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PHYS 4xx Whole 2 - Vesicles and the human erythrocyte 
 
Lecture continues (including equations) from Whole 1. 
 
What effect does a non-zero value for Co have on the configuration energy?  First, it 
introduces a length scale Co

-1.  For example, the bending energy of a spherical shell with 
radius r is 8πκb(1 - rCo/2)2 + 4πκG at Co ≠ 0.  The first term vanishes at r = 2/Co, with the 
result that the spherical shell with the lowest deformation energy has a particular size at 
Co ≠ 0.  This conclusion is true for arbitrary shapes, meaning that the bending energy is 
a function of cell shape and size at Co ≠ 0.  In addition, the sign of Co influences the 
favored shape, as we can see by considering the two axisymmetric shells: 
 
 

 
 
 
 
 
 

The doublet shape on the left has curvatures 1/r in the small bud and 1/R in the main 
body, whereas the extreme stomatocyte to its right has -1/r in the cavity and 1/R on the 
exterior surface.  As a result, the bending energies are simply 
 Eoutside = 8πκb[ (1 - rCo/2)2 + (1 - RCo/2)2 ] + 4πκG         (3a) 
 Einside = 8πκb[ (1 + rCo/2)2 + (1 - RCo/2)2 ] + 4πκG,         (3b) 
 
where the labels refer to the position of the smaller shell and where the energy of the 
neck has been neglected.  Let's take RCo and rCo to be the same for both 
configurations, meaning that the shells have the same areas but different enclosed 
volumes.  The difference in their energies is then 
 Eoutside – Einside = -16πκb(r /R)RCo,           (4) 
 
indicating that the doublet configuration is favored (Eoutside < Einside) if Co > 0 and the 
stomatocyte shape is favored if Co < 0.  In other words, negative values of Co favor 
shapes with regions of negative curvature. 
 
The "phase diagram" for vesicle shapes at non-zero Co has been partially explored 
(Seifert et al., 1991; Miao et al., 1991): 
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The shapes along the Co = 0 line were shown above, with the narrow domain of oblates 
visible at vred ~ 0.6.  Having regions of negative curvature, stomatocytes are more 
favored at negative Co; in contrast, prolate ellipsoids and pears (doublets with smooth 
necks) are favored at large positive Co. 
 
The spontaneous curvature model does not recognize that the two leaflets may be 
mechanically decoupled.  Consider the inner and outer leaflets of the small vesicle in: 
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The lipid head groups in the outer leaflet form a spherical shell whose diameter is 
roughly double that of the inner shell of lipid headgroups.  If the leaflets of this vesicle 
were mechanically coupled, such that they contained the same number of lipids, then 
the outer leaflet would have only a quarter the number of lipids per unit area as the inner 
leaflet, clearly a high-stress situation. 
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The difference in area of the leaflets ΔA can be written in a two-dimensional 
representation, so that it is easily incorporated into the spontaneous curvature model.  
Consider first the two arcs of a circle displayed in Fig. 10.12 (in bold) separated by a 
distance dbl and having a common center of curvature; the curvature of the mid-line 
between the arcs is defined as C.  By geometry, the ratio of the outer arc length to the 
inner one is just (1 + Cdbl/2)/(1 - Cdbl/2) ≈ 1 + Cdbl.  The same result holds in an 
orthogonal direction, so that the ratio of the corresponding outer and inner areas is just 
Aouter/Ainner = (1 + C1dbl)•(1 + C2dbl) ≈ 1 + C1dbl + C2dbl, where C1 and C2 are the principal 
curvatures.  Thus, the difference between the areas of the outer and inner boundaries of 
a membrane segment (of area dA) is approximately (C1dbl + C2dbl)dA, and the total area 
difference, integrated over the surface, is 
 ΔA ≈  dbl ∫ (C1 + C2)dA.        (5) 
 
The energy associated with the leaflet area difference is proportional to the (square of 
the) deviation of ΔA from its unstressed value ΔAo.  The bending energy of the 
spontaneous curvature and area difference contributions can be parametrized as 
 E = (κb/2) ∫ (C1 + C2 – Co)2 dA + κG ∫C1C2 dA 
     + (κnl/2)•(π / Addl

2)•(ΔA - ΔAo)2,   (6) 
 
which is referred to as the ADE model (for area difference elasticity).  The constant κnl is 
a non-local bending resistance, carrying units of energy, and can be related to the area 
compression modulus of the leaflets.  One measurement of κnl (Waugh et al., 1992) and 
estimates of κnl from the underlying bilayer deformation (Miao et al., 1994) argue that 
κnl/κb is of order unity. 
 
It can be shown that the set of stationary shapes in the ADE model (pears, ellipsoids, 
dumb-bells etc.) is the same as the spontaneous curvature approach (see Miao et al., 
1994); however, the energy of a given configuration will vary according to the values of 
Co, κnl/κb etc.  Thus, the phase diagram will be different from one model to the next.  A 
section of the phase diagram for κnl/κb = 4 at Co = 0 is: 
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One can see how the area of the outer leaflet increases with respect to the inner leaflet 
as the shape changes from prolate ellipsoids to pears to multiplets at fixed volume. 
 
Once the characteristics such as Co and ΔA have been determined for a specific cell, 
other shapes can be both predicted and compared against experiment.  For example, 
the predicted shapes in the ΔA model reproduce the observed ones very well over the 
very narrow temperature range 43.8 to 44.1 oC;  (Berndl et al., 1990; see also Käs and 
Sackmann, 1991) 
 

 
 
 


