PHYS 4xx Poly 4 - Biopolymers

Some important filaments in the cell

<u>DNA</u>

- monomeric unit is phosphate + sugar + organic base
- phosphate and sugar units alternate along each strand of a double helix
- length along the helix is 0.34 nm per base pair; diameter is 2 nm

Spectrin

- tetramer is two pairs of chains, joined end-to-end, total contour length of 200 nm
- pair has two intertwined and inequivalent (α and β) strings of spectrin (pairs join endto-end to form a tetramer)

• chain folds back on itself repeatedly, so that each monomer is a series of 19 or 20 relatively rigid barrels 106 amino acid residues in length

<u>Actin</u>

- G-actin (G for globular), a single chain of ~375 amino acids; mass ~ 42,000 D
- G-actin units assemble into filamentous F-actin

 \bigcirc = G-actin monomer

Intermediate filaments

- two protein chains intertwined as a helix
- pairs of helices lie side-by-side to form a linear protofilament ~ 2 3 nm in diameter
- filament is a hollow bundle of 8 protofilaments, about 10 nm in diameter
- many protofilaments have lengths of the order 50 nm

Microtubules

- heterodimer of tubulin (α -tubulin and β -tubulin) about 8 nm in length
- dimers assemble α to β successively into a hollow microtubule consisting of 13 linear protofilaments (in almost all cells)

Measurements of persistence length

(mass per unit length λ_{p} and persistence length ξ_{p})

Polymer	Configuration	$\lambda_{ m p}$ (D/nm)	ξ_{p} (nm)
Long alkanes	linear polymer	~110	~0.5
Spectrin	2-strand filament	4,500	10-20
DNA	double helix	1,900	53 ± 2
F-actin	filament	16,000	10-20 x 10 ³
Intermediate filaments	32 strand filament	~35,000	0.1-1 x 10 ³
Tobacco mosaic virus		~140,000	~1 x 10 ⁶
Microtubules	13 protofilaments	160,000	1-6 x 10 ⁶

Analysis:

• persistence length
$$\xi_{\rm p} = \beta \kappa_{\rm f} = \kappa_{\rm f} / k_{\rm B} T$$
 (1

•
$$\kappa_{\rm f} = YT$$

(1) (2)

where Y = Young's modulus, units of [*energy* • *length*³]

I = the moment of inertia of the cross section, units of [*length*⁴]

• calculate 1 of a uniform solid cylinder:

$$f_y = \int_{-R}^{R} x^2 dA = 4 \int_{0}^{R} x^2 (R^2 - x^2)^{1/2} dx$$

Integrating:
$$\mathcal{I} = 4R^4 \int (x/R)^2 [1 - (x/R)^2]^{1/2} d(x/R)$$

$$= 4R^4 \int \cos^2\theta [1 - \cos^2\theta]^{1/2} d\cos\theta \qquad \text{where } x/R = \cos\theta$$

$$= 4R^4 \int \cos^2\theta \sin^2\theta \, d\theta \qquad \text{where } 0 \le \theta \le \pi/2$$
In detail: $\int \cos^2\theta \sin^2\theta \, d\theta = \int (\sin 2\theta / 2)^2 \, d\theta$

$$= (1/8) \int \sin^2\alpha \, d\alpha \qquad \text{where } 0 \le \alpha \le \pi$$

$$= \pi/16$$
Thus: $\mathcal{I} = \pi R^4/4 \qquad (\text{solid cylinder}) \qquad (3)$

• for a hollow core of radius R_i , (3) is reduced by $\mathcal{I} = \pi R_i^4/4$ of the core:

$$I_{y} = \pi (R^{4} - R_{i}^{4})/4 \qquad (\text{hollow cylinder}). \tag{4}$$

$\xi_{\rm p}$ and Young's modulus

- view the polymers as flexible rods; according to (1) and (2), ξ_p is $\xi_p = Y_1 / k_B T$ (5)
- moment of inertia of the cross section for hollow rods of inner radius R_i and outer radius R is from (4)

 1 = π(R⁴ R_i⁴)/4.
- assume $R >> R_i$: $\xi_p \cong \pi Y R^4 / 4k_B T$, (6) good for tobacco mosaic virus $(R/R_i \sim 4.5)$ factor-of-two error for microtubules $(R \sim 14 \text{ nm and } R_i \sim 11.5 \text{ nm})$
- replace *R* by the mass per unit length λ_p using λ_p = ρ_mπ*R*² for a cylinder, where ρ_m is the mass per unit volume:
 ξ_p ≅ (Y / 4πk_BTρ_m²) λ_p²
- compared to filament radii, Y and ρ_m are relatively constant among filaments
- straight line through data is $\xi_p = 2.5 \times 10^{-5} \lambda_p^2$, where ξ_p is in nm and λ_p is in D/nm
- equating the fitted numerical factor 2.5 x $10^{-5} \text{ nm}^3/\text{D}^2 = Y / 4\pi k_B T \rho_m^2$ ----> $Y = 0.5 \text{ x } 10^9 \text{ J/m}^3$ for $k_B T = 4 \text{ x } 10^{-21} \text{ J and } \rho_m = 10^3 \text{ kg/m}^3$

Some comparative values:

material	<u>Y (J/m³)</u>
diamond	1.2 x 10 ¹²
steel	2 x 10 ¹¹
dry cellulose	8 x 10 ¹⁰
bone (tension)	1.6 x 10 ¹⁰
wood (along grain)	1.4 x 10 ¹⁰
collagen	1-2 x 10 ⁹
rubber	<u>7 x 10⁶</u>