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Abstract

We consider the evolution of FRW cosmological models and linear perturbations of tachyon matter rolling towards a
minimum of its potential. The tachyon coupled to gravity is described by an effective 4d field theory of string theory tachyon.
In the model where a tachyon potentialV (T ) has a quadratic minimum at finite value of the tachyon fieldT0 andV (T0)= 0,
the tachyon condensate oscillates around its minimum with a decreasing amplitude. It is shown that its effective equation of
state isp = −ε/3. However, linear inhomogeneous tachyon fluctuations coupled to the oscillating background condensate
are exponentially unstable due to the effect of parametric resonance. In another interesting model, where tachyon potential
exponentially approaches zero at infinity ofT , rolling tachyon condensate in an expanding Universe behaves as pressureless
fluid. Its linear fluctuations coupled with small metric perturbations evolve similar to these in a pressureless fluid. However, this
linear stage changes to a strongly non-linear one very early, so that the usual quasi-linear stage observed at sufficiently large
scales in the present Universe may not be realized in the absence of the usual particle-like cold dark matter.
 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

There are many faces of superstring/brane cosmol-
ogy which come from different corners of M/String
theories. In particular, people search for potential can-
didates to explain early Universe inflation, present day
dark energy and dark matter in the Universe. One of
the string theory constructions, tachyon on D-branes,
has been recently proposed for cosmological applica-
tions by Sen [1]. A relatively simple formulation of the
unstable D-brane tachyon dynamics in terms of effec-
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tive field theory stimulates one to investigate its role in
cosmology [2].

The rolling tachyon in the string theory may be
described in terms of an effective field theory for the
tachyon condensateT which in the flat space–time has
a Lagrangian density

(1)L= −V (T )√1+ ∂µT ∂µT .

The tachyon potentialV (T ) has a positive maximum
at T = 0 and a minimum atT0 with V (T0) = 0. We
consider two models: with a finite value ofT0 and
with a minimum at infinity, as illustrated in Fig. 1. In
both cases one encounters interesting possibilities for
cosmological applications.
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(a) (b)

Fig. 1. Tachyon matter potentials with a minimum at a finite (a) and the infinite (b) value of the field. The potentials near the minimum are taken
to be: (a)V (T )= 1

2m
2(T − T0)

2, (b) V (T )= V0e
−T/T0 .

In the case of finiteT0, we consider quadratic ex-
pansion around the minimum of the potentialV (T )≈
1
2m

2(T − T0)
2. As we will show, in this case the

tachyon matter has negative pressure and may be con-
sidered a candidate for quintessence.

In the case whenT0 → ∞, we use exponential as-
ymptotic of the potentialV (T ) = V0e

−T/T0 derived
from the string theory calculations [3–5] (the exact
form of the potential from Ref. [3,4] isV = (1 +
T
T0
)e−T/T0; our qualitative results for late time asymp-

totics of T (t) do not depend on the pre-exponential
factor). Dimensional parameters of the potential are
related to the fundamental length scale,T0 ∼ ls , and
V0 is the brane tension. As it was demonstrated by
Sen [5], the tachyon matter is pressureless for the po-
tential with the ground state at infinity. In this case
tachyon matter may be considered a cold dark matter
candidate [1].

It is noteworthy that models of type (1) have al-
ready been studied in cosmology on phenomenologi-
cal grounds. For certain choices of potentialsV and
non-minimal kinetic terms one can get kinematically
driven inflation, “k-inflation” [6]. In particular, a toy
model with the potentialV (T )∼ 1/T 2 with a ground
state at infinity may give rise to the power law in-
flation of the Universe [6–8]. However, it remains to
be seen how this potential can be motivated by the
string theory of tachyon. The model withV ≡ const
is reduced to the so-called “Chaplygin gas” where the
matter equation of state isp = −const/ε. Such mat-
ter was suggested as a candidate for the present dark
energy [9,10].

In this Letter, we investigate cosmology with
tachyon matter with the string theory motivated po-
tentials of Fig. 1. In Section 2, we write down
equations for the tachyon matter coupled to grav-
ity. We focus on self-consistent formulation of the
isotropic Friedmann–Robertson–Walker (FRW) cos-
mology supported by the tachyon matter. It is de-
scribed by coupled equations for the time-dependent
background tachyon fieldT (t) and the scale factor of
the Universea(t).

