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Abstract

Anisotropic generalization of Randall and Sundrum brane-world model is considered. A new class of exact solutions for
brane and bulk geometry is found; it is related to anisotropic Kasner solution. In view of this, the old question of isotropy of
initial conditions in cosmology rises once again in the brane-world context. 2001 Elsevier Science B.V. All rights reserved.

PACS: 04.50.+h; 98.80.Cq

1. Introduction

String theory suggests that the spacetime we live
in might be fundamentally higher-dimensional [1,2].
Some of these extra dimensions might be compactified
to account for apparently four-dimensional spacetime
we observe experimentally. Recently, Randall and
Sundrum proposed a new model with relatively large
extra dimension [3,4] as a way to solve the hierarchy
problem in high energy physics. In this model, the
matter fields and interactions with exception of gravity
are localized on 3-branes that live in a 5-dimensional
bulk spacetime, which is taken to be anti-de-Sitter
(AdS).

The Randall and Sundrum model has gained con-
siderable popularity, in both high energy physics and
cosmology communities. A number of cosmological
scenarios based on the brane-world concept was ex-
plored [5–9], including some models with inflation on
the brane [10–19] and different embedding geometries
[20,21].
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In the present Letter we explore possible anisotropic
brane-world cosmologies. We obtain a new class of
exact solutions to the 5-dimensional vacuum Einstein–
AdS equations in the bulk, which is homogeneous
but anisotropic, and is related to Kasner solution. We
then consider brane embedding in this anisotropic
bulk spacetime, and derive brane equations of motion.
These are solved by a static brane configuration
with the brane tension tuned to the Randall–Sundrum
prescription. The geometry on the 3-brane is given by
4-dimensional Kasner solution.

We also discuss implications of existence of these
anisotropic solutions to the brane-world cosmology,
and ponder possible ways to solve the initial condi-
tions problem [22,23] in the brane-world context.

2. Kasner–AdS spacetime

In the usual brane world scenario [3,4], the 3-branes
live in a 5-dimensional AdS bulk spacetime, which is
described by a metric

(1)ds2 = −f (r) dt2 + dr2

f (r)
+ r2dσ 2
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wheredσ 2
3 is a 3-dimensional metric of a unit sphere,

plane or hyperboloid forK = +1,0,−1 respectively,
and

(2)f (r)=K + r2

�2
,

with � giving the curvature scale of the AdS spacetime.
This bulk spacetime is a solution of vacuum Einstein–
AdS equations

(3)Rµν − 1

2
Rgµν = −Λgµν,

with negative cosmological constant

(4)Λ= − 6

�2 .

We now generalize the spacetime (1) to include spa-
tial anisotropy. For simplicity, we will only consider
spatially flat case (K = 0), for which the spatial part
of AdS metric was

(5)dσ 2
3 = dx2 + dy2 + dz2.

In order to introduce anisotropy to the bulk spacetime,
yet keep the spatial slices homogeneous, we allow the
coefficients of the spatial metric to vary with time

(6)dσ 2
3 = e2a(t) dx2 + e2b(t) dy2 + e2c(t) dz2.

The vacuum Einstein–AdS equations (3) then give the
evolution of anisotropy scalesa, b andc, which obey
three dynamical equations of motion, namely

(7)ä + ȧ2 − ḃċ= 0

and permutations thereof with respect to interchanges
of {a, b, c}, and a constraint

(8)ȧḃ+ ḃċ+ ċȧ = 0,

where dot denotes derivatives with respect to timet .
The general solution of these equations, modulos the
translational and scaling freedom in the coordinate
choice, is

(9)a = α ln t, b= β ln t, c= γ ln t,

where parametersα, β andγ satisfy either

(10)α = β = γ = 0,

in which case the original flat spatial metric (5) is
recovered, or

(11)α2 + β2 + γ 2 = α + β + γ = 1.

The spatial geometry in this case is homogeneous but
anisotropic, and is given by the metric

(12)dσ 2
3 = t2α dx2 + t2β dy2 + t2γ dz2.

Thus we have obtained a new solution (12), (11),
(1) of five-dimensional vacuum Einstein–AdS equa-
tions (3). It is related to the well-known Kasner
solution [24] of vacuum Einstein equations in four
dimensions (indeed, the three dimensional spatial line
elements are identical), so we will call it a Kasner–
AdS spacetime. Its properties with respect to spatial
anisotropy are similar to those of Kasner spacetime.
However, its global structure is different in that it not
only has a cosmological singularity att = 0, but also
a timelike singularity atr = 0, where the curvature
diverges

(13)Cαβγ δC
αβγ δ = −16�4

r4t4
αβγ.

This does not pose a significant problem for the brane-
world scenario, however, as the central part of the
spacetime is avoided in orbifold construction with two
branes, like the one considered in [3].

It is worth noting that similar generalization to 5-
dimensional AdS theory is possible for any Ricci-
flat 4-dimensional metric, Schwarzschild black hole
in particular [25]. It might be interesting to look
for spatially closed anisotropic solutions, as they are
likely to be of Mixmaster type and chaotic. However,
this topic is beyond the scope of this Letter. For several
other interesting generalizations of Kasner solution,
see [26–28].

