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Naked singularity in the global structure of critical collapse spacetimes

Andrei V. Frolov* and Ue-Li Peh
Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario, Canada, M5S 3H8
(Received 18 July 2003; published 29 December 2003

We examine the global structure of scalar field critical collapse spacetimes using a characteristic double-null
code. It can integrate past the horizon without any coordinate problems, due to the careful choice of constraint
equations used in the evolution. The limiting sequence of sub- and supercritical spacetimes presents an appar-
ent paradox in the expected Penrose diagrams, which we address in this paper. We argue that the limiting
spacetime converges pointwise to a unique limit forat0, but not uniformly. The =0 line is different in
the two limits. We interpret that the two different Penrose diagrams differ by a discontinuous gauge transfor-
mation. We conclude that the limiting spacetime possesses a singular event, with a future removable naked

singularity.
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[. INTRODUCTION paradox in the search for a global critical spacetime struc-

ture. In Sec. lll, we derive the scalar field equations of mo-

The critical collapse of scalar fields gives rise to a newtion with spherical symmetry. We proceed to solve these
class of thought experiments in general relatiyhy?]. It has  equations numerically in Sec. IV. The numerical results are
been suggested that a weak singularity may be visible to Bresented in Sec. V, where we explain our proposed solution
distant observer during the collapse of a scalar fl@d].  to the apparent paradox.

With the presence of such potentially problematic phenom-

ena, one can ask to what degree cosmic censorship is vio- Il. THE APPARENT PARADOX

lated. The spirit of the cosmic censorship conjecture is that

the evolution of spacetimes as seen by distant observers in Consider a collapsing scalar field with amplitude charac-
asymptotically flat regions is determined uniquely by theterized by a parametgr. For small amplitudep<p, , the
Einstein equations. If visible infinite curvature arises in thefield collapses and reexpands. For large amplityrtep, , a
evolution from regular initial data, one might have cause folack hole forms. An interesting question is to examine the
concern about the classical completeness of Einstein's theoBehavior whenp=p, . One can consider two limits, one
of gravity. The critical collapse is a fine-tuned limit, and from below and one from above. If we consider a sequence
“strong cosmic censorship” has been formulated to excludeof subcritical spacetimes with collapsing scalar fields as they
such rare cases with zero measure in the space of initi@Ppproachp, from below, we might expect the global struc-
conditions. It is nevertheless instructive to understand théure of the resulting spacetime to be Minkowski, i.e., a tri-
nature of this singularity, and how such a limit can be takenangle shown in the left panel of Fig. 1. If we consider the

Recently, Martin-Garcia and Gundla¢s] have numeri- limit of a sequence of supercritical spacetimes from above,
cally constructed a self-consistent discretely self-similatve expect each stage to have a global Schwarzschild struc-
spacetime which they argued to be related to the evolutionture. As the parameter decreases, the mass of the resulting
ary critical collapse solutions. They proposed the existenc@lack hole approaches zero, and one expects the limiting
of a future Cauchy horizon emanating from the critical col-
lapse event, on which new data must be specified. The au
thors proceeded to find a unique way of specifying these dat:
which can result in a regular future spacetime.

In this paper, we consider the problem from a different A
perspective. Instead of searching for the critical solution of
Einstein equations by first taking the limit of discrete self-
similarity, we study the constructive sequence of noncritical |
global spacetimes. We then search for a unique limit as we
approach criticality. Posed in such a way, the existence of ¢
Cauchy horizon would be very unexpected: each spacetime
in the limit sequence has no Cauchy horizon, so why would
it form in the limit? To study the problem, we developed a
characteristic code which can track a scalar field collapse
interior to the horizon. In Sec. Il, we outline a conceptual