One of the lessons of the scalar field theory in
cosmology is the possibility of the fast growth of
inhomogeneous scalar field fluctuations, as it was
found in different situations. Instability of scalar field
fluctuations are typical for preheating after inflation
due to the parametric resonance [11], or tachyonic
preheating after hybrid inflation [12] (which so far has
only remote relation with the string theory tachyon).
Fluctuations may be unstable in axion cosmology due
to parametric resonance [13]. Therefore, we address
the problem of stability of linear fluctuations of the
rolling tachyon matter.

Consistent investigation of tachyon cosmology, in
principle, should be started with the tachyon rolling
from the top of its potential which has negative cur-
vature. In this case the setting of the problem is sim-
ilar to what we met in tachyonic preheating after
hybrid inflation [12]. In these cases we expect fast
decay of the scalar field into long-wavelength inho-
mogeneities. Here we assume that the somehow ho-
mogeneous tachyon rolls towards the minimum of its
potential as the Universe expands, and consider
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tachyon fluctuations at the latest stages of its evolu-
tion.

In Section 3, we develop a formalism for treating
small fluctuations of the tachyon fieldδT (t, 	x). It is
possible to extend the theory of tachyon matter fluc-
tuations by including scalar metric fluctuations. This
allows us to address the issue of gravitational instabil-
ity in tachyon cosmology. Applying this analysis for
specific tachyon potentials, we will see that instability
of tachyon fluctuations is essential for the whole story
of tachyon cosmology.

In Section 4, we consider background cosmological
solutions for the tachyon potential with the ground
state at finite valueT0. We find that tachyon field is
oscillating around the minimum of its potential, while
its equation of state (averaged over oscillations) is
p = −1

3ε. Then in Section 5, we check the stability of
tachyon fluctuations around this background solutions,
and find that they are exponentially unstable due to the
parametric resonance.

In Section 6, we repeat the analysis for the model
where tachyon potential is exponentialV (T )∝ e−T/T0

and its ground state is atT → ∞. In this case, back-
ground cosmological solution corresponds to the pres-
sureless tachyon with energy densityε ∝ 1/a3. In Sec-
tion 7, we consider small inhomogeneous tachyon and
metric fluctuations, and find gravitational instability of
fluctuations around the background solution. Specifi-
cally, we find that the linear approximation for fluctu-
ations becomes insufficient very early for the pressure-
less rolling tachyon. We argue that the rolling tachyon
dark matter scenario may have difficulties in explain-
ing gravitational clustering and large scale velocity
flows in the Universe.

2. Cosmology with rolling tachyon matter

A rolling tachyon is associated with unstable
D-branes, and self-consistent inclusion of gravity may
require higher-dimensional Einstein equations with
branes. Still, in the low energy limit, one expects that
the brane gravity is reduced to the four-dimensional
Einstein theory [14].

In this section, we consider tachyon matter cou-
pled with Einstein gravity in four dimensions. Tachyon
matter is described by the phenomenological La-
grangian density (1), where derivatives are covariantly

generalized with respect to the metricgµν , ∂µ → ∇µ.
We use the metric with signature(−,+,+,+). The
model is given by the action

S =
∫
d4x

√−g

(2)×
(

R

16πG
− V (T )

√
1+ ∇µT∇µT

)
.

The Einstein equations which follow from (2) are

Rµν − 1

2
gµνR

(3)

= 8πG

(
V√

1+ ∇αT∇αT
∇µT∇νT

− gµνV
√

1+ ∇αT∇αT

)
,

and the field equation for the tachyon is

∇µ∇µT − ∇µ∇νT
1+ ∇αT∇αT

∇µT∇νT − V,T

V

(4)= 0.

Let us apply these equations to a spatially flat (K = 0)
FRW cosmological model

(5)ds2 = −dt2 + a2(t) d 	x 2.

For this geometry, the energy–momentum tensor of
tachyon matter in the right-hand side of Eq. (3) is
reduced to a diagonal formT µν = diag(−ε,p,p,p)
where the energy densityε is positive

(6)ε = V (T )√
1− Ṫ 2

and the pressurep is negative or zero

(7)p = −V (T )
√

1− Ṫ 2.

Equation for the evolution of the scale factor follows
from (3)

(8)
ȧ2

a2 = 8πG

3

V (T )√
1− Ṫ 2

.

Equation for the time-dependent rolling tachyon in an
expanding Universe follows from (4)

(9)
T̈

1− Ṫ 2
+ 3

ȧ

a
Ṫ + V,T

V
= 0.

