
Modeling and Validation of Business Process Families

Gerd Grönera, Marko Boškovićb, Fernando Silva Parreirasc, Dragan Gaševićd

aWeST Institute, University of Koblenz-Landau, Germany
bResearch Studios Austria, Austria

cFUMEC University, Brazil
dAthabasca University, Canada

Abstract

Process modeling is an expensive task that needs to encompass requirements of different stakeholders, assure compliance
with different standards, and enable the flexible adaptivity to newly emerging requirements in today’s dynamic global
market. Identifying reusability of process models is a promising direction towards reducing the costs of process modeling.
Recent research has offered several solutions. Such solutions promote effective and formally sound methods for variability
modeling and configuration management. However, ensuring behavioral validity of reused process models with respect to
the original process models (often referred to as reference process models) is still an open research challenge. To address
this challenge, in this paper, we propose the notion of business process families by building upon the well-known software
engineering discipline – software product line engineering. Business process families comprise (i) a variability modeling
perspective, (ii) a process model template (or reference model), and (iii) mappings between (i) and (ii). For business
process families, we propose a correct validation algorithm ensuring that each member of a business process family
adheres to the core intended behavior that is specified in the process model template. The proposed validation approach
is based on the use of Description Logics, variability is represented by using the well-known Feature Models and behavior
of process models is considered in terms of control flow patterns. The paper also reports on the experience gained in two
external trial cases and results obtained by measuring the tractability of the implementation of the proposed validation
approach.

Keywords: business process families, control flow relations, validation, process model variability, process model
configuration

1. Introduction

Process modeling is an expensive task [1], and the more
detailed and fine-grained a process is the more effort is re-
quired to build the corresponding process model. This can
be attributed to several (crosscutting) reasons. First, no
organization is an isolated island in today’s global econ-
omy. Rather, processes in individual organizations are typ-
ically based on collaboration with several other (partner)
organizations. Therefore, any parts of processes prone to
often changes in such a collaborative environment should
carefully be considered and reflected in the models. Next,
the process modeling task typically requires the involve-
ment of stakeholders with different backgrounds (e.g., ac-
counting, sales, security, information technology, or soft-
ware development) who need to bring together critical
(and sometimes conflicting) perspectives to processes be-
ing modeled. Finally, process models need to be adaptive
in order to be able to serve to stakeholders who might not
have the exact same, yet, rather similar requirements.

Email addresses: groener@uni-koblenz.de (Gerd Gröner),
boskovic@researchstudios.at (Marko Bošković),
fernando.parreiras@fumec.br (Fernando Silva Parreiras),
dragang@athabascau.ca (Dragan Gašević)

Recently, process modeling research and practice have
been looking for novel methods and techniques that can
help to tackle the complexity of the process modeling task.
Obviously, process reusability [2] is one of the most desir-
able attributes, which process models need to have. Reus-
ability of processes can reduce the costs of the involvement
of different stakeholders all over in different situations.
Reusability of process models can also scale up the devel-
opment of software that enact the processes. Reusability
can also increase the quality of processes by reducing the
probability of potential defects, assure compliance to cer-
tain standards the processes need to adhere to, and ease
change propagation.

Capturing and systematically managing variability in
process models is one of the main prerequisites for their
effective and scalable reusability [3]. By variability captur-
ing we primarily refer to the representation of individual
variation points allowing stakeholders to make their indi-
vidual choices when reusing a process model. However,
such variation points are typically not completely inde-
pendent from the rest of a process model being reused.
Often, choices made about some variability points have di-
rect implications on other variation points (e.g., deciding

Preprint submitted to Information Systems September 7, 2012

to include a credit card payment option in a process has
a direct implication about what additional activities must
be included in order to assure security of such payments).
This directly indicates that for an effective variability cap-
turing and management in business processes, there is a
need to have not only a representation of variability points,
but also algorithms that can guide the stakeholders when
making their choices [4].

Commonly, existing work considers the task of process
model reusability in terms of configurable reference mod-
els [4, 5, 6], where a reference process model contains vari-
ation points. These variation points offer choices like the
selection of a particular branch [4] and the hiding or block-
ing of certain activities [5, 6]. Instead of building several
related business process models from scratch, the reference
process models are narrowed down towards an individu-
alized business process model. In order to perform the
configuration of process models, such approaches require
from stakeholders knowledge of process modeling and how
elements of a process model depend on each other. To
make the configuration process more understandable, the
questionnaire-based approach [7] guides the stakeholders
by asking questions of relevance to the particular choices
they need to make. However, this approach does not of-
fer an automated solution, which can ensure that for each
possible set of valid choices, the stakeholders can make,
there is a business process consistent with the behavior
specified in the original reference business process. This
challenge is exactly tackled in this paper.

We propose the notion of Business Process Families, by
building upon the principles of the well-established soft-
ware engineering discipline – software product line engi-
neering (SPLE) [8]. Having the variability management in
its very core, SPLE offers methods and techniques for vari-
ability modeling and configuration management in soft-
ware artifacts. To this end, business process families com-
prise three critical elements (based on [9]): (i) a variability
perspective that abstracts from the business logic of a pro-
cess model; (ii) a process model template that specifies an
intended core behavior; and (iii) mappings between the
variability perspective and the process model template,
so that configuration of process model templates can be
driven by the choices made in the variability perspective.
Our approach, presented in this paper, ensures that each
member of the business process family, which can be de-
rived from the configuration space of the variability per-
spective, adheres to the core intended behavior that is
specified by the process model template. The intended
behavior is treated in terms of control flow patterns [10].
Our proposed approach first lifts all the three elements
of business process families to a common representation
defined by using Description Logics [11]. It then offers a
correct validation algorithm, which is experimented in two
external trial cases and checked for its tractability.

We describe our approach as follows: in Section 2,
we contextualize the problem and present the key chal-
lenges. In Section 3, we present foundations of business

process families, followed by an analysis of inconsistencies
between feature and control flow relations in Section 4.
We lift relations between features and activities into a
common Description Logics (DL) knowledge base in Sec-
tion 5. In Section 6, we detail our framework for validat-
ing business process families. The validation is based on
modeling and reasoning in Description Logics. Section 7
demonstrates the correctness of the proposed configura-
tion and validation approach, followed by an evaluation
in Section 8, which demonstrates the tractability within
a proof-of-concept implementation. Section 9 investigates
related work. Finally, we conclude the paper with Sec-
tion 10.

2. Motivation and Problem Description

This section highlights the application context of our
approach, followed by a description of the proposed idea
and the investigated problem.

2.1. Context

Business processes within organizations are implemented
and automated by process-aware information systems (PAIS)
[12]. Their implementation relies on the specification of a
process, described by a process model. As business pro-
cesses are usually designed and optimized within individ-
ual organizations, vendors of process-aware information
systems need to build their systems for several business
processes that are quite related to each other, but still
different in some parts.

Instead of designing each business process and their
corresponding PAIS from scratch, it is a promising tech-
nique to start with a process model template (or reference
process model) and then customize such a model for indi-
vidual stakeholder’s needs.

Individual stakeholders are not necessarily familiar with
business process modeling and management. Thus, it is
different for them to derive a particular process model for
an intended system-to-be based on their needs.

2.2. Basic Idea

The problem of handling multiple (quite related) mod-
els is studied for several years in the realm of software
product line engineering (SPLE) [8]. A product line or
family describes commonality and variability of members
of a family such that they abstract from the business logic
and consider a system in terms of its features and relation-
ships between features. This rather abstract perspective
guides individual stakeholders in designing a final member
of a family.

In this paper, we propose to adopt these principles
from SPLE to handle business process families. In par-
ticular, we use feature models [13], the most commonly
used variability modeling technique in SPLE, as a guid-
ance for stakeholders to configure and customize an in-
dividual process model (and therefore the corresponding

2

Emails User
Board

Web
Page

Store Back-
EndStore Front-

End

User Data Searching Registration

Order Processing

Display Notification

 Integrity Constraints:

 New User includes Registration
E-Shop

New
User

Registered
User

Test
User

Mandatory Optional Or (IOR) Alternative (XOR)

P

C

P

C

P

C1 C2

P

C1 C2

Basic Advanced

Request
WishList

Enter
Name

Enter
UserID

Save
Name

Save
UserID

WishList

Retrieve
List From

Server

Retrieve
Local List

Create
New List

Select
Item

Send
Notification

Display
Selection

Store
Selection

a. Feature Model:

b. Process Model Template:

Figure 1: A business process family that consists of a feature model, a process model template and mappings between
features of the feature model and activities of the process model template

PAIS). Stakeholders can decide how the process and the
corresponding information system looks like based on the
feature perspective, without having dedicated knowledge
about process modeling and management.

The basic idea is depicted in Figure 1, where a fea-
ture model (Figure 1.a) captures the variability and of-
fers stakeholders customization choices in well-known for-
malisms that describes configuration options. A process
model template is depicted in the lower part (Figure 1.b).
Mappings describe the implementation of certain features
by a concrete activity of the process model template. All
three artifacts, i.e., feature models, process model tem-
plates and mappings are designed by experts, while stake-
holders use the feature oriented view to customize process
models according to their needs.

A particular selection of features (also called a con-
figuration) regulates which elements of a process model
template stay and which are removed. For example, in
Figure 1, the selection of the feature New User regulates
whether the activity Enter Name is part of a particular
business process model or not. We understand a configu-
ration according to the description given in [9], as a selec-
tion of a subset of elements from a reference model (i.e.,
from a process model template).

Feature Model

feature
selectionMapping

Process Model
Template

Business Process
Family Model

Process
Model

Process
Model

Process
Model

Family Members

Process
Model

Figure 2: Members of a business process family are derived
by feature selection from a business process family model

2.3. Investigated Problem

As depicted in Figure 1, a business process family is
represented by a feature model, a process model template
and mappings between features and activities. A particu-
lar member of the family, i.e., a process model is derived
by selecting features of the feature model. This procedure
is illustrated in Figure 2.

