## PHYS 4xx Poly 3 - Chain elasticity

## Random chains in one dimension

Consider one-dimensional random chains with three segments: each link can point to the right or the left ( $2^3 = 8$  possible configurations)



$$C(\mathbf{r}_{ee})$$
 = the number of configs with a given end-to-end displacement  $\mathbf{r}_{ee}$ :  
 $C(+3b) = 1$   $C(+1b) = 3$   $C(-1b) = 3$   $C(-3b) = 1$ . (1)

 $C(\mathbf{r}_{ee})$  equals the binomial coefficients in  $(p+q)^3 = p^3 + (ppq + pqp + qpp) + (pqq + qpq + qqp) + q^3$ .

as the number of steps *N* increases, the distribution looks ever more Gaussian, and the general form for probability *density* is

$$\mathcal{P}(x) = (2\pi\sigma^2)^{-1/2} \exp[-(x-\mu)^2 / 2\sigma^2]$$
 (normalized) (2)

 $\mathcal{P}(x)$  dx = probability of finding the observable x between x and x + dx

mean value = 
$$\mu = \langle x \rangle = \int x \mathcal{P}(x) dx$$
  $-\infty \leq x \leq +\infty$  (3)

variance = 
$$\sigma^2 = \langle (x - \mu)^2 \rangle = \langle x^2 \rangle - \mu^2$$
 (4)

random chains in one dimension obey  $\langle \mathbf{x} \rangle = 0$  and  $\langle x^2 \rangle = Nb^2$ ---->  $\mu = 0$  and  $\sigma^2 = Nb^2$  (one dimension) (5)

## Random chain in three dimensions

By projecting their configurations onto a set of Cartesian axes, three-dimensional random chains can be treated as three separate one-dimensional systems



$$\mathcal{P}(r_{\text{ee,x}}) = (2\pi\sigma^2)^{-1/2} \exp(-r_{\text{ee,x}}^2/2\sigma^2)$$
 with  $\sigma^2 = N < b_x^2 >$  (6)

 $< b_x^2 >$  refers to the projection of the individual steps on the *x*-axis, which are independent of direction

$$+  +  = = b^2$$

implying

$$\langle b_{x}^{2} \rangle = \langle b_{y}^{2} \rangle = \langle b_{x}^{2} \rangle = b^{2}/3, \tag{7}$$

hence:

$$\sigma^2 = Nb^2/3$$
 (for three dimensions). (8)

Probability density (now per unit volume) at a given (x, y, z) is

$$\mathcal{P}(x,y,z) = \mathcal{P}(x)\mathcal{P}(y)\mathcal{P}(z) = (2\pi\sigma^2)^{-3/2} \exp[-(x^2 + y^2 + z^2)/2\sigma^2], \tag{9}$$

where  $\sigma^2 = Nb^2/3$ 

Eq. (9) says that the most likely set of coordinates for the tip of the chain is (0,0,0); it does *not* say that the most likely value of  $r_{ee}$  is zero

The probability for the chain having a radial end-to-end distance between r and r + dr is  $\mathcal{P}_{rad}(r)dr$  and can be obtained from

$$\mathcal{P}(x,y,z)dx\,dy\,dz = \mathcal{P}_{rad}(r)dr \tag{10}$$

so that

$$\mathcal{P}_{\text{rad}}(r) = 4\pi r^2 (2\pi\sigma^2)^{-3/2} \exp(-r^2/2\sigma^2). \tag{11}$$



Summary of results for ideal chains in three dimensions

$$r_{\text{ee, most likely}} = (2/3)^{1/2} N^{1/2} b$$
 (12)  
 $< r_{\text{ee}} > = (8/3\pi)^{1/2} N^{1/2} b$  (13)

$$\langle r_{\rm ee} \rangle = (8/3\pi)^{1/2} N^{1/2} b$$
 (13)

$$\langle \mathbf{r}_{ee}^2 \rangle = Nb^2$$
. (14)

## Entropic elasticity

Eqs. (12) and (14) show that the largest number of chain configs occur near  $r_{ee} = N^{1/2}b$ . But entropy  $S \sim \log(\text{configs.}) \longrightarrow S$  of a chain must decrease as the chain is stretched. Since the configurations of freely-jointed chains have energy E = 0, then F = E - TS -->F = -TS

**Conclusion**: F increases as the chain is stretched because S decreases; hence, the chain resists stretching.

The elastic constant for entropic elasticity can be obtained through a comparison with the potential energy  $V(x) = k_{\rm sn} x^2/2$  for a Hookean spring. The argument goes as follows:

For a Hookean spring, at T > 0 the probability distribution  $\mathcal{P}(x)$  for a displacement x goes like  $\sim \exp(-E/k_BT)$ 

----> 
$$\mathcal{P}(x) \sim \exp(-k_{\rm sp}x^2/2k_{\rm B}T)$$
. (15)

Compare (15) with an ideal chain (6),  $\mathcal{P}(x) \sim \exp(-x^2/2\sigma^2)$ , to obtain  $k_{\rm sp} = k_{\rm B}T/\sigma^2$  with  $\sigma^2 = Nb^2/d$ . (chains in *d* dimensions)

Hence

$$k_{\rm sp} = 3k_{\rm B}T/Nb^2 = 3k_{\rm B}T/2\xi_{\rm p}L_{\rm c}$$
 (three dimensions) (16)

where we have used  $L_c = Nb$  and  $\xi_p = b/2$  for an ideal chain.

Note:  $k_{\rm sp}$  increases with temperature (for ideal chains,  $< r_{\rm ee}^2 > =$  constant, but  $k_{\rm sp} \sim T^1$ ) DEMO with weight hung from an elastic band

Highly stretched chains

Eq. (16) predicts that the force f required to produce an extension x is

$$f = (3k_{\rm B}T/2\xi_{\rm p}L_{\rm c})x$$

or

$$x/L_{c} = (2\xi_{o} / 3k_{B}T) f.$$
 (17)

Eq. (17) says that any x can be achieved with enough force; however, a chain with inextensible elements should not exceed  $x/L_c = 1$ .

Kuhn and Grün, 1942; James and Guth, 1943 (see also Flory, 1953, p. 427) have shown that a chain of rigid rods obeys

$$x/L_{c} = \mathcal{L}(2\xi_{p}f/k_{B}T), \tag{18}$$

where  $\mathcal{L}(y)$  is the Langevin function

$$\mathcal{L}(y) = \coth(y) - 1/y. \tag{19}$$

Eq. (18) is better than the Gaussian approximation, but still not completely accurate for flexible filaments.

The worm-like chain (WLC) is based on Kratky-Porod model; its force-extension relationship is numerical but can be fitted by (Marko and Siggia, 1995):

$$\xi_{\rm p} f / k_{\rm B} T = (1/4)(1 - x/L_{\rm c})^{-1/2} - 1/4 + x/L_{\rm c}.$$
 (20)

Eqs. (18) and (20) are similar at large and small x but may disagree by up to 15% at intermediate forces.