Note that the tachyon potential enters the field equa-
tion in a combination(lnV ),T .
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In the following sections we consider background
solutions of Eqs. (8) and (9) for two models of the
tachyon potentialsV (T ) from Fig. 1.

3. Fluctuations in rolling tachyon

The issue of stability of a FRW background with
respect to small spatially inhomogeneous fluctuations
is often essential in cosmology. In this section, we
provide a formalism for treating linear inhomoge-
neous scalar fluctuations in tachyon cosmology. Let
us consider small inhomogeneous perturbation of the
tachyon fieldδT (t, 	x) around time-dependent back-
ground solutionT (t) of Eq. (9):

(10)T
(
t, 	x ) = T (t)+ δT

(
t, 	x )

.

As we will see, for one of our examples of tachyon
potentialsV (T ), instability of tachyon fluctuations
grows and becomes non-linear very quickly. There-
fore, first we write down the equation for fluctuations
δT (t, 	x) ignoring expansion of the Universe and ig-
noring coupling of tachyon fluctuations to metric fluc-
tuations.

Linearizing the field equation (4) (without the Hub-
ble friction term) with respect to small fluctuations
δT and performing Fourier decompositionδT (t, 	x)=∫
d3k Tk(t)e

i	k	x of the linear fluctuations, we obtain
evolution equation for the time-dependent Fourier am-
plitudesTk(t)

T̈k

1− Ṫ 2
+ 2Ṫ T̈

(1− Ṫ 2)2
Ṫk + [

k2 + (logV ),T T
]
Tk

(11)= 0.

Next we consider tachyon fluctuations coupled with
metric perturbations in an expanding Universe. Small
scalar metric perturbations around a FRW background
can be written in the longitudinal gauge as

(12)ds2 = −(1+ 2Φ)dt2 + (1− 2Ψ)a2(t) d 	x2.

Now we have to linearize the Einstein equations (3)
and the field equation (4) with respect to small
fluctuationsδT , Φ andΨ . Then it follows thatΦ =
Ψ for tachyon cosmology (as well as in many other
cases, in particular, for minimally coupled scalar field
cosmology).

Fortunately, the useful formalism for cosmological
scalar fluctuations for the class of models which
includes the theory (2) was developed in Ref. [6] (in
connection with “k-inflation”). This is exactly what we
need to pursue the investigation of small cosmological
fluctuations with tachyon matter. Using results of [6],
from (3) and (4) we obtain two coupled equations
for the time-dependent Fourier amplitudesTk(t) and
Φk(t),

(13)

(
Tk

Ṫ

).
=

(
1− 1

4πG

k2

a2

(1− Ṫ 2)3/2

V Ṫ 2

)
Φk,

and

(14)
(aΦk)

.

a
= 4πG

V Ṫ 2

(1− Ṫ 2)1/2

Tk

Ṫ
.

Introducing the Mukhanov variablevk , which is re-
lated to the potentialΦk as

(15)
vk

z
= 5ε+ 3p

3(ε+ p)
Φk + 2

3

ε

ε + p

Φ̇k

H
,

where energy densityε and pressurep are given by
Eqs. (6) and (7),H = ȧ/a, and

(16)z=
√

3aṪ

(1− Ṫ 2)1/2
,

Eqs. (13) and (14) can be reduced to a single second
order equation forvk

(17)v′′
k +

((
1− Ṫ 2)k2 − z′′

z

)
vk = 0,

where prime (′) stands for derivative with respect to
the conformal timedη = dt/a(t). We will use this
equation for analysis of coupled tachyon and metric
fluctuations in an expanding Universe in Section 7.

4. Negative-pressure tachyon matter

In this section, we consider the model with a
potentialV (T ) with its ground state at a finite value
T0, as it is sketched in the left panel of Fig. 1. Let us
assume that tachyon is rolling towards the minimum of
the potentialT0. We will approximate the shape of the
tachyon potential around the minimum by a quadratic
form V (T )≈ 1

2m
2(T − T0)

2. Despite quadratic form
of the potential, tachyon motion aroundT0 is not
harmonic, since lnV but not V is involved in the
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(a) (b)

Fig. 2. (a) Background tachyon oscillations in the model withV (T )= 1
2m

2(T − T0)
2. (b) Background oscillations of the tachyon equation of

state. The horizontal linep/ε = −1/3 is the time-averaged equation of state.

tachyon equation of motion. For the same reason
parameterm drops out of the field equation (9). It
is convenient to use tachyon field in units ofT0 and
time t also in units ofT0. Parameterm, however, is
involved in the energy density of tachyonε ∝ m2/t2.
The choice ofm∼ l−1

s ∼Mp may bring the value ofε
to the required density of dark energy.