In the scope of this paper, we consider business process

3

models at the modeling perspective, i.e., we analyze and
configure business process models at design time (modeling
time), and we do not take into account run time aspects. A
particular configured business process model is still at the
modeling perspective, but the set of permitted executions
might be restricted compared to the original process model
template.

Since the configuration of particular business process
models is based on feature selections, the business process
model is influenced by two kinds of constraints or rela-
tions: (i) The selection of features might depend on the
selection of other features according to feature relations.
This dependency between features is carried to the corre-
sponding activities of the business process model by map-
pings. (ii) Activities of the business process model depend
on other activities regarding to the control flow relations.

Business process models that are configured accord-
ing to feature selections (and therefore according to the
feature relationships) do not necessarily satisfy the con-
trol flow relations of the given process model template.
For instance, activity Send Notification is mapped to the
feature Emails that characterizes a notification via email.
The sibling activity Display Selection is mapped to the
feature User Board, referring to a notification via the user
board. Thus, a stakeholder could build a valid feature se-
lection (regarding to feature relations) that contains only
one of these features, leading to a business process model
that only contains one of these activities (Send Notifica-
tion or Display Selection), while both require each other
according to their control flow relations.

We suggest to address the comparison of relationships
in the process model template with the relationships of
the corresponding mapped features in the feature model
in order to ensure that each valid feature selection leads
to a business process model that adheres to the control flow
relations that are given by the process model template.

3. Business Process Families

This section formally defines business process families
and their three constitutive elements.

3.1. Feature Models

The most common means for representing variability
are feature models. A feature model is a tree-like structure
whose nodes are features of the target software product
line 1 [14]. It describes valid combinations of features. Ac-
cording to the distinction of Metzger et al. [15], variability
used in our case can be considered as software variability,
i.e., the ability to customize a system in a particular case.

In a feature model, there exists three kinds of rela-
tionships between features: 1) parent-child relationships;

1In this paper, we will use product line and software family inter-
changeably, even though one can argue that they can not be consid-
ered synonymous.

2) group relationships; and 3) cross-tree constraints also
known as integrity constraints.

A formal description of feature models is given in Def-
inition 1. Parent child relationships are mandatory and
optional. A mandatory parent-child relationship specifies
that if a parent feature is selected in a certain config-
uration, its mandatory child feature has to be selected,
too (e.g., Store Front-End and Store Back-End are both
mandatory children of E-Shop). This is depicted by the
relation FM in Definition 1, where the set F refers to the
parent features and the power set P(F) denotes the set
of mandatory child features. An alternative feature group,
or xor feature group, (e.g., Basic and Advanced), specifies
that when their parent feature is selected, exactly one of
the members of the group can be selected. Finally, an or
group (e.g., Emails, User Board and Web Page) defines a
set of features from which at least one has to be selected.

Integrity or cross-tree constraints between features are
the ones that cannot be captured by the tree structure
of feature diagrams. Generally, two cross-tree constraints
exist, namely includes and excludes. Includes means that
if an including feature is in a configuration, the included
feature has to be as well (e.g., New User and Registration).
Excludes is the opposite to includes.

Definition 1 (Feature Model). A feature model Φ =
〈F , FM , FO, FIOR, FXOR, Fincl, Fexcl〉 is a tree struc-
ture that consists of features F . FM ⊆ F × P(F) and
FO ⊆ F × P(F) are sets of parent features and the set
of all their mandatory and optional child features, respec-
tively. FIOR ⊆ F ×P(F) and FXOR ⊆ F ×P(F) are sets
of pairs of child features and their common parent feature.
Finally, Fincl ⊆ F × F and Fexcl ⊆ F × F are sets of
includes and excludes relationships (integrity constraints).

3.2. Process Model Template

A process model template specifies the business logic
perspective. In Figure 1, we use BPMN to specify a pro-
cess model template. Such a template typically consists
of process patterns like subprocesses, activities and gate-
ways. We understand a process model template as a di-
rected graph, according to Definition 2.

Definition 2 (Process Model Template).
A process model template is a directed graph ΩG = 〈V, E〉
with V denoting a finite set of vertices and E the edges
between the vertices describing the flow of the process.

• V consists of a set of activities A and a disjoint set
of gateways (or control vertices) G and exactly one
start and one end vertex (V = A] G).

• Activities have exactly one incoming and one outgo-
ing edge.

• Gateways have either exactly one incoming and at
least two outgoing edges or exactly one outgoing edge
and at least two incoming edges. The first ones refer

4

to opening gateways (decision / fork gateways) and
the second ones to closing gateways (merge / join
gateways).

According to the BPMN specification [16], activities
(A) are either atomic activities or sub-processes (decom-
posable activities).

We focus in our work on structured process models for
two reasons. Firstly, for the class of structured models,
structural constraints coincide with behavioral constraints
(see the work on behavioral profiles that are derived from
process structure trees [17]). Secondly, there are tech-
niques to derive structured models for a broad class of un-
structured models [18]. Structured models require that for
each opening gateway there is a closing gateway, i.e., they
create valid single-entry-single-exit (SESE) fragments.

Definition 3 extends the definition of process model
template ΩG towards structured process model templates,
where for each opening gateway there is a corresponding
closing gateway. Thus, a process model can be decom-
posed into SESE fragments.

Definition 3 (Structured Process Model Template).
A structured process model (or structured process model
template) is triple Ω = 〈V, E , S, D〉, which is based on a
process model ΩG = 〈V, E〉. The set S explicitly represents
SESE fragments of Ω, where each SESE fragment S ∈ S
with S ∈ V ×V ×P(B) has an entry and an exit node and
a set of branches (B ∈ B). D is a set of decomposition
relations D ∈ D, where D ⊆ A×A, denoting a subprocess
that contains internal activities.

3.3. Mappings

Mappings (Definition 4) connect features F and activ-
ities A of the structured process model template Ω that
implement the business logic of particular configurations.
For example, every configuration that contains the feature
Basic, contains the activity Create New List. All activities
of the process model template that are not mapped to any
feature are contained in every business process model. Fur-
thermore, a feature can be mapped to multiple activities
and likewise an activity might realize multiple features.
Formally, mappings are defined as follows.

Definition 4 (Mapping). For a feature model Φ = 〈F ,
FM , FO, FIOR, FXOR, Fincl, Fexcl〉 and a structured pro-
cess model template Ω = 〈V, E , S, D〉 with A ⊆ V, a map-
ping M is a relation M ⊆ F×A, that is defined as M :=
{(f, a) : f ∈ F ∧ a ∈ A}.

3.4. Business Process Families

The combination of feature models Φ, structured pro-
cess model templates Ω and mappings M constitute a busi-
ness process family model.

Definition 5 (Business Process Family Model). For
a feature model Φ = 〈F , FM , FO, FIOR, FXOR, Fincl,

Fexcl〉, a structured process model template Ω = 〈V, E , S,
D〉 with A ⊆ V and Mappings M ⊆ F ×A between both
models a business process family model Ψ = 〈Φ,Ω,M〉 is
the combination of them.

4. Inconsistencies in Business Process Families

The feature model describes variability relationships
among selectable features of a system-to-be, the process
model template represents control flow relationships that
are required to be satisfied by all family members. Control
flow relations are imposed by control flow patterns, as de-
scribed in [10, 19, 20]. In business process family models,
mappings combine features and activities. Thus, features
and activities might be affected by different relationships.

4.1. Mapping Influence on Control Flow Relations

In our representation formalism for business process
families, the intention is that the selection of a feature
determines whether the corresponding mapped activity is
part of the particular business process model or not. Ob-
viously, the resulting business process model is built ac-
cording to feature relations, but they do not necessarily
coincide with the control flow relations given by the tem-
plate.

As already outlined, our approach aims at detecting
inconsistencies between feature relationships and control
flow relationships, based on a comparison of the differ-
ent relationships of mapped features and activities. While
the kinds of relations in the feature model are explicitly
given by feature groups (and, ior and xor), as well as by
integrity (cross-tree) constraints, we have to identify the
kinds of relationships between activities in the business
process model.

Following this line of argumentation, the focus in the
remainder of this section is on an analysis of control flow
patterns as best practise building blocks for process mod-
els. For each pattern, we discuss which kind of control flow
relationship is imposed to activities, and whether this rela-
tionship is influenced by feature relationships if activities
are mapped to features.

4.1.1. Basic Control Flow Patterns

The basic control flow patterns provide fundamental
modeling primitives for business processes. They are sum-
marized in [10, 19, 20] and are imposed by business process
modeling languages like BPMN.

Sequence. The sequence is a basic construct to describe
the sequential routing of activities. An activity can be ex-
ecuted after the execution of its predecessor activity. Se-
quences restrict the ordering of activities, but the existence
and co-existence is not required by a sequential ordering
(cf. [21]). Thus, in our configuration context, no feature
relation influences the ordering of activities and we can
neglect sequences in the remainder of this work.

5

Parallel Branching. If activities occur in parallel branches,
they have to be executed commonly, i. e., if an activity of
the first branch is executed, then also the activity of the
second branch is executed.

Parallel branchings are started by parallel opening gate-
ways, while they can be closed by several allowed types of
closing gateway. In general, a parallel branching is closed
by a closing parallel gateway. In our configuration context,
activities in all these parallel sibling branches represent a
conjunctive relation in the logical sense.

Exclusive Branching. Activities that appear in exclu-
sive sibling branches are supposed to be exclusive, i. e., it is
not allowed to execute activities from alternative branches
in a process execution.

Subprocess. BPMN models facilitate decomposition of
activities into subprocesses. The configuration of particu-
lar business process models allows for a certain degree of
freedom as to whether an activity within a subprocess is
selected. However, if an internal activity is part of a partic-
ular business process model its corresponding subprocess
have to be part of this business process model, too.

4.1.2. Advanced Branching and Synchronization Patterns

Advanced branching and synchronization pattern of-
fer constructs for a more concise representation of process
models, but they can be reduced to equivalent constructs
that only use basic patterns.