A

FIG. 1. Two possible global structures of a critical collapse
spacetime. The left is the diagram expected taking a limit of sub-
*Electronic address: frolov@cita.utoronto.ca critical collapses, while the right diagram is a zero mass black hole
TElectronic address: pen@cita.utoronto.ca resulting from the limit sequence of supercritical collapse.
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spacetime to resemble a Schwarzschild spacetime with zero O(r?)=2e 29, (5a)
mass, shown in the right panel of Fig. 1. In this limit 0

coincides with the horizon and becomes nlihd infinitely Oe=(Or/r) ¢, (5b)
redshifted. The global structure looks quadrangular, quite

unlike the argued spacetime in the other limit. Doz(Dr/r)+(V¢)2. (50

This suggests several possible interpretations. Perhaps the ) ] . ]
two limits are different, and the limiting spacetime dependslhis form of the dynamical equations is better suited for
on the direction from which the limit was taken. Or one of Numerical evolution.
the limits is only an incomplete description of spacetime, and
might be extensible to the same global structure. Or perhaps IV. CHARACTERISTIC CODE
the limit is not convergent from either direction, and oscil- . : . ,
lates in such a way tr?at more data must be specified on a We discretize and evolve the collapsing scalar field space-
A . . "2_
spontaneously formed Cauchy horizfBl. Our study sug- tme in double-null coordinatedx”=—2 dudv, where the
gests a slightly different physical interpretation of the global'@dial characteristics of the wave equations are made ex-
structure. plicit: the outgoing characteristic propagates at consiant
Critical spacetimes are only known as numerical solythe direction of increasing, while the incoming character-
tions, which makes questions about global structure hard ti$tic Propagates at constanin the direction of increasing.
answer. It is most easily studied in characteristic coordinatehis approach has a number of advantages over some of the
which follow light ray propagatior{6]. In the subsequent More traditional spacetime slicings.

section we will describe our formulation and implementation The ch.aracteristic code'only propagates information along
of the numerical procedures. characteristics at a numerical speed equal to the true charac-

teristic speed. The numerical domain of dependence is no
larger than the physical domain of dependence, and the code
still maintains full(second-ordgraccuracy. Horizons are not
particularly special as far as ingoing null characteristics are
The spherically symmetrion+2)-dimensional spacetime concerned. This allows us to follow collapse all the way to

lIl. SPHERICALLY SYMMETRIC SCALAR FIELD
COLLAPSE

metric can be written as the singularity. Even as an outgoing characteristic hits a sin-
gularity and the floating point nhumbers denormalize, this
ds?=e 29dx%+ e?#d?, (1)  does not affect any of the other characteristics, which can be

integrated to fill the whole maximally extended spacetime
whered()? is the metric of a unih-dimensional sphere with determined by the initial data. To illustrate this point, in Fig.
curvature K=1, and the two-manifold metricdy? 2 we present Penrose and Kruskal diagrams of a spacetime
=e 27dx2 is conformally flat. The dynamics of the scalar With @ large black hole formed in the collapse of the scalar

field collapse are described by the reduced action field wavepacket. _ .
The two-dimensional metridy?> has a residual gauge

- ) freedom under redefinition of the null coordinates
Sx J d°xe"™{-2(V¢)*—2n(Vo - Vu) u—U(u), v—V(v). These two free functionff a single
variable are used to define the coordinateon the initial
+n(n—1)[(Vu)?+Ke 2+ M]}, (2)  slice and to map the central point0 to a straight line in

. . . , ) the (u,v) plane:
where integration and differential operators are with respect

to the flat two-metricdx2. Variation of the above action with Uly=0= \/E r, Uul—o=v. (6)

respect to the field®, u, ando gives equations of motion o . . .
The second gauge condition is particularly convenient, since

O¢+n(Vu-V)=0, (3a it places the central point at a known location on the grid
when discretizing.
Ou+n(Vu)2—(n—1)Ke 20+u =0, (3b) The initial conditions are specified on a surface of con-
stantu by giving a scalar field profileb(v). Together with
Oo—(n/2){0up+(Vu)2—(Veé)2=0, (30) the gauge choicéb), this determines the rest of the variables.

