PHYS 4xx Poly 4 - Biopolymers

Some important filaments in the cell

DNA

- monomeric unit is phosphate + sugar + organic base
- phosphate and sugar units alternate along each strand of a double helix
- length along the helix is 0.34 nm per base pair; diameter is 2 nm

Spectrin

- tetramer is two pairs of chains, joined end-to-end, total contour length of 200 nm
- pair has two intertwined and inequivalent (α and β) strings of spectrin (pairs join end-to-end to form a tetramer)

- chain folds back on itself repeatedly, so that each monomer is a series of 19 or 20 relatively rigid barrels 106 amino acid residues in length

Actin

- G-actin (G for globular), a single chain of ~ 375 amino acids; mass $\sim 42,000 \mathrm{D}$
- G-actin units assemble into filamentous F-actin

O = G-actin monomer

actin filament

Intermediate filaments

- two protein chains intertwined as a helix
- pairs of helices lie side-by-side to form a linear protofilament $\sim 2-3 \mathrm{~nm}$ in diameter
- filament is a hollow bundle of 8 protofilaments, about 10 nm in diameter
- many protofilaments have lengths of the order 50 nm

Microtubules

- heterodimer of tubulin (α-tubulin and β-tubulin) about 8 nm in length
- dimers assemble α to β successively into a hollow microtubule consisting of 13 linear protofilaments (in almost all cells)

Measurements of persistence length
(mass per unit length λ_{p} and persistence length ξ_{p})

Polymer	Configuration	$\lambda_{\mathrm{p}}(\mathrm{D} / \mathrm{nm})$	$\xi_{\mathrm{p}}(\mathrm{nm})$
Long alkanes	linear polymer	~ 110	~ 0.5
Spectrin	2-strand filament	4,500	$10-20$
DNA	double helix	1,900	53 ± 2
F-actin	filament	16,000	$10-20 \times 10^{3}$
Intermediate filaments	32 strand filament	$\sim 35,000$	$0.1-1 \times 10^{3}$
Tobacco mosaic virus		$\sim 140,000$	$\sim 1 \times 10^{6}$
Microtubules	13 protofilaments	160,000	$1-6 \times 10^{6}$

Analysis:

- persistence length $\xi_{\mathrm{p}}=\beta \kappa_{\mathrm{f}}=\kappa_{\mathrm{f}} / k_{\mathrm{B}} T$
- $\kappa_{\mathrm{f}}=Y$ q
where $Y=$ Young's modulus, units of [energy • length ${ }^{-3}$]
$\mathcal{I}=$ the moment of inertia of the cross section, units of [length ${ }^{4}$]
- calculate \mathcal{I} of a uniform solid cylinder:

$$
\mathcal{I}_{y}=\int_{-R}^{R} x^{2} \mathrm{~d} A=4 \int_{0}^{R} x^{2}\left(R^{R}-x^{2}\right)^{1 / 2} \mathrm{~d} x
$$

Integrating: $\mathcal{I}=4 R^{4} \int(x / R)^{2}\left[1-(x / R)^{2}\right]^{1 / 2} \mathrm{~d}(x / R)$
$=4 R^{4} \int \cos ^{2} \theta\left[1-\cos ^{2} \theta\right]^{1 / 2} \mathrm{~d} \cos \theta \quad$ where $x / R=\cos \theta$

$$
=4 R^{4} \int \cos ^{2} \theta \sin ^{2} \theta d \theta \quad \text { where } 0 \leq \theta \leq \pi / 2
$$

In detail: $\int \cos ^{2} \theta \sin ^{2} \theta d \theta=\int(\sin 2 \theta / 2)^{2} \mathrm{~d} \theta$

$$
\begin{align*}
& =(1 / 8) \int \sin ^{2} \alpha \mathrm{~d} \alpha \quad \text { where } 0 \leq \alpha \leq \pi \\
& =\pi / 16 \tag{3}
\end{align*}
$$

Thus: $\quad \mathcal{I}=\pi R^{4} / 4 \quad$ (solid cylinder)

- for a hollow core of radius R_{i}, (3) is reduced by $\mathcal{I}=\pi R_{\mathrm{i}}^{4} / 4$ of the core:

$$
\begin{equation*}
\mathcal{I}_{y}=\pi\left(R^{4}-R_{\mathrm{i}}^{4}\right) / 4 \quad \text { (hollow cylinder) } \tag{4}
\end{equation*}
$$

ξ_{p} and Young's modulus

- view the polymers as flexible rods; according to (1) and (2), ξ_{p} is

$$
\begin{equation*}
\xi_{\mathrm{p}}=Y \mathrm{I} / k_{\mathrm{B}} T \tag{5}
\end{equation*}
$$

- moment of inertia of the cross section for hollow rods of inner radius R_{i} and outer radius R is from (4)

$$
\mathfrak{T}=\pi\left(R^{4}-R_{\mathrm{i}}^{4}\right) / 4 .
$$

- assume $R \gg R_{i}$:

$$
\begin{equation*}
\xi_{\mathrm{p}} \cong \pi Y R^{4} / 4 k_{\mathrm{B}} T, \tag{6}
\end{equation*}
$$

good for tobacco mosaic virus $\left(R / R_{\mathrm{i}} \sim 4.5\right)$
factor-of-two error for microtubules ($R \sim 14 \mathrm{~nm}$ and $R_{\mathrm{i}} \sim 11.5 \mathrm{~nm}$)

- replace R by the mass per unit length λ_{p} using $\lambda_{\mathrm{p}}=\rho_{\mathrm{m}} \pi R^{2}$ for a cylinder, where ρ_{m} is the mass per unit volume:

$$
\begin{equation*}
\xi_{\mathrm{p}} \cong\left(Y / 4 \pi k_{\mathrm{B}} T \rho_{\mathrm{m}}^{2}\right) \lambda_{\mathrm{p}}^{2} \tag{7}
\end{equation*}
$$

- compared to filament radii, Y and ρ_{m} are relatively constant among filaments
- straight line through data is $\xi_{p}=2.5 \times 10^{-5} \lambda_{p}^{2}$, where ξ_{p} is in $n m$ and λ_{p} is in $D / n m$
- equating the fitted numerical factor
$2.5 \times 10^{-5} \mathrm{~nm}^{3} / \mathrm{D}^{2}=Y / 4 \pi k_{\mathrm{B}} T \rho_{\mathrm{m}}{ }^{2}$
$--->Y=0.5 \times 10^{9} \mathrm{~J} / \mathrm{m}^{3}$ for $k_{\mathrm{B}} T=4 \times 10^{-21} \mathrm{~J}$ and $\rho_{\mathrm{m}}=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$

Some comparative values:

material	$Y\left(\mathrm{~J} / \mathrm{m}^{3}\right)$
diamond	1.2×10^{12}
steel	2×10^{11}
dry cellulose	8×10^{10}
bone (tension)	1.6×10^{10}
wood (along grain)	1.4×10^{10}
collagen	$1-2 \times 10^{9}$
rubber	7×10^{6}