Inclusive Branching. Inclusive branches offer execution
choices in which at least one branch has to be executed. In
contrast to exclusive branching, multiple sibling branches
can be executed. This kind of constraint is imposed for
all activities within sibling branches in every particular
configuration of a business process model.

Discriminator and N out of M Join. The discrimi-
nator and the n out of m join are special joins that facil-
itate a kind of race situation between different incoming
branches [16]. The successors of the gateway are enabled
for execution if at least one predecessor is executed (in case
of a discriminator) or at least n (in case of an n out of m
join) is/are executed.

In our case, as we assume a correct process model tem-
plate and we remain at the modeling perspective. The
crucial aspect of these complex joins for the configuration
is to ensure the minimum number of predecessors in order
to stick to the meaning that is given by a discriminator
and n out of m join.

4.1.3. Structural Patterns

The focus of our work is on the structural description of
processes using process models. Structural patterns allow
further specification of the process behavior in a process
models. They capture the structure of loops and explicit
statements about the termination of process executions.

Arbitrary Cycles. In contrast to structural cycles, ar-
bitrary cycles (or unstructured loops) describe loops with
multiple entry or exit points. With regard to mapping
inconsistencies, there is no distinction between structural
and arbitrary cycles. Arbitrary cycles can be reduced to
structured cycles, as demonstrated in [10]. Cycles are com-
posed of branchings, where some of the branches return to
the part of the process that needs to be repeated. There-
fore, we treat branches of arbitrary cycles like inclusive
branchings in our approach.

Implicit Termination. An explicit termination is rep-
resented in a process model by an end event (i. e., an end
node in the process model). Implicit termination states
that each subprocess should terminate if there is no fur-
ther activity to execute, i. e., without an explicit end node
after the last activity of a subprocess.

As the particular purpose of our validation is on the
relations between activities and implicit termination does
not impose any constraints or relations between activities,
implicit termination will not cause any inconsistency dur-
ing the process model configuration. However, we assume
that if the last activity of a (sub-) process is removed and
there is no explicit end event, the predecessor of the re-
moved element is considered as the last activity with re-
spect to implicit termination.

4.1.4. Multiple Instances (MI) Patterns

Multiple instances patterns describe the situation when
there are multiple instances of an activity active. This is
rather an implementation oriented aspect for the process
management system. BPMN supports three multiple in-
stances pattern: (i) MI without synchronization allows for
an activity to have multiple instances within one process
execution; (ii) MI with a priory design time knowledge pro-
vides the possibility to have a fixed number of instances
of an activity within one process, whereby the number is
already known at design time; while the pattern (iii) MI
with a priory runtime knowledge enables a variable num-
ber of instances, but the number is known at runtime. In
BPMN, these patterns are represented as annotations of
activities. As every runtime instance of a process is a copy
of the process depicted in a model, therefore, if the process
model does not have inconsistencies, neither its instances
will have.

4.1.5. State-based Patterns

Deferred Choice. This pattern is related to an exclusive
branching, but the choice of the exclusive opening gate-
way is made explicitly, i. e., it is not based on control flow
decisions. Once one branch of a deferred choice is exe-
cuted (i. e., at least the first activity of this branch is exe-
cuted), the remaining sibling branches are withdrawn for
execution. This pattern is rather relevant for the process
execution.

6

Interleaved parallel routing. This pattern enables a
set of activities to be executed in an arbitrary order. The
execution order of these activities is decided at runtime,
but at any time only one activity can be executed. The
configuration at design time does not affect this pattern,
as the selection is done at runtime.

Milestone. This pattern is an explicit statement that an
activity cannot be executed unless a certain specified state
is reached. It is a dependency between between activities,
but it is rather a test of certain (state) conditions than a
control flow dependency. Thus, this pattern is not affected
in our configuration.

4.1.6. Cancellation Patterns

The cancellation patterns enable the cancellation of an
activity (cancel activity) or of a complete process instance
(cancel case). In both patterns, an activity (or a process
instance) that is enabled can be withdrawn before the ex-
ecution. This pattern is meaningful if there are multiple
instances of an activity (or of a process) and in case one
instance has executed a certain activity (or a certain part
of the process) further executions have to be avoided. As
both cancellation patterns are relevant for process execu-
tions and not in the modeling perspective, they are not
affected within our feature-based configuration approach.

4.2. Relationships and Inconsistencies

Mappings between features and activities connect dif-
ferent relationships of the mapped elements. Usually, do-
main experts map features to activities of a process model
template to link variability and control flow relations from
different views. However, the relationships (or constraints)
of the mapped features and activities do not necessarily
coincide with each other, or they might be even contra-
dictory. From a logical point of view, we deal with basic
logical connectives, as described in Definition 6.

Definition 6 (Relationships between Elements).
Control flow relations CR describe relationships between
activities Aj ∈ A (of a structured process model template
Ω) and feature relations FR describe relationships between
features Fi ∈ F (of a feature model Φ). We refer to
elements in these relationships in the terms of predicate
logics: (1) conjunctive connected elements are called con-
juncts, (ii) disjunctive (inclusive or exclusive) elements
are called (inclusive or exclusive) disjuncts, and (iii) im-
plications have elements as antecedents and consequences.

The key focus of our work is to represent and compare
relations of features and activities, according to the logical
connectors of Definition 6. We follow mapping principles
between features and activities in our validation [22].

In the following, we assume a business process family
model Ψ = 〈Φ,Ω,M〉 that consists of a structured process
model template Ω = 〈V, E , S, D〉 (A ⊆ V), a feature
model Φ = 〈F , FM , FO, FIOR, FXOR, Fincl, Fexcl〉 and
mappings M (M ⊆ F ×A).

Store Front-
End

Searching Registration

E-Shop

Basic Advanced

WishList

Retrieve
List From

Server

Retrieve
Local List

Create
New List

Figure 3: Strong inconsistency due to exclusive branching
mismatch

In a comparison of the feature relations (FR) and the
relations given by the control flow relations (CR) only
mapped elements are relevant since unmapped element can
not be involved in contradicting relations, given that we
always assume correct feature models and correct process
model templates.

Definition 7 (Strong Inconsistency). Assume a con-
trol flow relation CR on activities A1, . . . , An ∈ A and
a feature relation FR on F1, . . . , Fm ∈ F , and mappings
(Fi, Aj) ∈ M of some features Fi (i ∈ {1, . . . ,m}) and
activities Aj (j ∈ {1, . . . , n}). A strong inconsistency be-
tween FR and CR occurs if there is no feature selection
possible that leads to non-contradicting control flow rela-
tions of activities in CR.

Figure 3 depicts a strong inconsistency of activities in
exclusive sibling branches. The activities Retrieve List
From Server and Create New List appear in exclusive sib-
ling branches. We require that there is no contradicting
perspective in the feature model that would suggest (and
also allow) feature configurations that contradict to the
exclusive behavior, as it is imposed by the process model
template. The inconsistency in Figure 3 is due to the map-
ping of these activities to the features Basic and Advanced
that can only appear together in each possible feature con-
figuration, i.e., either both features are selected or none of
them.

A weaker notion is the potential inconsistency. There
are feature selections allowed in FR that lead to contra-
dicting execution combinations of activities in CR. Obvi-
ously, each strong inconsistency is also a potential incon-
sistency.

7

Emails User
Board

Web
Page

Store Back-
End

Order Processing

Display Notification

E-Shop

WishList

Send
Notification

Display
Selection

Store
Selection

Figure 4: Potential inconsistency due to parallel branching

Figure 4 depicts an example for a potential inconsistency
due to mappings between features that are (inclusive) or-
siblings (Emails and User Board) and activities in parallel
branches. Thus, a feature selection does not guarantee
that all activities in parallel branches (Send Notification
and Display Selection) occur together in a business process
model. However, this is imposed by the process model
template.

Definition 8 (Potential Inconsistency). Assume a
control flow relation CR on activities A1, . . . , An ∈ A and
a feature relation FR on F1, . . . , Fm ∈ F , and mappings
(Fi, Aj) ∈ M of Fi (i ∈ {1, . . . ,m}) and activities Aj

(j ∈ {1, . . . , n}). A potential inconsistency means there
can be a feature selection within FR that result in a
contradicting control flow relation of activities in CR.

Figure 5 depicts another example of a potential inconsis-
tency. The subprocess WishList is mapped to an optional
feature Registration, while an internal activity Retrieve
List From Server is mapped to the feature Advanced and
Advanced is a mandatory child feature of feature Search-
ing. The selection of feature Store Front-End requires the
selection of its mandatory child Searching and therefore
also the selection of Advanced, but the feature Registration
is not necessarily selected. Thus, the subprocess Wish-
List, which is mapped to the optional feature Registration,
is removed, while at the same time the internal activity
Retrieve List From Server should remain in the business
process model.

WishList

Store Front-
End

Searching Registration

Basic Advanced

Retrieve
List From

Server

Create
New List

Figure 5: Potential inconsistency due to potential removal
of the subprocess WishList, while the activity Retrieve List
From Server is not removed

4.3. Overview of Inconsistencies

Table 1 summarizes the interrelationships between fea-
ture relationships and control flow relationships. We use
four symbols to indicate whether we can identify an in-
consistency or not: (i) ‘X’ indicates no inconsistency be-
tween feature relations FR and control flow relations CR,
(ii) strong inconsistencies are denoted by ‘ ’, (iii) the sym-
bol ‘±’ refers to potential inconsistencies, and (iv) if our
approach cannot lead to inconsistencies at the modeling
level based on a mapping between features and activities,
the corresponding cells are marked with ‘−’.

The comparison between feature and control flow rela-
tions in Table 1 refers to the following relations between el-
ements: (i) Feature relations among sibling features (and,
xor, ior) are logical connection among conjuncts or dis-
juncts. (ii) Integrity constraints of features (includes and
excludes) are implications (and negations) from a feature
as antecedent to a feature as consequent.