3. Brane in anisotropic bulk

We now consider what will happen if the 3-brane is
embedded in the anisotropic Kasner–AdS spacetime
derived above, instead of the usual AdS spacetime.
Following [9], we describe the 3-brane embedding by
a hypersurfaceΣ defined byr =R(t). Induced brane-
world metric is then

ds24 = −
(
f − R2

,t

f

)
dt2 +R2dσ 2

3

(14)= −dτ2 +A2dσ 2
3 ,
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where we introduced cosmological time

dτ =
(
f − R2

,t

f

)1/2

dt,

(15)dt = 1

f

(
f +A2

,τ

)1/2
dτ

and cosmological scale factor

(16)A(τ)=R(t (τ )).
The coordinates on the brane are{τ, x, y, z}, and the
corresponding holonomic basis vectors are

(17)e
µ

(τ) =
(

1

f

(
f + Ȧ2)1/2

, Ȧ,0,0,0

)

andeµ(i) = δ
µ
i for index i spanning{x, y, z}. Here and

later the dot denotes the derivative with respect to
cosmological timeτ . The outward pointing unit vector
normal to the brane is

(18)nµ =
(
Ȧ

f
,
(
f + Ȧ2)1/2

,0,0,0

)
.

By direct calculation, the extrinsic curvature tensor for
the brane embedded in the spacetime (1), (6), defined
as

(19)Kab = eµ(a)eν(b)nµ;ν,

has the following nonvanishing components:

(20)Kττ = −1

2

Ä+ f ′√
f + Ȧ2

,

(21)Kxx =Ae2a
(
AȦ

f

∂a

∂t
+

√
f + Ȧ2

)
,

as well asKyy andKzz, which are the same as the
expression forKxx above, except anisotropy scalea is
replaced byb andc correspondingly.

Assuming Z2 symmetry common to the brane-
world models [1–9], the jump in extrinsic curvature
across the brane is

(22)[Kab] = ±2Kab,

where sign depends on which side of the brane the bulk
is (plus if bulk is outside, i.e., towards the largerr, and
minus if bulk is inside, i.e., towards smallerr).

The jump in extrinsic curvature is caused by the
matter distribution on the brane; more precisely, Is-
rael’s junction condition [29] links it with the surface

stress-energy tensor

(23)[Kab] = −κ2
D

(
Sab − 1

D − 2
Sgab

)
,

whereD is the dimensionality of the spacetime (D = 5
in our case), andκ2

D isD-dimensional Newton’s con-
stant. Together with expressions for extrinsic curva-
ture (20), (21), junction condition (23) gives equations
of motion of the brane, provided the brane matter con-
tent is known.

Assuming the matter on the brane is composed of
vacuum energy of densityλ and pressureless matter of
densityρ, the stress-energy tensor and its trace are

Sab = diag(−ρ − λ,−λ,−λ,−λ),
(24)S = −ρ − 4λ.

The brane equations of motion are then

(25)
Ä+ f ′√
f + Ȧ2

= ±κ
2
5

3
(2ρ − λ),

(26)
Ȧ

f

∂a

∂t
+

√
f

A2
+ Ȧ2

A2
= ∓κ

2
5

6
(ρ + λ),

plus two equations coming fromyy and zz compo-
nents of[Kab], which are identical to the last equa-
tion, except anisotropy scalea is replaced byb andc
correspondingly. Since for anisotropic bulka, b and
c depend on time differently (as given by Eq. (9)),
the only way to satisfy all equations simultaneously
without introducing anisotropic matter content on the
brane, is to have the anisotropic term in (26) vanish.
This is achieved whenA = const, i.e., when brane is
not moving. In that case, the junction conditions (25),
(26) simplify greatly and become

(27)
1

�
= ±κ

2
5

6
(2ρ − λ)= ∓κ

2
5

6
(ρ + λ).

They are satisfied (and thus anisotropic brane-world
construction is possible) when the brane parameters
are

(28)λ= ∓ 6

κ2
5�
, ρ = 0,

which is precisely the tuning condition of Randall and
Sundrum [3,4].
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4. Discussion

We have shown that the geometrical construction
of the Randall and Sundrum’s brane world [3] can
be carried out without assumption of spatial isotropy.
This results in a wider class of solutions of Einstein–
AdS equations in five dimensions that are anisotropic
in the bulk and have Kasner geometry on the brane.
Written in terms of fifth coordinatew = −� ln(r/�)
that Randall and Sundrum use, the spacetime metric is

ds2 = e−2w/�(−dt2 + t2α dx2

(29)+ t2β dy2 + t2γ dz2) + dw2.

In view of existence of such solutions, the old prob-
lem of initial conditions in cosmology [22,23] rises
once again, now in the brane-world context. The stan-
dard AdS brane-world solution is highly symmetrical
and essentially forms a set of measure zero among
the configuration space of possible solutions. Why
should we be living in such a special spacetime? This
requires justification: for example, a mechanism by
which homogeneous and isotropic AdS brane-world
can be reached from wide range of initial conditions.

In the accepted 4-dimensional cosmology, the an-
swer to the problem of initial conditions was provided
by inflation. Inflation on the brane has been consid-
ered in the literature (see, for example, [10–19]), and
even the tendency of the brane embedded into AdS
bulk to dissipate anisotropy was reported [20,21], but
it is not perfectly clear what would happen ifthe bulk
itself was anisotropic (or non-homogeneous, for that
matter). Would inflation on the brane be enough to
isotropize both the braneand the bulk (which has
much larger volume), or would some sort of “bulk in-
flation” be needed?

These questions require further study.
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