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PHYS 4xx Poly 3 - Chain elasticity 
 
Random chains in one dimension 
 
Consider one-dimensional random chains with three segments: each link can point to 
the right or the left (23 = 8 possible configurations) 

Configuration

ree = +3b

+1b

+1b

+1b
 

 
C(ree) = the number of configs with a given end-to-end displacement ree: 

C(+3b) = 1 C(+1b) = 3 C(-1b) = 3 C(-3b) = 1.    (1) 
 
C(ree) equals the binomial coefficients in 

(p + q)3 = p3 + (ppq + pqp + qpp)+ (pqq + qpq + qqp) + q3. 
 
as the number of steps N increases, the distribution looks ever more Gaussian, and the 
general form for probability density is 

P(x) = (2πσ2)-1/2 exp[-(x-µ)2 / 2σ2]  (normalized)    (2)  
 
P(x) dx = probability of finding the observable x between x and x + dx 

mean value = µ = <x> = ∫x P(x) dx  -∞ ≤ x ≤ +∞    (3) 
variance = σ2  = < (x - µ)2 > = <x2> - µ2      (4) 

 
random chains in one dimension obey <x> = 0 and <x2> = Nb2  

----> µ = 0 and σ2 =  Nb2  (one dimension)     (5) 
 
 
Random chain in three dimensions 
 
By projecting their configurations onto a set of Cartesian axes, three-dimensional 
random chains can be treated as three separate one-dimensional systems 
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P(ree,x) = (2πσ2)-1/2 exp(-ree,x

2/2σ2) with σ2 = N<bx
2>    (6) 

 
<bx

2> refers to the projection of the individual steps on the x-axis, which are independent 
of direction 

<bx
2> + <by

2> + <bz
2> = <b2> = b2 

implying 
<bx

2> = <by
2> = <bx

2> = b2/3,       (7) 
 
hence: 

σ2 = Nb2/3  (for three dimensions).     (8) 
 
Probability density (now per unit volume) at a given (x, y, z) is 

P(x,y,z) = P(x)P(y)P(z) = (2πσ2)-3/2 exp[-(x2+y2+z2)/2σ2],   (9) 
where σ2 = Nb2/3 
 
Eq. (9) says that the most likely set of coordinates for the tip of the chain is (0,0,0); it 
does not say that the most likely value of ree is zero 
 
The probability for the chain having a radial end-to-end distance between r and  r + dr is 
Prad(r)dr and can be obtained from 

P(x,y,z)dx dy dz = Prad(r)dr        (10) 
 
so that 

Prad(r) = 4πr2 (2πσ2)-3/2 exp(-r2/2σ2).       (11) 
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Summary of results for ideal chains in three dimensions 

ree, most likely = (2/3)1/2 N1/2 b        (12) 
<ree> = (8/3π)1/2 N1/2 b        (13) 
<ree

2> = Nb2.          (14) 
 
 
Entropic elasticity 
 
Eqs. (12) and (14) show that the largest number of chain configs occur near ree = N1/2b.   
But entropy S ~ log(configs.)  ---> S of a chain must decrease as the chain is stretched.  
Since the configurations of freely-jointed chains have energy E = 0, then F = E - TS --> 

F = -TS 
 
Conclusion: F increases as the chain is stretched because S decreases; hence, the 
chain resists stretching. 
 
The elastic constant for entropic elasticity can be obtained through a comparison with 
the potential energy V(x) = kspx2/2 for a Hookean spring.  The argument goes as follows: 
 
For a Hookean spring, at T > 0 the probability distribution P(x) for a displacement x goes 
like ~ exp(-E / kBT) 
----> P(x) ~ exp(-kspx2/2kBT).        (15) 
 
Compare (15) with an ideal chain (6), P(x) ~ exp(-x2/2σ2), to obtain 

ksp = kBT /σ2   with σ2 = Nb2/d.  (chains in d dimensions) 
 
Hence 

ksp = 3kBT / Nb2 = 3kBT / 2ξpLc  (three dimensions)    (16) 
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where we have used Lc = Nb and ξp = b/2 for an ideal chain. 
 
Note: ksp increases with temperature (for ideal chains, <ree

2> = constant, but ksp ~ T 1)  
DEMO with weight hung from an elastic band 
 
 
Highly stretched chains 
 
Eq. (16) predicts that the force f required to produce an extension x is 

f = (3kBT/2ξpLc)x 
or 

x/Lc = (2ξp / 3kBT) f.         (17) 
 
Eq. (17) says that any x can be achieved with enough force; however, a chain with 
inextensible elements should not exceed x/Lc = 1. 
 
Kuhn and Grün, 1942; James and Guth, 1943 (see also Flory, 1953, p. 427) have 
shown that a chain of rigid rods obeys 

x/Lc = L(2ξpf / kBT),         (18) 
 
where  L(y) is the Langevin function 

L(y) = coth(y) - 1/y.         (19) 
 
Eq. (18) is better than the Gaussian approximation, but still not completely accurate for 
flexible filaments. 
 
The worm-like chain (WLC) is based on Kratky-Porod model; its force-extension 
relationship is numerical but can be fitted by (Marko and Siggia, 1995): 
 

ξpf / kBT = (1/4)(1 - x/Lc)-1/2 - 1/4 + x/Lc.      (20) 
 
Eqs. (18) and (20) are similar at large and small x but may disagree by up to 15% at 
intermediate forces.  
 