(iii) Branching patterns of the control flow patterns,
the deferred choice and interleaved parallel routing pat-
tern denote a logical combination of conjuncts or disjuncts,
which are activities of sibling branches. (iv) The relations
in a subprocess depicts an implications from a logical point
of view. If we compare two implications, we mean the situ-
ation that the antecedents are mapped to each other, and
likewise the consequences. Other combinations have no
influence on the inconsistency in our approach.

5. Knowledge Base for Business Process Families

According to Section 4, the basic idea of our approach
is to compare relationships between elements of both mod-
els. Thus, a knowledge base has to cover the feature
model in terms of feature relations, the process model tem-
plate by control flow relations, and mappings between both

8

Table 1: Interrelationships between Feature Relations and Control Flow Relations

Control Flow Relations
Feature Relations

AND XOR IOR incl. (cr) excl. (cr)
Sequence − − − − −
Subprocess X ± ± X
AND-AND Parallel split - Synchronization X ± ±
AND-OR Parallel split - Multi merge X ± ±
AND-XOR Parallel split - Simple merge X ± ±
AND-DISC Parallel split - Discriminator X ± ±
XOR-XOR Exclusive - Simple merge X ± ± X
OR-DISC Multi choice - Discriminator X X X ± ±
OR-OR Multi choice - Synchronizing merge X X X ± ±
OR-XOR Multi choice - Simple merge X X X ± ±
Arbitrary Cycles − − − − −
Implicit Termination − − − − −
Multiple Instances (MI) Pattern − − − − −
Deferred Choice X ± ± X
Interleaved parallel routing X ± ±
Milestone − − − − −
Cancellation Pattern − − − − −

Symbols: no inconsistency (X), strong (), potential (±) inconsistency, and no influence (−)

models by an equivalence between the corresponding enti-
ties.

As Description Logics are our underlying modeling for-
malism, this section starts with preliminaries of Descrip-
tion Logics, followed by the DL knowledge base for busi-
ness process families.

5.1. Foundations of Description Logics

Description Logics are a decidable subset of first-order
logic (FOL). A DL knowledge base is established by a set
of terminological axioms (TBox) and assertions (ABox).
The TBox is used to specify concepts, which denote sets
of individuals and roles defining binary relations between
individuals. The main syntactic constructs are depicted
in Table 2, supplemented by the corresponding (FOL) ex-
pressions.

The basic elements of a TBox are atomic concepts and
atomic roles. They are used to compose more complex con-
cept expressions. Roles are used to state binary relations.
Concept inclusion axioms C v D means that each indi-
vidual of the concept C is also an individual of D. There
are two special concepts in Description Logics, namely the
universal concept (top concept) > and the bottom concept
⊥. The top concept > is the superconcept of all concepts,
i.e., C v > holds for each concept C. ⊥ is an unsatisfiable
concept that can not contain any individuals. A concept
equivalence (or also called a definition) C ≡ D is an ab-
breviation for two concept inclusion axioms C v D and
D v C. The same holds for subrole axioms (line 4 in
Table 2).

A concept union is a complex concept expression and
refers to a disjunction in FOL, i.e., an individual of an con-

cept union has to be an individual of at least one concept
Ci of the union. Likewise, a concept intersection refers to
a conjunction in FOL. A concept negation ¬C is the set of
all individuals that are not individuals of the concept C.
C can be an arbitrary complex concept.

Universal and existential quantifiers either restrict or
require relations with other concepts (C in Table 2). These
other referenced concepts can be arbitrary complex con-
cepts.

Due to the well defined semantics of Description Logics,
there are practically efficient reasoning algorithms and sys-
tems that offer several reasoning services. In the remainder
of this paper, we use subsumption checking, which is one of
the basic reasoning service. Subsumption checking refers
to the question whether a concept C is subsumed by D,
i.e., C v D holds in the knowledge base, whereby C and
D can be complex concepts.

In this paper, Description Logics (DL) [11] are used to
formalize the constraints of interests in models of interests
and enable validation services. We could have used some
other formalism, but we opted for DL as it is precise and
expressive enough to serve our purpose – formalize con-
straints that need to hold between our models of interest.
We built upon standard DL reasoning services in order to
classify dependencies and constraints of elements of busi-
ness process models and to validate the well-formedness
of members of a business process family. Discussions of
expansiveness of DL over some other options, although an
important research topic, is outside of the scope of this
paper.

9

Table 2: Constructs and Notations in DL and FOL Syntax

Construct Name DL Syntax FOL Syntax

atomic concept C C(x)
atomic role R R(x, y)
concept inclusion axiom C v D ∀x.C(x)→ D(x)
role inclusion axiom R v S ∀x, y.R(x, y)→ S(x, y)
concept union C1 t . . . t Cn C1(x) ∨ . . . ∨ Cn(x)
concept intersection C1 u . . . u Cn C1(x) ∧ . . . ∧ Cn(x)
concept negation ¬C ¬C(x)
universal quantification ∀P.C ∀y.(P (x, y)→ C(y))
existential quantification ∃P.C ∃y.(P (x, y) ∧ C(y))

5.2. Feature Relationships

We represent feature relations in a DL knowledge base
ΣΦ. The DL representation is based on the general model-
ing principles of Wang et al. [23]. However, the purpose of
the work of Wang et al. is on validation of feature model
configurations, while our target is an analysis of constraint
influence of mapped goals to potential feature model con-
figurations. Thus, we adapt some modeling principles ac-
cording to our particular validation purpose.

For each feature F , we introduce a DL concept CF , re-
ferred to as constraint concept of F . This concept collects
all relationships how feature F is related to other features.
The DL representation is depicted in Algorithm 1.

We use only one role requires to describe the relations
of a feature that requires other features, while Wang et al.
use different roles. It is easier and more intuitive to com-
pare concept expressions that use the same role. We use
concept definitions (equivalence axioms) in order to allow a
subsumption checking between the different concepts that
represent feature and control flow relations (cf. validation
principles in Section 6).

In case a feature Fi is a mandatory child feature (lines 4–
6), it is in an and relationship with its siblings in the logical
sense, since we know that the selection of one mandatory
sibling also requires the selection of all other mandatory
sibling features. Thus, we add this conjunctive relation to
the concept CFi for each mandatory sibling feature Fi.

An inclusive or decomposition of a feature F into fea-
tures F1, . . . , Fn is represented by a concept union over
the sibling features of the or decomposition (lines 7–9). A
disjunctive connection is added to the concept description
CFi

of each sibling feature Fi.
Likewise, exclusive or decomposition are described by

concept unions. However, we need a further restriction
that the selection of only one feature is allowed. This
is described in the second part of the concept expression
(line 10–12).

The includes integrity constraint specifies that the se-
lection of a feature F also requires the selection of another
feature F ′. In DL, we define CF dependent on the fea-
ture F ′ (lines 13–15). The excludes integrity constraint
is defined similarly (lines 16–18). The concept negation
expresses the exclusiveness of features F and F ′.

Algorithm 1 Representation of the Feature Model
Knowledge Base ΣΦ

1: Input: 〈F ,FM ,FIOR,FXOR,Fincl,Fexcl〉
2: ΣΦ := ∅.
3: for all F ∈ F do
4: for all (F, {F1, . . . , Fn}) ∈ FM do
5: CFi

:= CFi
u
d

i=1,...,n ∃requires.Fi

6: end for
7: for all (F, IOR, {F1, . . . , Fn}) ∈ FIOR do
8: CFi := CFi u

⊔
i=1,...,n ∃requires.Fi

9: end for
10: for all (F,XOR, {F1, . . . , Fn}) ∈ FXOR do
11: CFi

:= CFi
u (

⊔
F ′∈{F1,...,Fn} ∃requires.F

′

u¬(
⊔

F ′′,F ′′′∈{F1,...,Fn} (∃requires.F ′′ u
∃requires.F ′′′))

12: end for
13: for all (F, F ′) ∈ Fincl do
14: CF := CF u ∃requires.F ′
15: end for
16: for all (F, F ′) ∈ Fexcl do
17: CF := CF u ¬∃requires.F ′
18: end for
19: ΣΦ := ΣΦ ∪ CF

20: end for

Features and their relations to other features are rep-
resented by concept definitions F and CF . An excerpt of
the e-store feature model is presented in Axioms 1 – 3.

CStoreFront-End ≡ ∃ requires.StoreFront− End

u ∃ requires.StoreBack − End (1)

CEmails ≡ ∃ requires.Emails t ∃ requires.UserBoard

t ∃ requires.WebPage (2)

CNewUser ≡ ∃ requires.Registration (3)

Axiom 1 defines StoreFront-End and StoreBack-End
as conjunctive related elements, expressed by a constraint
concept CStoreFront-End. The same constraint concept is
used for the feature StoreBack-End. We use the role re-
quires to describe this relationship. There is no such axiom
for optional features.

10

Algorithm 2 Representation of Branching Fragments in
ΣΩ

1: Input: Ω = 〈V, E ,S,D〉
2: RelA ≡ >
3: for all S ∈ S do
4: if S = (and, and,B) ∨ S = (and, or,B) ∨ S =

(and, xor,B) ∨ S = (and, disc,B) then
5: CAi := CAi u

d
Bj∈B ∃ requires.(

⊔
Ak∈BJ

Ak)
6: end if
7: if S = (ior, ior,B) ∨ S = (ior, disc,B) ∨ S =

(ior, xor,B) then
8: CAi

:= CAi
u
⊔

Bj∈B ∃ requires.(
⊔

Ak∈BJ
Ak)

9: end if
10: if S = (xor, xor,B) then
11: CAi := CAi u (

⊔
Bj∈B ∃ requires.(

⊔
Ak∈BJ

Ak))

u¬(
d

Bj∈B ∃ requires.(
⊔

Ak∈BJ
Ak))

12: end if
13: ΣΩ := ΣΩ ∪ CAi

14: end for

For inclusive and exclusive disjuncts, a concept union
is used. For instance, Axiom 2 defines Emails, User Board
and Web Page as disjuncts. The same constraint concept
is built for features User Board and Web Page. The axiom
ensures that at least one feature is selected. Axiom 3 de-
picts an integrity constraint where the feature New User
includes Registration. For integrity constraints, we use the
same role requires. At the end, there is one single concept
definition for each feature that contains all relationships
of this feature.

