if it is confined to a plane, such as a protein moving in the lipid bilayer of the cell's
plasma membrane, then
Cee?> = <Moo, > + <M 2>
= 2Dt + 2Dt = 4Dt diffusion in two dimensions (20)

A molecule diffusing in a liquid of like objects has a diffusion coefficient D in the range
10" to 10" m?/s, depending on the size of the molecule. Some examples:

System D (m?/s)
Xenon 5760 x 10°®
Water 2.1x10°
Sucrose in water 0.52 x 10°®
Serum albumin in water 0.059 x 10°

(All measurements are at 25 °C, except xenon gas at 20 °C)

The diffusion coefficient can be determined analytically for a few specific situations.
One case is the random motion of a sphere of radius R subject to Stokes' Law for drag:
F = 6xnRv where vis the speed of the sphere and 7 is the viscosity of the fluid.

D= k;T/6anR. Einstein relation (21)
A molecule like a protein can rotate around its axis at the same time as it travels. A
random "walk" in angle 6 as an object rotates around its axis can be written as

<6*>=2Dt, (22)

where D, is the rotational diffusion coefficient.

For a sphere rotating in a viscous medium, there is an expression for D, just like the
translational diffusion of Eq. (21), namely

D, = k;T/ 8xnR>. rotational diffusion (23)

Note, the units of D, are [time '], whereas D is [length?]/[time]; hence, there is an extra
factor of R? in the denominator of Eq. (23) compared to Eq. (21).
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