In particular, o(v) is obtained by integrating the outgoing
while the two constraint equations are recovered by variatiofivv) constraint equatio):
with respect to theflat) metric

al :0=—1f ¢%vdv. (7)
Tracelesfu.apt s att b+ 244 (a0 byt (2IN) b a¢p n} =0. ! 2 v

4

@ The integration is implemented as a fourth-order Runge-
For the particular case of spherically symmetric scalar fieldKutta algorithm with a fixed step. Although strictly speaking
collapse in four dimensions\& 2), the equations of motion it is not necessary, as the evolution code is second-order, it is
(3) can be simplified by introducing auxiliary field variables no more complicated than a second order integrator would
r=e* ando=r¢: be.
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T
r = const

r ,=0. The incoming constraint equation is perfectly fine,
T = const -e-ee- though, and could be followed all the way to the center of the
apparent horizon ——~-- . o . . .
event horizon <-—-- spacetime, whether it is singular or not. By introducing an
os L ’ i auxiliary field va_riable7-=cr+% In_(—\/_§ ru, the incqming
' constraint equatioid) can be written in a form that is very
simple to integrate:

06| e 4

1 ¢2
Tu:_z d) 8

_ ' (Inr)
To integrate the incoming constraint, one would need to

know the values of- on the initial sliceu=const. These can
be found by integration of the equation

0e | -

— 1 2 1 1 —27 9
Ty= Ty 5 [1me T, ©)

02

which is obtained by combining the constraints with the evo-
lution equation(5a) to solve forr , on the initial slice.
v ' ' Having discussed our gauge choice, initial conditions and
constraint equations, we now come to the discretization of
outgoing null rays - the evolution equations. The covariant differential operators
apparent horizon — -~ in the evolution equationés) are with respect to a flat met-
ric, so in null coordinates they are written simply as

Ox=—20d,9,%X, (Vx)?=—2(9,x)(d,x), (10
08 E
wherex denotes any one of the three dynamical variables in
equationg’5). We discretize by finite differencing on a recti-

4 linear (u,v) grid with equal spacinglu=dv=A, which to
second-order accuracy gives

2
(DX)X:_P[X+++X——_X+—_X—+]a

(VX)%=— = [ (X —X_ )= (X_ 1 = x4 2)?],

(11

242

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 . .
) where the differential operators are evaluated at the center of

. a grid cell(see Fig. 3. The code takes a step by using dis-
FIG. 2. Penrosdtop) and Kruskal(bottom style diagrams of = cretized evolution equations to find the values of the fields at
the spacetime with a large black hole produced in the collapse of fhe (++) grid point (shaded node in Fig.)3 The only
sine-squared scalar field wave packed). The grid lines on the 1,4 wrivia| operation involved in this is finding, . accurate

Penrose diagram show observers at constant radius and the proper e : o
time according to their clockgnote that the plot is rotated 45° %E estiez(:e%n?jr](:qudeefr(')l\;\:)r\]/\l/(i;:gli aqs?l?gnpy solving equaliba dis

compared to Fig. 1; the diagonal lime=v is the originr=0). The
Kruskal diagram shows the trajectories of outgoing null rays as
emitted from the center of spacetime at subsequent moments of

r2, +r2_—r2_—r%,

time. The code sees both real and apparent horizons, as well as the A
formation of the spacelike singularitgmall region around which is =—exp—7y_—T_ )(ry +ry_—r_,—r__).
excised. Note that the apparent and event horizons are not the \/E

same, as the spacetime is not static. (12)
Although the constraint equations follow from the dy- The rest is then straightforward, as the right hand sides of

namical equations, their use might be required for stabilityequations5b,9 become known.

[7]. Using the outgoing constraint equation for evolution As the code advances to the next slice of constanibe

(rather than just for initial conditionsis not a good idea, very first point on the grid§=v) is the center of the space-

however. It becomes degenerate on the apparent horizotime (r=0) and has to be treated specially. The asymptotic

where the outgoing light rays beconmarginally trapped form of the evolution equations at=0
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Vr-V¢=0, o:—zln(Vr)z (13

is used to calculate the values of the fields in the center.