The feature model representation in DL is different to
the modeling principles of Wang et al. [23] due to the dif-
ferent scope of our validation. We are not interested in
the validation of a particular feature configuration with
respect to a given feature model. Instead, our focus is the
validation of the process model template in which the rela-
tions of particular features of the feature model are taken
into account. We use concept definitions to define feature
relationships in order to ease the comparison. Further-
more, we only use one role requires, which also simplifies
the relationship comparison for our validation purpose.

5.3. Control Flow Relationships

We represent business process model templates in terms
of control flow relations CR between activities. Algorithm 2
describes how the corresponding knowledge base ΣΩ is
built.

There might be an overlapping of activity relations.
Accordingly, we build relations of activities CA as a con-
junction (intersection in DL) of activities from the different
control flow patterns. Initially, each relation concept CA

is defined as equivalent to the universal concept > (line 2).
In lines 4–6, the algorithm restricts the concept defini-

tions CAi
, in which Ai are activities in parallel branches.

We use an intersection between activity sets of sibling

Algorithm 3 Subprocess Representation in ΣΩ

1: Input: ΣΩ

2: for all D ∈ D do
3: if (Asub, Ainner) ∈ D then
4: CAinner := CAinner u ∃requires.Asub

5: ΣΩ := ΣΩ ∪ CAinner

6: end if
7: end for

branches, indicating the conjunctive relationship between
sibling activities in parallel branches. From a logical point
of view, we treat different closing gateways (multiple merge,
synchronization and discriminator) equally. Branching re-
lations do not impose restrictions on activities within the
same branch in a fragment (in contrast to the sequence
pattern). Thus, we describe all activities within the same
branch by a concept union, independent of the kind of
branching.

Multi choices are treated in lines 7–9, including syn-
chronizing merge, simple merge and discriminator. Logi-
cally, activities of sibling branches are connected by a con-
cept union. In case of exclusive branchings (lines 10–12),
the concept definitions CAi

contain a further restriction
that allows only the execution of one branch. Like in fea-
ture models, this is expressed by a concept negation (¬).
In both cases, activities of the same branch are treated like
in the parallel case, i.e., they are represented by a concept
union since ior and xor relations refer to activities of sib-
ling branches, but not to activities in the same branch.

Algorithm 3 extends the constraint concepts CA of ac-
tivities A that are subprocesses, i. e., they are decomposed
into subactivities. The input is the result of the Algo-
rithm 2. In this case, we require that if a particular con-
figured business process model that contains an internal
subactivity of A then A must be in the business process
model as well.

The following axioms illustrate the DL representation
of the control flow relations from the introduced example
of Figure 1. Axiom 4 depicts the conjunctive relation-
ships between activities Display Selection, Send Notifica-
tion and Store Selection, represented by the concept ex-
pression CDisplaySelection. The constraint concepts for the
other activities (CSendNotification and CStoreSelection) are
the same.

Axiom 5 depicts the disjunctive connection of a choice
with two branches, whereby the first branch contains ac-
tivities Enter Name and Save Name and the second the
activities Enter UserID and Save UserID. The disjunctive
connection refers to activities of sibling branches, but not
to activities within the same branch. Activities of the same
branch are represented as a union (second part of the ax-
ioms). This representation of predecessors and successors
of a branch is same for each kind of branching. Obviously,
in this representation, the ordering among activities of one
branch is neglected, as it is not influence by a configuration

11

in our case (see sequence pattern in Section 4).

CDisplay Selection ≡ ∃ requires.DisplaySelection

u ∃ requires.SendNotification

u ∃ requires.StoreSelection (4)

CEnterName ≡ ∃ requires.(EnterName t SaveName)

t ∃requires. (EnterUserID t SaveUserID) (5)

6. Inconsistency Detection

In Section 5, we transformed feature models and busi-
ness process models, which act as process model templates,
into a knowledge base that specifies feature relations FR
and control flow relations CR. This section proposes val-
idation principles in order to analyze the influence of fea-
ture relations on control flow relations according to the
comparison in Table 1 of Section 4.3.

Feature relations FR and control flow relations CR are
both represented by a set of axioms in DL knowledge bases
ΣΦ and ΣΩ. We assume that the feature model Φ and
the business process model template Ω are correct models.
Our validation approach comes into play if features are
mapped to activities, describing the realization of features
by activities in particular business process models.

The validation approach relies on the comparison of
feature relations FR and control flow relations CR of mapped
features and activities. We use Description Logic reason-
ing to test concept subsumption as well as concept satisfi-
ability checking to detect inconsistencies between mapped
features and activities. Especially for potential inconsis-
tencies, DL reasoning is a dedicated mean to compare con-
cepts (constraint concepts CF and CA) and distinguish be-
tween cases where certain concepts (referring to relations)
are unsatisfiable, potential satisfiable or even always sat-
isfied.

The transformation of relations to DL in Section 5 is
dedicated for concept comparison. All constraint concepts
(CF and CA) are defined by DL concept definitions and
we use the same role to express relationships between fea-
tures and activities. Finally, a mapping of a feature to an
activity is represented by an equivalence between concepts
of the feature and activity concept in the knowledge base.

So far, we are aware of the idea and modeling capa-
bilities to compare relations FR and CR of the knowledge
base. A further consideration is how the relations FR and
CR can be compared in order to detect inconsistencies ac-
cording to the classification in Table 1. For this purpose,
we break down the interrelationships of Table 1 for strong
and potential inconsistencies to a comparison between log-
ical formulas, represented by constraint concepts in DL:

• A potential inconsistency is detected if the satisfac-
tion of the feature relation FR of feature F does not
necessarily imply the satisfaction of the correspond-
ing control flow relation CR of activity A. Thus, the

concept CF (feature relations of F) is not subsumed
by CA, which represents the control flow relations of
A.

• A strong inconsistency is recognized by contradict-
ing relations of feature F and activity A. Thus, in
DL, the intersection of the corresponding constraint
concepts CF and CA is unsatisfiable. This means
the intersection CF uCA is subsumed by the empty
concept ⊥.

We build the final knowledge base Σ by adding vali-
dation concepts CF⇒A (for potential inconsistency detec-
tion) and CF∧A (for strong inconsistency detection) for
each mapping m(F,A) between feature F and activity A.
The validation concepts CF⇒A and CF∧A are composed
as described in Definition 9.

Definition 9 (Final Knowledge Base). The final knowl-
edge base Σ is constructed from the knowledge bases of the
feature model, the process model template and the map-
pings, i.e., Σ := ΣΦ ∪ΣΩ. Moreover, for each mapped ac-
tivity A and its corresponding feature F (m(F,A)), which
is represented in the mapping knowledge base ΣM by an
axiom F ≡ A, we insert the following axioms into Σ:

• CF⇒A ≡ ¬CF t CA

• CF∧A ≡ CF u CA

Given the final knowledge base Σ, we get the valida-
tion result en passant. The validation concepts CF⇒A and
CF∧A are classified by DL reasoning. The concept classi-
fication leads to the following insights:

1. The validation concept CF⇒A indicates a potential
inconsistency. If CF⇒A is classified equal to the uni-
versal concept > we can guarantee that the satisfac-
tion of feature relations FR in each particular feature
configuration ensures the fulfillment of control flow
relations CR. FR are feature relations of feature F
and CR are control flow relations of the correspond-
ing activity A.

2. Otherwise, CF⇒A 6≡ > holds, and we know that
there is either a strong or a potential inconsistency.
We identify the first case if the validation concept
CF∧A is classified equal to the empty concept ⊥.

7. Correctness of the Validation

This section demonstrates that the detection of incon-
sistencies between feature and control flow relations can be
reduced to subsumption and classification of the validation
concepts CF⇒A and CF∧A. We start with a consideration
of the relationship coverage by these concepts. Afterwards,
we show that the classification of these validation concepts
by DL reasoning comply with the criteria for relationship
comparison of Table 1 (Section 4.3).

12

7.1. Relationship Coverage

The relationships of both models are represented in a
common DL knowledge base Σ. Furthermore, we know
that both models are correct on their own. Thus, if an
activity A is not mapped to any feature there is no viola-
tion of control flow relations of A. Therefore, only cases
where activities are mapped to features are relevant for
the validation. If an activity is mapped to multiple fea-
tures, we expect that none of these mappings causes any
inconsistency.

Feature relations FR of a feature F are represented by
a concept CF , and likewise control flow relations CR of an
activity A are described by a concept CA in the knowledge
base. Mappings between feature and activities m(F,A) are
represented by equivalence axioms in the knowledge base.
For each mapping, the corresponding concepts CF and CA

are compared in order to determine the influence of feature
relations FR on control flow relations CR.

7.2. Validation Principle

In the following, we show that the detection of strong
and potential inconsistency is correctly achieved in the val-
idation by DL reasoning. The detection of inconsistencies
is solved by the classification of the validation concepts
CF⇒A and CF∧A. Lemma 1 summarizes these statements.

Lemma 1 (Correctness of the Validation). For map-
pings from an activity A to a feature F , CF are the feature
relations of feature F and CA the control flow relation of
activity A. The following statements hold:

• The concept CF⇒A is classified equal to the univer-
sal concept > iff all dependent activities of activity A
appear in a particular business process model, when-
ever feature F appears in a feature configuration.

• The concept CF∧A is classified equal to the empty
concept ⊥, iff there is no particular business process
model possible where each activity satisfies the con-
trol flow relations, whenever feature F is selected in
a particular feature configuration.

Proof. Looking to the different types of relations in both
models, we basically deal with implication, and, ior and
xor, as already outlined in Definition 6. Hence, we have
to consider all possible combinations in both models and
check whether either CF ⇒ CA is a tautology (i.e., CF⇒A ≡
>) or CF ∧ CA is satisfiable (i.e., CF∧A 6v ⊥).