Numerical solution of Eqs. (9) and (8) reveals that
the tachyon begins to oscillate around the minimum
of the potential very soon, within a time interval of
severalT0, as shown in the left panel of Fig. 2. The
amplitude of the oscillations is decreasing with time
due to the Hubble friction term in Eq. (9). The en-
velope curve (dashed line) in the left panel of Fig. 2
shows the amplitude decreasing as 1/t . As we will see
below, this time-dependence of the amplitude exactly
corresponds to the (time-averaged) equation of state
p/ε which will be found for the tachyon matter in this
model. Also, note that the period of oscillations is de-
creasing with time. Tachyon oscillations in this model
are not only non-harmonic, but also non-periodic.

The instant value of the ratio of energy density (6)
and pressure (7),p/ε = Ṫ 2 − 1, is oscillating with
time, as shown in the right panel of Fig. 2. Although
the amplitude of oscillationsT is decreasing with
time, the amplitude oḟT is not changing with time as
it is clear from the Fig. 2.

The period of oscillations is very small (∼T0), so
that only the average equation of state is important for

cosmological evolution. To find it, we averageṪ 2 − 1
over several consecutive oscillations. The average
value ofp/ε, shown as the horizontal line at the right
panel of Fig. 2, is independent of time and equal to

(18)

〈
p

ε

〉
= −1

3
.

For this type of an equation of state, an average value
of the energy density is diluted as〈ε〉 ∝ a−2 with
the expansion of the Universe. The amplitude of the
tachyon oscillations is then decreasing as 1/t , which
is compatible with numerical results. From (8) we find
that the averaged scale factor isa(t) ∝ t . Note that
equation of state similar to (18) occurs for a network
of cosmic strings.

The equation of state (18) for the quadratic tachyon
potential can be easily derived analytically. Indeed, as-
suming that tachyon is oscillating much faster than
the Universe expands, we can treat energy densityε

as adiabatic invariant, and writėT 2 = 1 − V 2(T )/ε2,
whereε is constant over several consecutive oscilla-
tions. Then the average value ofṪ 2 for quadratic po-
tential is

〈
Ṫ 2〉 =

∫
Ṫ 2dt∫
dt

(19)=
∮
(1− V 2(T )/ε2)1/2dT∮
(1− V 2(T )/ε2)−1/2dT

= 2

3
.
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So,〈p/ε〉 = 〈Ṫ 2〉−1 = −1/3. If shape of the potential
around the minimum is not quadratic, but a power-
law V ∝ (T − T0)

n, the average equation of state is
〈p/ε〉 = − 1

n+1.
Although tachyon matter in the model has negative

pressure, apparently it is short of explaining the
present acceleration of the Universe. Combination of
cosmological observations of CMB fluctuations, large
scale structure clustering and high red shift supernovae
constrains the equation of state to be lower than
〈p/ε〉 < −0.6 [16] (or even〈p/ε〉 < −0.76 at 95%
c.l. according to [17]).

As we will see in the next section, background
tachyon dynamics in this model is unstable with
respect to small spatially inhomogeneous fluctuations,
and homogeneous tachyon oscillations will decay.
It will be interesting to find what will be the final
configuration of tachyon matter in this model and what
may be its potential application to cosmology.

5. Fluctuations in tachyon matter with negative
pressure

In a realistic cosmological scenario, it is expected
that the tachyon field has small, quantum or classical,
inhomogeneous fluctuations. In this section, we check
the stability of tachyon fluctuations around the back-
ground solution discussed in the previous section. For
the moment, let us ignore the expansion of the Uni-
verse. Then we only have to solve equation (11) to find
behaviour of fluctuations. Although formally some of
the coefficients in Eq. (11) are singular when the back-
ground fieldT (t) crosses zero in the case of quadratic
potential, it is possible to switch to regular variables
and overcome this technical inconvenience. Numeri-
cal solution of the fluctuation equation (for example,
for k = 10 in units ofT0) is shown in Fig. 3.

