PHYS 4xx Molecular motors

Motor proteins

myosins

- myosin-I is a monomer, myosin-II is a dimer
- heads have size $\sim 15-20 \mathrm{~nm}$
- walk in plus direction

kinesin

- dimer; same general shape as myosin-II
- the tail region is shorter: 60-70 nm; heads are smaller: 10-15 nm
- each strand of the tail terminates in several intermediate length chains
- both heads attach to a single microtubule and slide parallel to a protofilament
- tail is perpendicular to the axis of the microtubule
- walks towards plus end of MT

cytoplasmic dynein

- two spherical heads of diameter 9-12 nm
- links MT to a vesicle (if cytoplasmic) or other MT (if ciliary)
- walks towards minus end
- note: ciliary dynein is variable, with between 1 and 3 heads

Mechanism of motion

- energy source is ATP
- proposed mechanism for the structural changes of myosin, based on x-ray study of its head geometry (Rayment et al.)

(ATP, ADP and phosphate are indicated by the symbols T, D and P, respectively)
- typical displacement of the head is 5 nm , occurring with a repetition rate exceeding a cycle per second

Thermal ratchets

- model may apply to cells because of charge of ATP (Astumian and Bier; Prost et al.)

- non-symmetric, oscillating potential $V(x)$, lower part of diagram
- when potential is "on", the particle at the left sits near the bottom of the potential well, with a sharp probability distribution $\boldsymbol{P}(x)$
- the particle diffuses when the potential is "off" (middle frame)
- once the potential is restored, the particle may hop into neighboring minima with differing probability (right frame)
- other potentials can be used, with more or less efficiency

simple analytical model

-spatial period of potential is b and shortest peak to trough distance is αb

- replace Gaussian probability distribution $\boldsymbol{P}(x)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(-x^{2} / 2 \sigma^{2}\right)$ by a triangular form of base $2 w$ and height $\boldsymbol{P}(0)=1 / w$, such that $\int P(x) \mathrm{d} x=1$:

$$
\boldsymbol{P}(x)=(1-|x| / w) / w
$$

- find dispersion $\left\langle x^{2}\right\rangle$:
$<x^{2}>=\int x^{2}(1-|x| / w) / w \mathrm{~d} x / 1 / 2=(2 / w) \int\left(x^{2}-x^{3} / w\right) \mathrm{d} x=(2 / w) \cdot\left(w^{3} / 12\right)=w^{2} / 6$
- equating the dispersions $\left\langle x^{2}\right\rangle=\sigma^{2}$ and $\left\langle x^{2}\right\rangle=w^{2} / 6$ gives
$w=\sqrt{ } 6 \sigma \cong 2.5 \sigma$,
- in this approximation:
probability of moving to the right $=\boldsymbol{P}_{\mathrm{R}}$

$$
\begin{aligned}
& =1 / 2 \cdot[\text { area of shaded triangle] } / \text { [area of large triangle to right of apex] } \\
& =1 / 2 \cdot[(w-\alpha b) / w]^{2}=(1-\alpha b / w)^{2} / 2 \text { for } w>\alpha b
\end{aligned}
$$

probability of moving to the left $=P_{\mathrm{L}}$

$$
\begin{aligned}
& =1 / 2 \cdot[\text { area of shaded triangle] / [area of large triangle to left of apex] } \\
& =1 / 2 \cdot[(w-b+\alpha b) / w]^{2}=(1-b / w+\alpha b / w)^{2} / 2 \text { for } w>(1-\alpha) b .
\end{aligned}
$$

-net probability of motion $\boldsymbol{P}_{\text {net }}=\boldsymbol{P}_{\mathrm{R}}-\boldsymbol{P}_{\mathrm{L}}$

$$
\begin{align*}
\boldsymbol{P}_{\text {net }} & =0 & & 0<w<\alpha b \tag{2a}\\
& =(1-\alpha b / w)^{2} / 2 & & \alpha b<w<(1-\alpha) b \tag{2b}\\
& =(b / w) \cdot(1-b /(2 w)) \cdot(1-2 \alpha) & & (1-\alpha) b<w . \tag{2c}
\end{align*}
$$

