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PHYS 4xx Poly 5 - Torsion, twist and writhe 
 
Description of the twist deformation 
 
Fix one end of a uniform cylinder and apply a torque around the cylindrical axis to the 
other end.  The rotational angle φ is proportional to the torque T 
 T ∝ φ.           (1) 
 
 
 
 
 
 
 
 
 
 
The twist of the cylinder α, is the rate of change of the rotational angle φ as a function of 
the length of the cylinder, or 
 α ≡ φ / L.          (2) 
 
Twist is not an angle, it has units of inverse length and is constant along the cylinder.  It 
is positive or negative according to the sign of φ.  Writing Eq. (1) in terms of twist 
 T = κtorα,          (3) 
 
where κtor is the torsional rigidity, the analog of the flexural rigidity κf for bending.  Note 
that T = (κtor/L) φ, is the analog of the spring equation F = (YA/L) x 
 
Considering the small rectangle drawn on the side of the cylinder, twisting the rod 
corresponds to shearing the rectangle, and we expect κtor to be proportional to the shear 
modulus µ.  For a uniform cylinder of radius R, 
 κtor = µ πR4/2          (4) 
 
which has a very similar form as the flexural rigidity κf = Y πR4/4; both κtor and κf have 
units of [energy]•[length]. 
 
From Eq. (4), the torsional rigidity of a hollow tube must have the form 
 κtor = µ π(Router

4 – Rinner
4)/2.        (5) 

 
Further, a solid rod with the cross sectional shape of an ellipse obeys 
 κtor = µ πa3b3 / (a2 + b2),        (6) 
 
where a and b are the semi-major and semi-minor axes of the ellipse. 
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The energy density per unit length E of the twist deformation can be obtained by 
integrating Eq. (3) over α 
 E = κtorα

2/2.          (7) 
 
The Young's modulus of many solids is about two or three times the shear modulus, so 
the torsional rigidity (µ πR4/2) is similar in magnitude to the flexural rigidity (Y πR4/4).  
Indeed if Y = 2µ, then κtor = κf.  Some measured values are: 
 
Filament        κtor (J•m)       κtor/kBT (m)  κf/kBT (m)  
DNA   (2 – 4) × 10-28  (50 – 100) × 10-9  53 × 10-9 
F-actin  (3 – 8) × 10-26  (7.5 – 20) × 10-6  (10 – 20) × 10-6 
 
 
Twist with curvature 
 
Because κtor ~ κf, the deformation of a beam under torsion may involve twisting of the 
beam along its symmetry axis as well as twisting of the axis itself into a helical shape: 

 
 
 
 
 
 
 
 
 
 
 
 
The red line on the cylinder is the axis of a rectangular ribbon, whose shape is shown in 
cross section in the middle panel. 
 
The pitch (p) of the beam is the length along the helical axis during which the beam 
completes one rotation as a helix; in the diagram, the plane of the ribbon also completes 
one rotation in this interval in this situation.  If the beam were straight, then p = 2π/α 
from Eq. (2) when φ = 2π and L = p, but this relationship is not true in general. 
 
"Unroll" the surface of the imaginary cylinder without changing the location of the beam 
on it.  The "height" of the beam's path (its projection on the z-axis) increases linearly 
with the rotational angle around the axis because α is constant; consequently the beam 
executes a diagonal on the unrolled surface in panel (c).  The base of this rectangular 
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surface is 2πr, and the overall height is just the pitch p, so the length shelix of the beam in 
one circuit around the helix must be 
 shelix = [(2πr)2 + p2]1/2.         (8) 
 
From panel (c), the angle η between the beam and the plane perpendicular to the 
helical axis is 

tanη = p / 2πr.         (9) 
 
The beam twists around its axis at the same time as that axis follows a helical path 
through space.   

 
 
 
 
 
 
 
 
 

Panel (d): a series of rectangles as their orientation twists around a straight-line path.  
The unit tangent vector t to the path remains fixed, so Δt = 0.  But the unit vector n 
normal to the path and attached to the rectangle rotates around the axis of the path, so  
Δn ≠ 0.  In panel (d), both n and Δn are perpendicular to t.   
 
Panel (e): the normal vectors to the path do not change orientation, so Δn = 0, while the 
tangent vectors to the path rotate along the path with Δt ≠ 0.  In panel (e), both t and Δt 
are perpendicular to n. 
 