General theory of linear equations with periodic
coefficients predicts the presence of stability and
instability bands of momentak. For unstable modes,
the amplitude is increasing exponentially asTk(t) ∼
eµkt . For the value ofk in Fig. 3 the amplitude
of fluctuations is increasing with time exponentially
fast, by an order of magnitude in one background
oscillation, sayTk(t) increases by a factor of 1010 in
ten oscillations! The physical reason is amplification
due to the parametric resonance. This can be clearly

Fig. 3. Instability of fluctuationsTk(t) in the model with the
quadratic potential (scales are linear).

seen if one rewrites equation (11) in the form of the
oscillator-like equation, where the effective frequency
is oscillating with time. This effect can be described
by the theory of broad parametric resonance [15].

Since period of oscillation (∼T0) is tiny compared
to the cosmological time, and fluctuations become
significant within several background oscillations, one
can ignore expansion of the Universe in this analysis.
Thus we conclude that, in the model with the quadratic
potential, small tachyon fluctuations are exponentially
unstable and a background tachyon condensate decays
into a strongly inhomogeneous field configuration.

Decay of the background tachyon condensate into
inhomogeneousfluctuations does not necessarily mean
that the Universe becomes inhomogeneous. The
tachyon fluid remains homogeneous as a whole, but
not as a coherent condensate. Therefore, it remains
to be seen, based on the fully non-linear analysis,
what will be equation of state of the non-condensate
tachyon fluid.

6. Pressureless tachyon matter

In this section, we consider tachyon cosmology for
a tachyon potential having its ground state at infinity
and decaying sufficiently fast:

(20)T 2V (T )→ 0, T → ∞,

as sketched in the right panel of Fig. 1 for a particular
example of exponential potential. Background cosmo-
logical solutions of Eqs. (8) and (9) for this case very
quickly (severalT0) enter the regime where tachyon is
rolling very fast andṪ approaches unity. Let us write
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T (t)= t + θ(t), |θ | � t (note thatθ̇ < 0). To the first
order inθ , Eq. (9) reduces to

(21)
θ̈

θ̇
= 6

ȧ

a
+ 2

V ′

V

∣∣∣∣
T=t

which can be easily integrated. We obtain:

θ̇ = −1

2

(
a

a0

)6
V 2

V 2
0

∣∣∣∣
T=t

,

(22)1− Ṫ 2 = −2θ̇ , a0, V0 = const,

ε = V0

(
a0

a

)3

, p = −
(
a

a0

)3
V 2

V0

∣∣∣∣
T=t

,

(23)|p| � ε.

Thus, for a wide class of potentials (20) the tachyon
at late times behaves as a dust-like matter, as was first
discovered by Sen [1,5] in flat space–time. We see that
inclusion of gravity leads to the scaling of the tachyon
energy density with the scale factor:ε ∝ a−3, which is
just the right one for a cold dark matter. This makes
tachyon matter with such potentials a cosmological
dark matter (not dark energy!) candidate. Note that
formulas (22) and (23) apply, in particular, both for
the radiation dominated stage wherea(t)∝ √

t where
tachyon contribution to gravity is subdominant, and
for a(t) ∝ t2/3 where tachyon gravitationally domi-
nates.

In case of the exponentially decaying potentialV =
V0e

−T/T0, Eq. (22) leads to

(24)T (t)= t + T0

4

(
a

a0

)6

e−2t/T0,

and then pressure vanishes with time exponentially
fast. Without expansion of the Universe, the solu-
tion (24) corresponds to that of Sen [18].

7. Cosmological fluctuations for pressureless
tachyon

The crucial property of cosmological dark matter
without pressure is the growth of cosmological fluctu-
ations which form a developed large scale structure.
The large scale structure of the Universe is ranging
from non-linear clustered halos of galaxies and clus-
ters of galaxies, quasi-linear structures at scales of su-
perclusters and voids, and linear fluctuations at very

large scales. It is essential that at quasi-linear and non-
linear stages dark matter is displaced from the homo-
geneous distribution due to flows generated by fluc-
tuations of gravitational potential, and gravitationally
bound halos have high velocity dispersions.

In this section, we investigate clustering properties
of the pressureless tachyon matter. We assume rolling
tachyon matter domination, so that the law of the
Universe expansion isa(t)∝ t2/3.