V. RESULTS

We tested the code on the collapse of a scalar field with
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various initial conditions. In particular, we used pulse
FIG. 4. Black hole mass scaling for single kink wave, given by

. 1 1 Eq. (15). The upper panel shows a power law fit to the numerical
P sin 4mv, Z<U <§ data with critical exponeny~0.373 which holds over three orders
b(v)= (14) of magnitude in black hole masses, corresponding to nine orders of
0 otherwise magnitude in the tuning parameter. The lower panel shows the re-
sidual after the power law fit, demonstrating periodic fine structure
due to discrete self-similarity of the collapse. Its perioe-4.63
corresponds to the value of the echoing paramater3.45. The
lower panel inset shows the residual mapped to a single period
(outlier points removex illustrating that the numerical data are in
good agreement with a periodic modulation of the black hole mass.

and kink

5tanw

4 1
—v—=

p+ ptanh 3 5

EAS

¢(v)= (19

2p, v=

M w Pl

Figure 5 shows the Penrose diagram of a subcritical
field profiles in our simulations. Both profiles are fairly spacetime just below the threshold of black hole formation.
smooth functions with field energy density having compactThe lines of constant radiusare drawn as solid curves, and
support on the initial slice. This avoids the interference ofthe proper time along such lines are drawn as dashed curves.
long-range tails in the initial data on the late-time evolution.Most of the scalar field mass is shed befare0.6, but the

All runs shown in this paper used 65536 uniformly field oscillating on ever smaller scales creates near-singular
spaced grid points. The critical scaling of black hole mass isurvature in the center of spacetime.
shown in Fig. 4. It agrees well with the literaturg,8]. Our When we examine the Penrose diagram of a supercritical
achievable dynamic range shows scaling over three orders ebllapse as shown in Fig. 6, we see the formation of a hori-
magnitude in black hole mass without the use of adaptiveon nearu~0.55. The code evolves well inside the event
mesh refinement. This is sufficient for our study. Further im-horizon, and we can identify the apparent horizon in the
provements in dynamic range can be sought after using adapiterior of the black hole. The lines of constantbecome
tive mesh refinement techniques or adopting an initial gaugepacelike beyond the apparent horizon. All the larger radii
which places ingoing null rays on a grid more densely neaputside the black hole pile up at the horizon in this diagram.
the collapse poinit6]. As the grid resolution is increased, the ~ We can pose the question if the spacetime described by
double arithmetic precision and round-off errors become théig. 6 could possibly be the same as Fig. 5. Our original
main obstacles in the quest for higher dynamical range. gauge choice from Eq6) fixes ther=0 line to coincide

124024-4



NAKED SINGULARITY IN THE GLOBAL STRUCTURE . .. PHYSICAL REVIEW D 68, 124024 (2003

1 T T T

L)
r = const

I| r= canst
1 =const - 1 t=const -
apparent horizon — aﬂ)parent horizon —:
event horizon # | ‘levent horizon , ~-—-—
/ 1% -
08 | §
[
\.
— A
0.6 [
3
0.4
02
0
0
v v
FIG. 5. Penrose diagram for subcritical collapse. FIG. 7. Regauged supercritical collapse of Fig. 6. The regauging

was done at the postprocessing stage from the same simulation run.
with u=v. It does not have to be this way; the null coordi- One sees the clear similarity with the subcritical collapse shown in
nates leave the possibility for a global gauge changéig. 5.
u—U(u). One can try to “unpile” the lines of constamt
observers for the supercritical collapse spacetime in Fig. 6 by andt should fall into place, and similarly if the spacetimes
defining a gauge chandé(u) such that the secondcurve  are different they should diverge. We indeed see that the
coincides with that in a subcritical collapse spacetime of Figproper time and outer radii move into place, as would be
5. The result is shown in Fig. 7. expected in a convergent spacetime. It is also clear that the
This stretching is rather sudden and throws tke0 line  r=0 line is not convergent, and the limiting spacetime ex-
into an almost null direction, but all the other finités ap-  periences infinite curvature at that one point. To address the
pear to coincide. This is nontrivial, since the residual gaugduture of this singular event, we can look at the spacetime of
freedom is a single function of one variable, which we usedhe limiting sequence of super- and subcritical collapses.
to fix one valuer. If the spacetimes are equivalent, the other We now discuss the global structure of the critical space-
time. Our first question is the nature of the 0 line in the
course of the singular collapse event. An observer moving at
1 =const - some finite radiug sees the collapse of a scalar field to a
apparent horizon ~ - point, and a rebound. This is true for both the supercritical
and subcritical collapse, since even when a black hole forms,
the majority of the initial scalar field energy escapes, and the
black hole only contains an ever smaller fraction of the ini-
P tial mass as the parameter is tuned to criticality. Long after
06 - i the field rebounds, the observer can measure the gravitational
redshift to adjacent interior radii, and concludes that there is
no redshift for most radii. In the supercritical scenario, there
are significant redshifts at scales Mgy . But for any fixed
radius observer, as one takes the limitpef: p*, the sphere
of influence of the ever diminishing black hole mass shrinks
to zero, and the spacetime converges pointwise to
Minkowski atr>0. The convergence is not uniform, since
for any given redshift difference between the observer and
a fiducial interior radius, one can construct a radius
~M/e inside which the redshift is larger than In the two
limits p—p* and p—p*, the spacetimes converge point-
wise everywhere except for the lime=0.
A simple analogy is a singular weak field star. Consider a
FIG. 6. Penrose diagram for supercritical collapse withsequence of spacetimes with a single star of mdgsand
Mgy /My=0.046. radiusr, =M, /e. The Newtonian potential outside the star

