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PHYS 4xx Poly 3 - Chain elasticity
Random chains in one dimension

Consider one-dimensional random chains with three segments: each link can point to
the right or the left (23 = 8 possible configurations)
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C(r..) = the number of configs with a given end-to-end displacement r_,:
C+3b)=1 C(+1b)=3 C(-1b)=3 C(-3b) =1. (1)

C(r..) equals the binomial coefficients in
(p+ q)° =P’ + (ppqg + pgp + qPP)+ (Pqq + gPg + qgp) + §°.

as the number of steps N increases, the distribution looks ever more Gaussian, and the
general form for probability density is
P(x) = (2rc?) "2 exp[-(x-uw)? / 2067 (normalized) (2)

P(x) dx = probability of finding the observable x between x and x + dx
mean value = u = <x> = [x P(x) dx -0 < X < +0© (3)
variance = o =< (x- u)®>>=<x>- 1 (4)

random chains in one dimension obey <x> = 0 and <xX*> = N’
--->u=0and &= Nb¥* (one dimension) (5)
Random chain in three dimensions

By projecting their configurations onto a set of Cartesian axes, three-dimensional
random chains can be treated as three separate one-dimensional systems
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loe random
chain
ree. X<-
Ploex) = (20°) " €XP(-1oe,/20°)  With 0 = Neb > (6)

<b,*> refers to the projection of the individual steps on the x-axis, which are independent
of direction
<b’>+<b>+<b>=<b’>= b

implying

<b’>=<b>=<b’>= b3, (7)
hence:

o = Nb°/3 (for three dimensions). (8)

Probability density (now per unit volume) at a given (x, y, 2) is
P(x,y,2) = P(X)P(V)P(2) = (2n0?)*? exp[-(XC+y+2) /27, 9)
where o = Nb°/3

Eq. (9) says that the most likely set of coordinates for the tip of the chain is (0,0,0); it
does not say that the most likely value of r,, is zero

The probability for the chain having a radial end-to-end distance between rand r+ dris
P..«(Ndrand can be obtained from

P(x,y,2)dx dy dz=P_,(ndr (10)

so that
Poa(n) = 4nrP (2n0°) 2 exp(-r120°). (11)

© 2010 by David Boal, Simon Fraser University. All rights reserved; further copying or resale is strictly prohibited.



PHYS 4xx Poly 3 3

1.0
ree, most likely
P 0.8F
2 |
O] | QJrad(r)
© 0.6F
z |
B a4l |
% 0.4 |<ree>
O oot ) :
[
00 L L I L
0 0.5 1 1.5 2

Summary of results for ideal chains in three dimensions

ree, most likely = (2/3)1/2 M/Z b (1 2)
<r..>=(8/3m)"* N b (13)
<r..>> = NI, (14)

Entropic elasticity

Egs. (12) and (14) show that the largest number of chain configs occur near r,, = N'?b.

But entropy S ~ log(configs.) ---> S of a chain must decrease as the chain is stretched.

Since the configurations of freely-jointed chains have energy E=0, then F= E- TS-->
F=-TS

Conclusion: F increases as the chain is stretched because S decreases; hence, the
chain resists stretching.

The elastic constant for entropic elasticity can be obtained through a comparison with
the potential energy V(x) = k,,x°/2 for a Hookean spring. The argument goes as follows:

For a Hookean spring, at 7> 0 the probability distribution P(x) for a displacement x goes
like ~exp(-E/ kgT)
> P(X) ~ exp(-k, X12ksT). (15)

Compare (15) with an ideal chain (6), P(x) ~ exp(-X*/2c°), to obtain
k, = ksT10% with o* = Nb?/d. (chains in d dimensions)

Hence
ky, =3k T/ Nb? =3k T/ 2E,L, (three dimensions) (16)
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where we have used L, = Nb and &, = b/2 for an ideal chain.

Note: k., increases with temperature (for ideal chains, <r,,>> = constant, but k., ~ T")
DEMO with weight hung from an elastic band

Highly stretched chains

Eq. (16) predicts that the force frequired to produce an extension x is
f= (ks TI2E,L ) x
or
XL, = (25,1 3ksT) T. (17)

Eq. (17) says that any x can be achieved with enough force; however, a chain with
inextensible elements should not exceed x/L, = 1.

Kuhn and Grin, 1942; James and Guth, 1943 (see also Flory, 1953, p. 427) have
shown that a chain of rigid rods obeys
XL, = L(2E,f] kg T), (18)

where L(y) is the Langevin function
L(y) = coth(y) - 1/y. (19)

Eq. (18) is better than the Gaussian approximation, but still not completely accurate for
flexible filaments.

The worm-like chain (WLC) is based on Kratky-Porod model; its force-extension
relationship is numerical but can be fitted by (Marko and Siggia, 1995):

Efl ks T=(1/4)(1 - XIL)" - 1/4 + xIL,. (20)
p

Egs. (18) and (20) are similar at large and small x but may disagree by up to 15% at
intermediate forces.
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