We begin with the linear analysis of cosmologi-
cal fluctuations, using formalism of Section 3. For a
moment, consider the case without expansion of the
Universe and without coupling to gravitational per-
turbations. Then it follows from Eq. (11) for the ex-
ponential potential that fluctuations are not growing,
Tk = const.

Now let us consider tachyon fluctuations including
expansion of the Universe and coupling to a gravi-
tational potentialΦ. Substituting the background so-
lution (24) for the pressureless tachyon matter into
Eq. (17), one can see that the coefficient in front
of k2 (which plays the role of the sound speed for
the tachyon matter) vanishes exponentially fast. This
means that the growth of linear tachyon fluctuations
is scale independent, similar to that of the standard
cold dark matter scenario. Then the solution of (17) is
vk = z, and the left-hand side of Eq. (15) is constant.
From this we immediately get the time evolution of
fluctuationsΦk andTk

(25)Φk(t)= const, Tk(t)=Φk · t .
Linear metric fluctuations are constant, similar to that
in the cold dark matter scenario. However, the fluc-
tuations in the tachyon field are growing, in con-
trast to the simplified analysis above where we
neglected coupling to the metric fluctuations and ex-
pansion of the Universe. The growth of tachyon fluc-
tuationsTk ∝ t cannot be obtained without these in-
gredients. Thus, tachyon fluctuations are unstable due
to the effects of gravitational instability in an expand-
ing Universe.

However, a linear approximation for the rolling
tachyon/gravity system works only during a very short
time interval (of the order of tens ofT0). Indeed, let
us inspect the energy density of tachyon matter in the
model with the exponential potential not assuming it to
be homogeneous and using the perturbed space–time
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metric (12):

(26)ε = V0e
−T/T0√

1− (1− 2Φ)Ṫ 2 + a−2(∇	xT )2
.

For fluctuations ofδT , we haveδT � Φ(	x)t where
Φ(	x) describes the initial spatial profile of fluctua-
tions. The full tachyon field including fluctuations is

T
(
t, 	x)

(27)= t + (T0/4)(a/a0)
6e−2t/T0 +Φ

(	x)t .
The numerator of the expression (26) vanishes as
e−t/T0, while the denominator evolves as(a/a0)

6 ×
e−2t/T0 + a−2t2(∇	xΦ)2. The linear approximation
works during a very short time interval while(∇	xΦ)2 �
e−2t/T0. When this inequality breaks, linear analysis
becomes insufficient. For cosmological fluctuations
Φ ∼ 10−5, the linear theory forδT is valid during a
time interval of order of 10T0. Recall that for the stan-
dard cold dark matter scenario the linear stage lasts
during a significant fraction of the present age of the
Universe.

8. Summary

We considered cosmological solutions of rolling
tachyon condensateT for two models of tachyon
potentialV (T ). There are different levels at which one
can theoreticize aboutT (t) in an expanding Universe.
Systematic approach suggests for us to begin with a
theory of tachyon field rolling down from the top of its
potential. The curvature of the potential at the origin is
negative, and we expect tachyonic instability of long
wavelength fluctuations, similar to spinodal instability
in usual field theory [12]. Thus there is an issue of
initial conditions for rolling tachyon cosmology.

Suppose (by choice of initial conditions whereT
is displaced from the origin) tachyon evolves towards
its ground state as a homogeneous condensate. We
considered the model with minimum at finiteT0 and
with quadratic approximation ofV (T ) around the
minimum. Then the background tachyon oscillates
around the minimum with frequency of order of
1/T0, and its (averaged over several oscillations)
equation of state isp/ε = −1/3. However, we found
from perturbation theory that tachyon fluctuations

are exponentially unstable due to the tachyon self-
interaction with background oscillations. It means
that in this model homogeneous tachyon condensate
decays. To answer the question what will be the
resulting tachyon configuration, one has to go to
the next level beyond the perturbation theory and to
consider fully non-linear problem of evolution of non-
condensate tachyon fluid.

We also consider homogeneous tachyon rolling to-
wards its ground state in the model withV (T ) ∝
e−T/T0, including expansion of the Universe. In this
model, the background tachyon condensate has van-
ishing pressure and finite energy density diluting as
ε ∝ 1/a3. Considering linear perturbations of tachyon
field coupled with small metric perturbations, we
found gravitational instability of tachyon field,δT ∝ t .
However, linear theory very soon (tens ofT0) becomes
irrelevant. Clearly, much more work including a full
non-linear analysis is needed to make more certain
conclusions about viability of tachyon cosmology.
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