1 T T T

T
r=const

0.8 | i

0.4 |

0 0.2 0.4
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isV(r)=—M, /r for r>M, /e. To simplify the argument, VI. CONCLUSIONS
we make the potential continuous and constant interior to its
radiusV(r)=e. For small values ok, the spacetime is in
the weak field regime everywhere to orderIf we take a

We have implemented a characteristic code in double-null
coordinates and used it to study the global spacetime struc-
sequence of such space times with fixedind decreasing ture of a cri.ti_cal coIIap;e of a scalar field. We reproduce the
M.  the maximal curvatureRe=e3/M?2 increases without stan_da_rgl critical b_ehawor and umverggl scaling. We compare
* * .. .the limiting spacetime from the subcritical and the superecriti-
Lal collapse limits. These two limits appear qualitatively dif-
ferent. Based on the numerical simulations, we conjecture
that the two limits converge pointwise to the same spacetime,

that limit. We can ask what the limiting spacetime looks like
asM, —0. The obvious answer would be empty Minkowski

space. The convergence to this space is pointwise, but NBlt not uniformly. In particular, the=0 line is not conver-

uniform. In the limit, Vo(r)=l|mM*HoM* Ir. Vo(r) con- gent, but all other points appear to converge pointwise. The

verges to O pointwise, but not uniformly, so in the limit, two apparently different solutions then only differ by a gauge

Vo(r)=0 everywhere except far=0, and it is undefined at change. The apparent naked singularity in the upper limit

that point. This is a removable singularity since we can degptained by the sequence of spacetimes with ever decreasing

fine Vo(0)=Ilim, oVo(r)=0, which is a unique and physi- black hole mass becomes a removable singularity in the

cally acceptable solution. We suggest that the future of thgmit.

singular collapse is likewise regular everywhere, with a re- We conclude that the nature of the limiting critical col-

movable singularity ar=0 in the future of the collapse |apse spacetime requires a careful definition of the order in

event. which limits are taken, since the convergence is not uniform.
The apparent paradox in the Penrose diagram seen in Figor any collapse parametgs within the critical value

1 arises from the gauge choice 0. This one line is |p—p*|=6>0, one can find sufficiently small radii within

poorly defined in the limit, since it becomes singular. The leftwhich the supercritical and subcritical solutions differ. Con-

panel describes the physical spacetime in the critical collapsgersely, for any fixed >0, one can find a valué(r) where

limit, and the right one is related by a singular gauge changehe super— and subcritical spacetimes agree to some toler-
Our analysis takes a very different approach from Martin-ance e at radiusr. There is a unique limit, with no new

Garcia and GUndIaClﬁE’]. These authors solve an eIIIptIC Cauchy data that emit from the Singu|ar event.

equation satisfying an ansatz of discretely self-similar critical

collapse. We took a limit of a series of hyperbolic initial

value problems. Those authors found a possibility of speci- ACKNOWLEDGMENTS
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