Panel (f), a change in the orientation of the cross section through a beam involves Δt in 
and Δn.  As drawn, these changes are orthogonal, so the magnitude of the total change 
is (Δt2 + Δn2)1/2. 
 
For small arcs Δs along the path of the helix: 
|Δt| = C•Δs (recall θ subtended by Δs is Δs/Rc = C•Δs; θ is also |Δt|) 
|Δn| = α•Δs from the definition of α as Δφ /Δs  
Since the total change in orientation is just 2π over the arc length shelix, then the change 
that occurs over Δs must be 2π (Δs / shelix).  Hence, 
 [2π (Δs / shelix)]2 = (C Δs)2 + (α Δs)2,      (10) 
or 
 (2π / shelix)2 = C 2 + α2.        (11) 
 
Use Eq. (8) to eliminate shelix from Eq. (11), leaving 
 (2π)2 / (C 2 + α2) = (2πr)2 + p2.       (12) 
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A second relationship for α and C comes from evaluating |Δn| / |Δt|: 

•From the steps leading to Eq. (10), |Δn| / |Δt| = α/C .   
•But |Δn| / |Δt| = tanη.  The proof is: 
At an angle , t rotates around the helical axis, covering a distance of 2π cosη 
in one complete revolution.  Thus, for a given Δs, |Δt| = 2π cosη (Δs / shelix). 

 
 
 
 
 

Similarly, n rotates around the helical axis, but at a different radius, covering a 
distance of 2π sinη in one complete revolution.  Thus, |Δn| = 2π sinη (Δs / shelix). 
 
Combining these equations yelds |Δn| / |Δt| = tanη. 

 
But tanη = p / 2πr in panel (c).  Thus, 
 α/C = |Δn| / |Δt| = p / 2πr         (13) 
 
Use Eq. (13) to express either p or r in terms of α and C by substitution into Eq. (12): 
 r = C / (C 2 + α2)  p = 2πα / (C 2 + α2)     (14) 
and 
 α =  2πp / (4π2r2 + p2) C = 4π2r / (4π2r2 + p2)    (15) 
 
Twist and writhe 

 
 

 
 
 
 
 
 
 
 
 
Because κtor ~ κf, when a torque is applied to a beam, it may be more favourable for the 
beam to deform into a helix than to retain its axis of cylindrical symmetry; which 
configuration is more favoured depends on the cross sectional shape of the beam.  For 
example, a belt can be twisted fairly easily into the form displayed in panel (g), where 
one end of the belt has been twisted through two complete rotations about its long axis.  
Large enough longitudinal forces are applied to the opposite ends of the belt to keep its 
axis straight.  If the forces are reduced, we know from experience that the belt may 
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untwist slowly as two loops appear, shown in panel (h1).  Note that configurations (g) 
cannot deform into configuration (h2) if the orientation of the ends is kept fixed. 
 
Twist (Tw) and writhe (Wr) describe the overall topology of rods.  Twist is the number of 
complete turns made by a vector normal to the axis of the rod (and in its plane) as it is 
propagated from one end to the other. 
 
Panel (g): the plane of the rod rotates about the axis twice from left to right, in a right-
handed spiral.  Thus, Tw = +2, where the plus sign indicates right-handedness. 
 
Panels (h1) and (h2): a normal to rod's axis (and lying in the plane of the rod) does not 
change direction around the loop, and so both of these configurations have Tw = 0. 
 
In the context of a beam or ribbon with free ends (i.e. ends that are not attached to each 
other), the writhe is the number of loops, taking into account the handedness of the 
spiral.  In panel (h1), the writhe is +2 because there are two complete loops and the 
spiral is right-handed, while the mirror image of this configuration is left-handed with Wr 
= -2, as shown in panel (h2). 

 
The algebraic sum of Tw and Wr must be constant in a continuous deformation.  The 
sum is called the linking number, Lk: 
 Lk = Tw + Wr,         (16) 
 
where the signs of Tw and Wr must be taken into account.  For example, configurations 
(g) and (h1) both have Lk = +2, and are continuously deformable into each other, while 
configuration (h2) has Lk = -2 and consequently is not accessible from the other 
configurations.  The fact that Lk does not change under a continuous deformation (ΔLk 
= 0) means that ΔTw and ΔWr are correlated: ΔTw = -ΔWr according to Eq. (16). 
 
 
 
 
 
 
 


