Errata:
p. 82 Entire paragraph starting at line 17. Further work on four-fold networks has shown that this paragraph is overly pessimistic. At the minimum, Eq. (3.57) should be replaced with

$$
B\left(K_{\mathrm{A}}+\mu_{\mathrm{p}}\right) s_{\mathrm{o}}^{2}=4 \pi /\left(\pi^{2}-8\right)
$$

and the remainder of the paragraph should read:
"Eq. (3.57) is 15% above what is found from simulations of four-fold networks at low temperatures, where spring lengths are relatively constant although the plaquette shape displays strong fluctuations. (Tessier, Boal and Discher, Phys. Rev. (2003))."
p. $94 \quad$ Prob. 3.14. Because of the fixed bond lengths in this simplified model, the area change and pure shear are coupled. Thus, the area compression modulus K_{A} from the conventional definitions (area fluctuations or change with applied tension) is really the sum $K_{\mathrm{A}}+\mu_{\mathrm{p}}$, where μ_{p} is the pure shear modulus.
p. 94-95 Prob. 3.15c and 3.16b. For these low symmetry networks, an isotropic stress τ does not produce an isotropic strain. Thus, the area compression modulus defined by the conventional $K_{\mathrm{A}}^{-1}=(\partial A / \partial \tau) / A$ does not correspond to a pure dilation, but rather a mixture of dilation and shear.
p. 181 Eq. (6.15) for \mathbf{n}_{y} should read

$$
\partial_{y} \mathbf{n}=-\left\{\left(\left[1+h_{y}^{2}\right] h_{x y}-h_{x} h_{y} h_{y y}\right),\left(\left[1+h_{x}^{2}\right] h_{y y}-h_{x} h_{y} h_{x y}\right),\left(h_{x} h_{x y}+h_{y} h_{y y}\right)\right\} /
$$

$$
\left(1+h_{x}^{2}+h_{y}^{2}\right)^{3 / 2}
$$

p. $182 \quad$ Third line from the bottom, $\kappa_{\mathrm{b}} / \kappa_{\mathrm{G}}$ should be $\kappa_{\mathrm{G}} / \kappa_{\mathrm{b}}$.
p. 188 Eq. (6.51) should read
$\kappa(\ell)=\kappa_{\mathrm{b}}-\left(3 k_{\mathrm{B}} T / 4 \pi\right) \ln (\ell / b)$
where ℓ is the length scale of the undulations.
p. $307 \quad$ Eq. $(9.15 c)$ should read $P_{\text {net }}=(b / w) \cdot(1-b / 2 w) \cdot(1-2 \alpha)$
p. 308 Two lines above Eq. (9.16), the derivative is evaluated in the range $w / b>\alpha$, not $w / b>\alpha b$.

Many thanks to Eva Danielsen, Royal Veterinary and Agricultural University (KVL), Copenhagen Denmark (http:kvl.dk/~eva) for the following:
p. 31 Eq. (2.11): the result on the right-hand side should read $\pi R^{4} / 4$, not
$\pi R^{2} / 4$. The same error occurs on the line above Eq. (2.12): $\pi R_{\mathrm{i}}^{2} / 4$ should be replaced by $\pi R_{\mathrm{i}}^{4} / 4$. Eq. (2.12) is correct.
p. 89 Line 27: in the expression for a free energy change, the term involving the pure shear modulus has been divided by 2 twice. The in-line equation

$$
\Delta \mathcal{F}=\left(K_{A} / 2\right) \cdot\left(u_{x x}+u_{y y}\right)^{2}+\left(\mu_{\mathrm{p}} / 2\right) \cdot\left(u_{x x}-u_{y y}\right)^{2} / 2+2 \mu_{\mathrm{s}} u_{x y}^{2}
$$

should read

$$
\Delta \mathcal{F}=\left(K_{A} / 2\right) \cdot\left(u_{x x}+u_{y y}\right)^{2}+\left(\mu_{p} / 2\right) \cdot\left(u_{x x}-u_{y y}\right)^{2}+2 \mu_{s} u_{x y}^{2} .
$$

p. 107 Eq. (4.13): there is a missing \mathbf{P} on the right hand side and the equation should read

$$
p_{i}=\mathcal{P}\left(x_{i}, y_{i}, z_{i}\right) \Delta x \Delta y \Delta z
$$

p. 108
p. 164
p. 168
p. 225
p. 242 Prob. 7.7: for a less extreme example of cell wall strain, choose a diameter of 1 micron supporting a pressure of 5 atmospheres.
p. 285 Prob. 8.8. The total area of the vesicle should be $200 \mu \mathrm{~m}^{2}$, not $100 \mu \mathrm{~m}^{2}$.