- algebra for Eq. (2c):

$$
\begin{aligned}
\boldsymbol{P}_{\text {net }} \quad & (1-\alpha b / w)^{2} / 2-(1-b / w+\alpha b / w)^{2} / 2 \\
= & 1 / 2\left\{1-2 \alpha b / w+(\alpha b / w)^{2}-\left[1-2 b / w+2 \alpha b / w-2(b / w \cdot \alpha b / w)+(b / w)^{2}+\right.\right. \\
& \left.\left.\quad(\alpha b / w)^{2}\right]\right\} \\
= & 1 / 2\left\{-2 \alpha b / w+(\alpha b / w)^{2}+2 b / w-2 \alpha b / w+2(b / w \cdot \alpha b / w)-(b / w)^{2}-(\alpha b / w)^{2}\right\} \\
= & 1 / 2\left\{-2 \alpha b / w+2 b / w-2 \alpha b / w+2(b / w \cdot \alpha b / w)-(b / w)^{2}\right\} \\
= & b / w \cdot 1 / 2 \cdot\{-2 \alpha+2-2 \alpha+2 \alpha b / w-b / w\}
\end{aligned}
$$

$$
\begin{align*}
& =b / w \cdot\{-\alpha+1-\alpha+\alpha b / w-b / 2 w\} \\
& =b / w \cdot\{1-2 \alpha-(b / 2 w) \cdot(1-2 \alpha)\} \\
& =b / w \cdot(1-b / 2 w) \cdot(1-2 \alpha) \tag{2c}
\end{align*}
$$

- properties of $\boldsymbol{P}_{\text {net }}$:
$P_{\text {net }}=0$ if potential is symmetric [at $\alpha=1 / 2$: $(2 \mathrm{a} \& 2 \mathrm{c})=0,(2 \mathrm{~b})$ has no domain]
$P_{\text {net }} \leq 1 / 2$ if potential is vertical [$\alpha=0$: (2a) has no domain, $(2 \mathrm{~b})=1 / 2,(2 \mathrm{c}) \leq 1 / 2$]
$\boldsymbol{P}_{\text {net }}$ has a maximum at $\boldsymbol{P}_{\text {max }}$ for intermediate values of α
imposing $\mathrm{d} \boldsymbol{P}_{\text {net }} / \mathrm{d} w=0$ on Eq. (2c) gives

$$
0=\mathrm{d} / \mathrm{d} w[b / w \cdot(1-b / 2 w)]
$$

$$
=b\left[-w^{-2}(1-b / 2 w)+w^{-1}(-b / 2)\left(-w^{-2}\right)\right]
$$

$$
=\left(b / w^{2}\right) \cdot[-(1-b / 2 w)+b / 2 w]
$$

$$
\begin{equation*}
=\left(b / w^{2}\right) \cdot(b / w-1) \tag{3}
\end{equation*}
$$

satisfied by $b / w=1$
substituting Eq. (3) back into (2c) gives

$$
\begin{equation*}
\boldsymbol{P}_{\max }=(1-2 \alpha) / 2 \tag{4}
\end{equation*}
$$

- numerical example for $\alpha=0.1 ; \boldsymbol{P}_{\max }=0.4$ at $w / b=1$

caveats

- physical potential is likely to appear bumpy because of the charge distribution
- the time for switching the potential on and off is not instantaneous
- these effects permit more diffusion, and reduce the net flux
- Astumian and Bier and Prost et al., find that $\boldsymbol{P}_{\text {max }}$ may be 0.25 or less

expectations for flux

- a diffusing particle obeys a Gaussian distribution with $\sigma^{2}=2 D t$, where D is the diffusion constant and t is the time
- hence, $w=\sqrt{ } 6 \sigma=(12 D t)^{1 / 2}$
- using $D \sim 10^{-12}$ to $10^{-14} \mathrm{~m}^{2} \cdot \mathrm{~s}$, then $t=5 \times 10^{-6}$ to $5 \times 10^{-4} \mathrm{~s}$ at $\boldsymbol{P}_{\max }: w=b=8 \mathrm{~nm}$
- very small time scale: 1000 to 10^{5} steps per second (period $=2 t$) !
- time scale for hydrolysis of ATP or GTP in actin filaments or microtubules is $\sim k_{\text {on }}[M]$ at modest monomer concentrations [M], say 10^{2} per second
- at 10^{3} steps per second, 8 nm per step, and $\boldsymbol{P}_{\text {net }}=0.1$ (say), motor speed is 800 nm / s; however, time is needed for ATP to replenish
- (note, if $t \sim 10^{-2} \mathrm{sec}$ and $D=10^{-12} \mathrm{~m}^{2} \cdot \mathrm{~s}$, motor has diffused too far unless held by another head: $(6 D t)^{1 / 2}=\left(6 \cdot 10^{-12} \cdot 10^{-2}\right)^{1 / 2}=245 \mathrm{~nm}!$!)
- experimental range $\sim 0.5 \mu \mathrm{~m} / \mathrm{s}$ for kinesin motors (Svoboda et al.)
- BUT, experimentally measured efficiency is at least $1 / 2$ Svoboda et al. from the fluctuations as a function of time in the position of a kinesin motor sliding on a MT