This kind of logical problem is in the nature of proposi-
tional logic. Hence, in the knowledge base Σ, we define the
DL expressions CF and CA in a propositional style. The
term connectors are the DL counterparts, e.g., the intersec-
tion (u) for an and (∧). Instead of propositional variables,
there are concept expressions like ∃requires.F containing
features or activities, as well as the role requires from ΣΦ,
ΣΩ. The concept equivalence of F and A for each mapping
m(F,A) ensures the comparability of constraint concepts
CF and CA. �

8. Proof-of-Concept and Discussion

The evaluation of our approach has been conducted by
providing a proof-of-concept, which has been implemented
by integrating the FeatureMapper [24] and the transforma-
tion of the control flow parts of BPMN to DL, as described
in [25].

For the proof-of-concept, we use the e-store product
line [26], which has been introduced in Section 2, and an
external trial case, the video post-production business pro-
cess model [27]. This trial case has already been used for
validation of solutions to similar problems, e.g., in [28].
The external trial case is presented in Subsection 8.1, fol-
lowed by the evaluation details in Subsection 8.2. After
the evaluation details, a discussion about modeling and
validation rationale is presented (Subsections 8.3–8.5).

8.1. External Trial Case

In order to validate our approach, i.e., to demonstrate
that it is useful in use, we have migrated the business
process model described in [28] from EPC to the solution
where variability is explicitly described in a feature model,
and business logic in one separate business process model.
The feature model is presented in Figure 6.

The video post-production is a process for creating final
versions of movies, and consists of features Spotting ses-
sion, Design, Progress Update, Premixing, Picture Editing
and Final Mixing, whereby Progress Update and Premix-
ing are optional features. These feature are further decom-
posed. Small boxes are used for denoting mappings in the
business process model template, described in Figure 7.

While the feature model is created by analyzing the
variability in the case study presented in [28], the business
process template has been created separately, by speci-
fying an activity that is carried out by several roles (e.g.,
Progress Update by Director and Producer in [28]), as par-
allel activities carried out by lanes representing those roles
(e.g., Producer Progress Update and Director Progress Up-
date in Figure 7).

8.2. Performance Evaluation and Observation

Efficiency and tractability of the DL validation is ap-
plied in both test cases. Besides showing the practical
scalability of the proposed validation approach, we also
want (1) to investigate whether/how the size of the busi-
ness process family model increases the performance and
(2) to test whether/how the number of inconsistencies in-
fluences the performance.

Influence of the Model Size. We build models from
the two mentioned trial cases in order to analyze how the
size of the model influences the performance. First, the
e-store consists of a large feature model with 287 features,
192 of the features are leaf features. There are 21 cross-
tree constraints. The process model template has 84–120
activities. Secondly, the post-production trial case has a

13

Post-
Production

Spotting
Session

Composer

Sound
Designer

Producer

Director

Assistant
Director

Design

Music Sound

Editor
Sound

Designer

PremixingProgress
Update

Composer Sound
Designer Director Producer Music Sound

Composer ProducerMixer
Sound

Designer ProducerMixer

Picture
Editing

Editor

Negcutter

Final
Mixing

Mixer

Composer

Producer

sssd

ssc

ssp

ssd

dmssad pspucds

dse dssd

pusd pm

pmm

pud pup

pmc pmp psm psppssd

fmp

fmc

fmm

fm

pe

pee

pen

pu
p

Figure 6: Video post-production feature model

Table 3: Validation time for different model sizes without
inconsistencies

No. Features Activities Mappings Time [msec.]
Av. Max.

1 150 84 40 3010 3310
2 150 84 60 4010 4190
3 150 120 40 3100 3280
4 150 120 60 4080 4260
5 287 84 40 3590 3780
6 287 84 60 4070 4220
7 287 120 40 3430 3560
8 287 120 60 4270 4420
9 25 15 15 1970 2020
10 25 23 23 2040 2100
11 34 15 15 1980 2060
12 34 23 23 2096 2140

feature model with 34 features and a process model tem-
plate with 23 activities.

In both cases, we used multipliers in order to obtain 48
different business process family models in eight different
settings (six for each setting) for the e-store trial case, and
24 different business process family models (six for each
setting, four settings) for the video post-production trial
case. The mappings are established manually.

The performance for each setting is depicted in Table 3,
No. 1–12. Settings 1–8 refer to the e-store case study and
settings 9–12 describe the results for models based on the
video post-production trial case.

The result indicates that the size of the business pro-
cess family model in terms of features, activities and map-
pings has impact on the running time. The number of
mappings has the main impact on the reasoning perfor-

mance. This is quite intuitive since for each mapping we
introduce two validation concepts as complex concept ex-
pressions (using concept intersection, union and negation).
The reasoner must classify these concepts check whether
they are equal to the universal or empty concept. As we
can observe, the execution time of our algorithm for the
largest experimented model is less than 4.5 seconds.

Influence of the Number of Inconsistencies. The set-
ting with the largest business process family models (No. 8
in Table 3) is used in order to test whether the number of
strong and potential inconsistencies might influence the
validation time. Table 4 shows the different settings and
results.

Each setting contains six different business process fam-
ily models. The setting in the first row is the same as in
row 8 in Table 3. Each business process family model (row
1) contains 60 mappings. Obviously, each mapping might
cause an inconsistency of the activity and the mapped fea-
ture due to their different relationships. Thus, the idea of
this test is to manually change only the mappings in each
business process family model (for each setting), such that
some mappings (0, 20 or 40) might cause inconsistencies.
Thus, in each business process family model there are ei-
ther 0, 20 or 40 inconsistencies.

This is reflected in each row of Table 4. In row 2, 20 of
the total 80 mappings cause a potential inconsistencies of
activities (and their features). In row 3, 20 mappings lead
to strong inconsistencies, while each strong inconsistency
is also a potential inconsistency. Row 4 describes settings
with 20 potential and 20 strong (and potential) inconsis-
tencies. Row 5 and 6 capture cases with 40 potential and
40 strong (and potential) inconsistencies, respectively.

As indicated by the average and maximum validation
time, there are only minor differences regarding the time.
This is not surprising as the reasoning algorithms classi-
fies for each mapping m(F,A) the corresponding concepts

14

Video Postproduction

Composer Sound Designer Producer Director
Assistant
Director Editor Mixer Negcutter

Composer
Spotting
Session

S. Designer
Spotting
Session

Producer
Spotting
Session

Director
Spotting
Session

A. Director
Spotting
Session

Editor
Sound
Design

Composer
Music
Design

S. Designer
Sound
Design

Director
Progress
Update

Composer
Progress
Update

S. Designer
Progress
Update

Producer
Progress
Update

Producer
Music

Premixing

Mixer
Music

PremixingComposer
Music

Premixing

Producer
Sound

Premixing

Mixer
Sound

Premixing
S. Designer

Sound
Premixing

Editor
Picture
Editing

Negcutting
Picture
Editing

Mixer
Final Mixing

Composer
Final Mixing

Producer
Final Mixing

ssc

sssd
ssp ssd ssad

dm dssd

dse

puc
pusd

pup pud

pmm

psm

pmc

pssd

pmp

psp

fmmfmc fmp

pee pen

Figure 7: Video post-production superimposed business process model

15

Table 4: Validation Time with fixed Model Size

No. Number of Inconsistencies Time [msec.]
potential strong Av. Max.

1 0 0 4270 4420
2 20 0 4310 4480
3 0 20 4320 4500
4 20 20 4360 4490
5 40 0 4350 4470
6 0 40 4370 4420

CF⇒A and CF∧A and checks whether CF⇒A is equal the
universal concept > and compares CF∧A with the empty
concept ⊥, but this is done for each mapping and not only
for those that cause an inconsistency.

All inconsistencies are correctly recognized by DL rea-
soning. The classification of the validation concepts di-
rectly pinpoints the source of an inconsistency, i.e., we di-
rectly know which mapping between feature and activity
causes an inconsistency in the knowledge base.

Implementation Details. The time for the transforma-
tion to DL is less than the validation time. This is based on
the fact that we use the DL-oriented feature model of [23]
and we only transform the relevant control flow informa-
tion of BPMN to DL.

The ontology creation is implemented with the OWL-
API1. For reasoning, we used the Pellet reasoner2. Our
test system is a Notebook with an Intel Core 2 Duo CPU
(2.0 GHz, 800 MHZ FSB, 4 MB L2 cache and 2GB DDR2
RAM). We used 256MB RAM for the Java VM of the
Eclipse environment.

8.3. Validation Exemplified

We demonstrate the validation for the example of Fig-
ure 1 for a potential and strong inconsistency.

Potential Inconsistency. If we take the current situa-
tion in Figure 1 as an example, activities Send Notification,
Display Selection and Store Selection are parallel siblings,
i. e., conjunctively connected in their control flow relations.
Send Notification and Display Selection are mapped to
features Emails and User Board, which are both inclusive
or -siblings, i. e., inclusive disjuncts in the feature relation.

There is no strong inconsistency, but a potential incon-
sistency, since there are feature configuration where only
one of these sibling features is selected, but the correspond-
ing process model template assumes that both activities
are in parallel branches and thus both need to be executed.

Axiom 6 depicts the feature relation of feature Emails,
and Axiom 7 the axiom for the control flow relation of ac-
tivity Send Notification. Both are mapped to each other
(Axiom 8). The validation concept CEmails∧SendNotification

1OWL-API site: http://owlapi.sourceforge.net/
2Pellet reasoner site: http://clarkparsia.com/pellet/

(i.e., CEmails u CSendNotification) is satisfiable. Thus, there
is no strong inconsistency.

CE-mails ≡ ∃ requires.Emails t ∃ requires.UserBoard

t ∃requires.WebPage (6)

CSendNotification ≡ ∃ requires.DisplaySelection

u ∃ requires.SendNotification

u ∃ requires.StoreSelection (7)

Emails ≡ SendNotification (8)

However, the validation concept CEmails⇒SendNotification

is not equal to the universal concept >, i.e., logically the
implication of the feature relation to the control flow rela-
tions is not a tautology. Therefore, we can not guarantee
that for each feature selection that contains the feature
Emails the control flow relation of activity Send Notification
holds.

