Errata:

p. 82	Entire paragraph starting at line 17. Further work on four-fold networks has shown that this paragraph is overly pessimistic. At the minimum, Eq. (3.57) should be replaced with $\mathcal{B}(K_{\rm A} + \mu_{\rm p})s_{\rm o}^2 = 4\pi / (\pi^2 - 8)$ and the remainder of the paragraph should read: "Eq. (3.57) is 15% above what is found from simulations of four-fold networks at low temperatures, where spring lengths are relatively constant although the plaquette shape displays strong fluctuations. (Tessier, Boal and Discher, <i>Phys. Rev.</i> (2003))."
p. 94	Prob. 3.14. Because of the fixed bond lengths in this simplified model, the area change and pure shear are coupled. Thus, the area compression modulus K_A from the conventional definitions (area fluctuations or change with applied tension) is really the sum $K_A + \mu_p$, where μ_p is the pure shear modulus.
p. 94-95	Prob. 3.15c and 3.16b. For these low symmetry networks, an isotropic stress τ does not produce an isotropic strain. Thus, the area compression modulus defined by the conventional $K_{A^{-1}} = (\partial A / \partial \tau) / A$ does not correspond to a pure dilation, but rather a mixture of dilation and shear.
p. 181	Eq. (6.15) for \mathbf{n}_{y} should read $\partial_{y}\mathbf{n} = -\{([1+h_{y}^{2}]h_{xy} - h_{x}h_{y}h_{yy}), ([1+h_{x}^{2}]h_{yy} - h_{x}h_{y}h_{xy}), (h_{x}h_{xy} + h_{y}h_{yy})\}/((1+h_{x}^{2}+h_{y}^{2})^{3/2})$.
p. 182	Third line from the bottom, $\kappa_{\rm b}/\kappa_{\rm G}$ should be $\kappa_{\rm G}/\kappa_{\rm b}$.
p. 188	Eq. (6.51) should read $\kappa(\ell) = \kappa_{\rm b} - (3k_{\rm B}T/4\pi) \ln(\ell/b)$ where ℓ is the length scale of the undulations.
р. 307	Eq. (9.15c) should read $P_{net} = (b/w) \cdot (1 - b/2w) \cdot (1 - 2\alpha)$
p. 308	Two lines above Eq. (9.16), the derivative is evaluated in the range $w/b > \alpha$, not $w/b > \alpha b$.

Many thanks to Eva Danielsen, Royal Veterinary and Agricultural University (KVL), Copenhagen Denmark (http:kvl.dk/~eva) for the following:

p. 31 Eq. (2.11): the result on the right-hand side should read $\pi R^4/4$, not

	$\pi R^2/4$. The same error occurs on the line above Eq. (2.12): $\pi R_i^2/4$ should be replaced by $\pi R_i^4/4$. Eq. (2.12) is correct.
p. 89	Line 27: in the expression for a free energy change, the term involving the pure shear modulus has been divided by 2 twice. The in-line equation $\Delta \mathcal{F} = (K_{\text{A}}/2) \cdot (u_{xx} + u_{yy})^2 + (\mu_{\text{p}}/2) \cdot (u_{xx} - u_{yy})^2/2 + 2\mu_{\text{s}} u_{xy}^2$ should read $\Delta \mathcal{F} = (K_{\text{A}}/2) \cdot (u_{xx} + u_{yy})^2 + (\mu_{\text{p}}/2) \cdot (u_{xx} - u_{yy})^2 + 2\mu_{\text{s}} u_{xy}^2.$
p. 107	Eq. (4.13): there is a missing P on the right hand side and the equation should read $p_i = \mathcal{P}(x_i, y_i, z_i) \Delta x \Delta y \Delta z.$
p. 108	Eq. (4.22): the Λ terms on the right hand side should be squared, as they are in Eq. (4.21). The equation should read $\Delta F = (k_{\rm B} T n/2) \cdot (\Lambda_x^2 + \Lambda_y^2 + \Lambda_z^2 - 3).$
p. 164	Eq. (5.30) and Fig. (5.21): the expression for the hole radius R^* which maximizes ΔH has been inverted; the radius R^* should be given by $R^* = \lambda / \tau$.
p. 168	Line 21: the in-line equation $\lambda^* \sim k_A T/b$ should read $\lambda^* \sim k_B T/b$.
p. 225	Line 11 from bottom: the reference to Miao et al., 1974 should be Miao et al., 1994.
p. 242	Prob. 7.7: for a less extreme example of cell wall strain, choose a diameter of 1 micron supporting a pressure of 5 atmospheres.
p. 285	Prob. 8.8. The total area of the vesicle should be 200 μm^2 , not 100 μm^2 .