Strong Inconsistency. For a strong inconsistency, we
slightly modify Axiom 6 to an XOR-group of features, as
depicted in Axiom 9. The other axioms remain unchanged.
In this case, the validation concept
CEmails∧SendNotification is unsatisfiable as we can see by
the concept negations in Axiom 9 compared to Axiom 6.

CEmails ≡ (∃ requires.Emails t ∃ requires.UserBoard

t ∃requires.WebPage)

u¬(∃ requires.Emails u ∃ requires.UserBoard)

u¬(∃ requires.Emails u ∃ requires.WebPage)

u¬(∃ requires.UserBoard

u∃ requires.WebPage) (9)

8.4. Modeling and Validation Rationale
Following the principles from software product line en-

gineering, we use feature models to align between system
features and their realization. They serve as a configura-
tion means by selecting features that remain in a particular
configuration and those that will be removed. According
to this principle of removing features and therefore also ac-
tivities, our validation has to incorporate the case where
relationships are contradicting and where the removal of
activities might cause some inconsistencies. However, the
configuration does not change certain relations of activi-
ties like sequential ordering among activities, and there-
fore certain control flow relations are not affected in our
configuration approach (cf. Section 4).

The presented modeling principles for feature and con-
trol flow relations are dedicated for this kind of relationship
comparison, where elements of these relations (i.e., fea-
tures and activities) are mapped to each other. Unmapped
elements are neglected in the comparison, as only mapped
elements cause interrelationships among element relations.
This is reflected in the knowledge base as only for mapped
elements (expressed as an equivalence of elements) an in-
consistency can occur, otherwise the constraint concept
will not be unsatisfiable since the expressions are not re-
lated to each other.

16

8.5. Rationale for Description Logics

Description Logics is an expressive language for knowl-
edge representation. The semantics of Description Logics
provides an unambiguous interpretation of expressions in
the knowledge base that is a prerequisite for automated
reasoning. The contribution of Description Logics reason-
ing for the validation is threefold:

• We use reasoning to recognize inconsistencies be-
tween feature relations and control flow relations.

• Due to the classification of concepts and the sub-
sumption checking between concepts, the reasoner
directly pinpoints the source of an inconsistency, i.e.,
which element (feature and activity) is part of an in-
consistency. This is crucial in large models, where
various mappings exist.

• We use several notions how a reasoner can classify
a concept expression in DL, i.e., whether a concept
expression is always satisfied, is satisfiable or is un-
satisfiable. This is exploited in order to distinguish
between realization equivalence, strong and poten-
tial inconsistency.

Compared to other logical formalisms, Description Log-
ics is quite efficient in practical settings, is expressive enough
to capture complex feature and process models, and there
is a well established infrastructure for modeling and rea-
soning tool support. Description Logics is a decidable sub-
set of first-order logic, and the theoretical exponential rea-
soning complexity is tractable in practical settings. In con-
trast to propositional logics, Description Logics is more ex-
pressive and allows the integration of further background
knowledge like annotations of elements.

9. Related Work

Due to the increasing need of business processes cus-
tomization, several approaches for the development of fam-
ilies of business processes have been introduced like Schnie-
ders et al. [29], Boffoli et al. [30], La Rosa et al. [31, 7, 32]
and van der Aalst et al. [5, 6]. Schnieders et al. [29] model
families of business process models as a variant-rich busi-
ness process model. A configuration of such a family is
performed by directly selecting business process elements
of variant-rich processes. In order to support such an ap-
proach, Schnieders et al. extend BPMN with concepts for
modeling variation. However, in order to perform it, such
an approach requires from a customer knowledge of busi-
ness process modeling.

Boffoli et al. [30] and La Rosa et al. [31, 7, 32] also dis-
tinguish between business process models and variability
models. Boffoli et al. model problem space as variability
table, while La Rosa et al. provide variability by question-
naires. They provide guidance to derive valid configura-
tions, while our aim is to guarantee that for each possible

and valid feature configuration there is a corresponding
valid process model that satisfies the well-formedness con-
straints.

Metzger et al [15] introduce one more approach for rea-
soning and configuring variants of variant-rich software.
In their approach they distinguish a product line variabil-
ity and software variability. Product line variability, cap-
tured with the OVM variability modeling language [8, 33]
is used to represent members of a product line, i.e., prod-
uct planned by the management. Therefore, OVM repre-
sents variability within late requirements and design mod-
els. Software variability, in Metzger et al.’s approach, cap-
tures variability within systems that can be built from
the existing platform. Our approach uses business pro-
cess models to model service oriented systems, and there-
fore, corresponds to what Metzger et al. consider software
variability.

More similar to our objective is the approach for pro-
cess configuration from van der Aalst et al. [5, 6]. Their
framework ensures correctness-preserving configuration of
(reference) process models. In contrast to our work, they
capture the variability directly in the workflow net by vari-
ation points of transitions. Accordingly, a configuration is
built by assigning a value to the transitions, while our ap-
proach uses feature selections.

Reinhartz-Berger et al. [34, 35] use a reference mod-
eling approach, which is based on the proposed reference
modeling language of Rosemann et al. [4]. Their approach
supports the specification of guidelines and constraints
for process model configuration. The guidelines and con-
straints are represented within the reference model, which
refers to the process model template in our case. Like in
the previously mentioned approaches, the configuration of
process models for a given reference model requires expert
knowledge in business process modeling.

Slightly related to our work is the validation approach
for flexible workflows [36], in which a model template of-
fers alternatives and constraints impose certain (runtime)
restrictions on these alternatives.

Weidlich et al. [17, 21] derive behavior profiles to de-
scribe the essential behavior in terms of activity relations
like exclusivity, interleaving and ordering of activities. A
set algebra for behavior profiles is presented in [37]. The
purpose is to manage several process variants in terms of
set-theoretic relationships. Weber et al. [38] extend pro-
cess models by semantic annotations and use them for the
validation of process behavior correctness that captures
control-flow interaction and behavior of activities. In con-
trast to our work, their focus is on behavioral constraints,
while we consider structural well-formedness constraints.
Moreover, our particular emphasis is on the feature-oriented
process family representation.

A different way of variability management is proposed
in terms of specified change operations, as described by
Hallerbach et al. [39] and Reichert et al. [40]. Likewise,
Weber et al. [41, 42] introduced several change patterns
to increase process management flexibility, but ensure a

17

certain behavior preservation.
In the context of SPLs several approaches have been

introduced, in order to ensure the well-formedness of solu-
tion space models. Czarnecki et al. [43] specify constraints
on solution space model configurations using OCL con-
straints. Problem space models, solution space models
with OCL constraints, and mappings between them are
transformed to Binary-Decision Diagrams.

Thaker et al. [44] introduce an approach for the verifi-
cation of type safety, i.e., the absence of references to un-
defined classes, methods, and variables, in solution space
models w.r.t. all possible problem space configurations.
They specify the models and their relations as proposi-
tional formulas and use SAT solvers to detect inconsisten-
cies. Janota et al. [45] and van der Storm [46] introduce
approaches to validating the correctness of mappings be-
tween feature and component models. They use proposi-
tional logics too.

Shobbens et al. [47] provide a generic semantics of fea-
ture diagrams that should serve as a basis for implement-
ing reasoning procedure. In this paper, due to reuse of the
solution that satisfies our requirements, we reuse the DL
representation of feature diagrams introduced by Wang et
al. [23]. Our representation is dedicated for the compari-
son of relationships between features and activities. Thus,
we cover all relationships of a mapped feature by a single
complex concept expression.

In addition to the more detailed coverage of all of its
aspects, this paper extends our original approach [48] with
advanced branching patterns, since these patterns frequently
appear in contemporary business process models. Further-
more, a deeper investigation in the tractability evaluation
and related work has been conducted.

10. Conclusion

As shown in the related work section, our contribution
is primarily related to the modeling and validation of fam-
ilies of business processes. While basic ideas of business
process families were previously introduced and even cov-
ered in our own work [22], there have been very limited
(if any) attempts to propose a validation approach of such
families.

Our proposal validates business process models with
respect to their control flow relations; mappings to feature
models; and dependencies in the feature models. Hence,
unlike other approaches on validation of (model-driven)
software product lines, our approach also considers the
very nature of business process models through the set
of business process practices encoded in control flow re-
lations. Even though, in this paper, we used BPMN for
defining the solution space of business process families, our
approach is easily generalizable to other types of business
process modeling languages. This can be deduced from
control flow and branching patterns used in this paper and
the control flow support analyzes presented in the relevant
literature [20].

We evaluated our work with the largest publicly avail-
able case study, for which we were able to find both types
of models. Furthermore, we used a further trial case that
has been represented in both feature and business pro-
cess models. While these case studies have a realistic size,
we would like to have a benchmarking framework, which
will allow for simulating larger models for business pro-
cess families. This is similar to what has been already
proposed for feature models [49], but now to be enriched
for the generation of business process model templates of
different characteristics. We plan to extend our validation
formalism towards behavioral constraints in the process
model template.

References

[1] M. Weske, Business Process Management: Concepts, Lan-
guages, Architectures, Springer, 2007.

[2] J. Mendling, Three Challenges for Process Model Reuse, in:
Business Process Management Workshops (2), 2011, pp. 285–
288.

[3] A. Hallerbach, T. Bauer, M. Reichert, Capturing Variability
in Business Process Models: the Provop Approach, Journal of
Software Maintenance 22 (6-7) (2010) 519–546.

[4] M. Rosemann, W. M. P. van der Aalst, A Configurable Refer-
ence Modelling Language, Inf. Syst. 32 (1) (2007) 1–23.

[5] W. M. P. van der Aalst, M. Dumas, F. Gottschalk, A. H. M. ter
Hofstede, M. L. Rosa, J. Mendling, Preserving Correctness dur-
ing Business Process Model Configuration, Formal Asp. Com-
put. 22 (3-4) (2010) 459–482.

[6] W. M. P. van der Aalst, N. Lohmann, M. L. Rosa, J. Xu, Cor-
rectness Ensuring Process Configuration: An Approach Based
on Partner Synthesis, in: Business Process Management, 8th
Int. Conference, BPM, Vol. 6336 of LNCS, Springer, 2010, pp.
95–111.

[7] M. La Rosa, W. M. P. van der Aalst, M. Dumas, A. H. M. ter
Hofstede, Questionnaire-based Variability Modeling for System
Configuration, SoSyM 8 (2) (2009) 251–274.

[8] K. Pohl, G. Böckle, F. van der Linden, Software Product Line
Engineering - Foundations, Principles and Techniques, Springer,
2005.

[9] K. Czarnecki, M. Antkiewicz, Mapping Features to Models:
A Template Approach Based on Superimposed Variants, in:
GPCE’05, 2005, pp. 422–437.

[10] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, A. Bar-
ros, Workflow Patterns, in: Distributed and Parallel Databases,
2003.

[11] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-
Schneider, The Description Logic Handbook, Cambridge Uni-
versity Press, 2007.

[12] M. Dumas, W. van der Aalst, A. H. M. ter Hofstede, Process-
Aware Information Systems: Bridging People and Software
through Process Technology, Wiley-Interscience, 2005.

[13] K. Kang, J. Lee, P. Donohoe, Feature-Oriented Product Line
Engineering, IEEE software (2002) 58–65.

[14] M. Antkiewicz, K. Czarnecki, FeaturePlugin: Feature Modeling
plug-in for Eclipse, in: Proceedings of the 2004 OOPSLA work-
shop on eclipse technology eXchange, eclipse ’04, ACM, 2004,
pp. 67–72.

[15] A. Metzger, P. Heymans, K. Pohl, P.-Y. Schobbens, G. Saval,
Disambiguating the Documentation of Variability in Software
Product Lines: A Separation of Concerns, Formalization and
Automated Analysis, in: 15th IEEE Int. Requirements Engi-
neering Conference, RE, IEEE, 2007, pp. 243–253.

[16] OMG, Business Process Model and Notation (BPMN),
http://www.omg.org/spec/BPMN/2.0, 2009.

[17] M. Weidlich, A. Polyvyanyy, J. Mendling, M. Weske, Efficient
Computation of Causal Behavioural Profiles Using Structural

18

Decomposition, in: Petri Nets, Vol. 6128 of LNCS, Springer,
2010, pp. 63–83.

[18] A. Polyvyanyy, L. Garćıa-Bañuelos, M. Dumas, Structuring
Acyclic Process Models, in: BPM, Vol. 6336 of LNCS, Springer,
2010, pp. 276–293.

[19] N. Russel, A. ter Hofstede, W. van der Aalst, N. Mulyar, Work-
flow Control-Flow Patterns: A Revised View, Tech. rep., BPM
Center Report BPM-06-22, BPMcenter.org (2006).

[20] P. Wohed, W. van der Aalst, M. Dumas, A. ter Hofstede,
N. Russell, On the Suitability of BPMN for Business Process
Modelling, in: Proceedings of the 4th International Conference
on Business Process Management, 2006.

[21] M. Weidlich, J. Mendling, M. Weske, Efficient Consis-
tency Measurement Based on Behavioural Profiles of Pro-
cess Models, IEEE Transactions on Software Engineering 99.
doi:http://doi.ieeecomputersociety.org/10.1109/TSE.2010.96.

[22] B. Mohabbati, M. Hatala, D. Gašević, M. Asadi, M. Bošković,
Development and Configuration of Service-Oriented Systems
Families, in: Proceedings of the 26th ACM Symposium on Ap-
plied Computing, 2011.

[23] H. Wang, Y. Li, J. Sun, H. Zhang, J. Pan, Verifying Feature
Models using OWL, J of Web Semantics 5 (2) (2007) 117–129.

[24] F. Heidenreich, J. Kopcsek, C. Wende, FeatureMapper: Map-
ping Features to Models, in: ICSE’08 Companion, ACM, 2008,
pp. 943–944.

[25] Y. Ren, G. Gröner, J. Lemcke, T. Rahmani, A. Friesen, Y. Zhao,
J. Z. Pan, S. Staab, Validating Process Refinement with On-
tologies, in: Description Logics, Vol. 477 of CEUR Workshop
Proceedings, CEUR-WS.org, 2009.

[26] S. Q. Lau, Domain Analysis of E-Commerce Systems Using
Feature-Based Model Templates, Master’s thesis, University of
Waterloo, Waterloo (2006).

[27] E. Marcos, Software Engineering Research versus Software De-
velopment, SIGSOFT Software Engineering Notes 30 (4) (2005)
1–7.

[28] M. La Rosa, M. Dumas, A. H. ter Hofstede, J. Mendling, Config-
urable Multi-perspective Business Process Models, Information
Systems 36 (2) (2011) 313 – 340.

[29] A. Schnieders, F. Puhlmann, Variability Mechanisms in E-
Business Process Families, in: BIS 2006: 9th Int Conf. on Busi-
ness Information Systems, 2006, pp. 583–601.

[30] N. Boffoli, M. Cimitile, F. M. Maggi, Managing Business Pro-
cess Flexibility and Reuse through Business Process Lines, in:
ICSOFT (2), Proc. of the 4th Int. Conf. on Software and Data
Techn., 2009, pp. 61–68.

[31] M. La Rosa, J. Lux, S. Seidel, M. Dumas, A. H. M. ter Hofst-
ede, Questionnaire-Driven Configuration of Reference Process
Models, in: Advanced Information Systems Engineering, 19th
Int. Conference, CAiSE, Vol. 4495 of LNCS, Springer, 2007, pp.
424–438.

[32] M. La Rosa, F. Gottschalk, M. Dumas, W. van der Aalst, Link-
ing Domain Models and Process Models for Reference Model
Configuration, in: Business Process Management Workshops,
Vol. 4928 of LNCS, Springer, 2008, pp. 417–430.

[33] S. Buhne, K. Lauenroth, K. Pohl, Modelling Requirements Vari-
ability across Product Lines, in: Proceedings of the 13th IEEE
International Conference on Requirements Engineering, IEEE
Computer Society, 2005, pp. 41–52. doi:10.1109/RE.2005.45.

[34] I. Reinhartz-Berger, P. Soffer, A. Sturm, Extending the Adapt-
ability of Reference Models, IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans 40 (5)
(2010) 1045–1056.

[35] I. Reinhartz-Berger, P. Soffer, A. Sturm, Organisational refer-
ence models: supporting an adequate design of local business
processes, International Journal of Business Process Integration
and Management 4 (2) (2009) 134–149.

[36] S. Sadiq, M. Orlowska, W. Sadiq, Specification and Validation
of Process Constraints for Flexible Workflows, Information Sys-
tems 30 (5) (2005) 349–378.

[37] M. Weidlich, J. Mendling, M. Weske, A Foundational Approach
for Managing Process Variability, in: Advanced Information

Systems Engineering - 23rd Int. Conference, CAiSE, Vol. 6741
of LNCS, Springer, 2011, pp. 267–282.

[38] I. Weber, J. Hoffmann, J. Mendling, Beyond Soundness: On the
Verification of Semantic Business Process Models, Distributed
and Parallel Databases 27 (3) (2010) 271–343.

[39] A. Hallerbach, T. Bauer, M. Reichert, Capturing Variability
in Business Process Models: the Provop Approach, Journal of
Software Maintenance 22 (6-7) (2010) 519–546.

[40] M. Reichert, S. Rinderle, U. Kreher, P. Dadam, Adaptive Pro-
cess Management with ADEPT2, in: 21st Int. Conference on
Data Engineering, ICDE, IEEE Computer Society, 2005, pp.
1113–1114.

[41] B. Weber, S. Rinderle, M. Reichert, Change Patterns and
Change Support Features in Process-Aware Information Sys-
tems, in: Advanced Information Systems Engineering, 19th Int.
Conference, CAiSE, Vol. 4495 of LNCS, Springer, 2007, pp.
574–588.

[42] B. Weber, M. Reichert, S. Rinderle-Ma, Change Patterns and
Change Support Features - Enhancing Flexibility in Process-
Aware Information Systems, Data Knowl. Eng. 66 (3) (2008)
438–466.

[43] K. Czarnecki, K. Pietroszek, Verifying Feature-Based Model
Templates Against Well-Formedness OCL Constraints, in:
GPCE’06, ACM, 2006, pp. 211–220.

[44] S. Thaker, D. Batory, D. Kitchin, W. Cook, Safe Composition
of Product Lines, in: GPCE’07, ACM, 2007, pp. 95–104.

[45] M. Janota, G. Botterweck, Formal Approach to Integrating Fea-
ture and Architecture Models, in: FASE, Vol. 4961 of LNCS,
2008, pp. 31–45.

[46] T. Van Der Storm, Generic Feature-based Software Composi-
tion, in: 6th Int. Conference on Software Composition, Vol.
4829 of LNCS, 2007, pp. 66–80.

[47] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, Y. Bontemps,
Generic Semantics of Feature Diagrams, Computer Networks
51 (2) (2007) 456–479.

[48] G. Gröner, C. Wende, M. Bošković, F. S. Parreiras, T. Walter,
F. Heidenreich, D. Gašević, S. Staab, Validation of Families
of Business Processes, in: 23rd Int. Conference on Advanced
Information Systems Engineering (CAiSE), Vol. 6741 of LNCS,
Springer, 2011, pp. 551–565.

[49] J. White, D. Schmidt, D. Benavides, P.Trinidad, A. Ruiz-
Cortés, Automated Diagnosis of Product-Line Configuration
Errors in Feature Models, in: SPLC 2008, IEEE Computer So-
ciety, 2008, pp. 225–234.

19

