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Naked singularity in the global structure of critical collapse spacetimes

Andrei V. Frolov* and Ue-Li Pen†

Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario, Canada, M5S 3H8
~Received 18 July 2003; published 29 December 2003!

We examine the global structure of scalar field critical collapse spacetimes using a characteristic double-null
code. It can integrate past the horizon without any coordinate problems, due to the careful choice of constraint
equations used in the evolution. The limiting sequence of sub- and supercritical spacetimes presents an appar-
ent paradox in the expected Penrose diagrams, which we address in this paper. We argue that the limiting
spacetime converges pointwise to a unique limit for allr .0, but not uniformly. Ther 50 line is different in
the two limits. We interpret that the two different Penrose diagrams differ by a discontinuous gauge transfor-
mation. We conclude that the limiting spacetime possesses a singular event, with a future removable naked
singularity.
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I. INTRODUCTION

The critical collapse of scalar fields gives rise to a n
class of thought experiments in general relativity@1,2#. It has
been suggested that a weak singularity may be visible
distant observer during the collapse of a scalar field@3,4#.
With the presence of such potentially problematic pheno
ena, one can ask to what degree cosmic censorship is
lated. The spirit of the cosmic censorship conjecture is t
the evolution of spacetimes as seen by distant observe
asymptotically flat regions is determined uniquely by t
Einstein equations. If visible infinite curvature arises in t
evolution from regular initial data, one might have cause
concern about the classical completeness of Einstein’s th
of gravity. The critical collapse is a fine-tuned limit, an
‘‘strong cosmic censorship’’ has been formulated to exclu
such rare cases with zero measure in the space of in
conditions. It is nevertheless instructive to understand
nature of this singularity, and how such a limit can be tak

Recently, Martin-Garcia and Gundlach@5# have numeri-
cally constructed a self-consistent discretely self-sim
spacetime which they argued to be related to the evolut
ary critical collapse solutions. They proposed the existe
of a future Cauchy horizon emanating from the critical c
lapse event, on which new data must be specified. The
thors proceeded to find a unique way of specifying these d
which can result in a regular future spacetime.

In this paper, we consider the problem from a differe
perspective. Instead of searching for the critical solution
Einstein equations by first taking the limit of discrete se
similarity, we study the constructive sequence of noncriti
global spacetimes. We then search for a unique limit as
approach criticality. Posed in such a way, the existence
Cauchy horizon would be very unexpected: each space
in the limit sequence has no Cauchy horizon, so why wo
it form in the limit? To study the problem, we developed
characteristic code which can track a scalar field colla
interior to the horizon. In Sec. II, we outline a conceptu
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paradox in the search for a global critical spacetime str
ture. In Sec. III, we derive the scalar field equations of m
tion with spherical symmetry. We proceed to solve the
equations numerically in Sec. IV. The numerical results
presented in Sec. V, where we explain our proposed solu
to the apparent paradox.

II. THE APPARENT PARADOX

Consider a collapsing scalar field with amplitude char
terized by a parameterp. For small amplitudesp,p* , the
field collapses and reexpands. For large amplitudesp.p* , a
black hole forms. An interesting question is to examine
behavior whenp5p* . One can consider two limits, on
from below and one from above. If we consider a seque
of subcritical spacetimes with collapsing scalar fields as t
approachp* from below, we might expect the global struc
ture of the resulting spacetime to be Minkowski, i.e., a t
angle shown in the left panel of Fig. 1. If we consider t
limit of a sequence of supercritical spacetimes from abo
we expect each stage to have a global Schwarzschild s
ture. As the parameter decreases, the mass of the resu
black hole approaches zero, and one expects the limi

FIG. 1. Two possible global structures of a critical collap
spacetime. The left is the diagram expected taking a limit of s
critical collapses, while the right diagram is a zero mass black h
resulting from the limit sequence of supercritical collapse.
©2003 The American Physical Society24-1
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spacetime to resemble a Schwarzschild spacetime with
mass, shown in the right panel of Fig. 1. In this limit,r 50
coincides with the horizon and becomes null~and infinitely
redshifted!. The global structure looks quadrangular, qu
unlike the argued spacetime in the other limit.

This suggests several possible interpretations. Perhap
two limits are different, and the limiting spacetime depen
on the direction from which the limit was taken. Or one
the limits is only an incomplete description of spacetime, a
might be extensible to the same global structure. Or perh
the limit is not convergent from either direction, and osc
lates in such a way that more data must be specified o
spontaneously formed Cauchy horizon@5#. Our study sug-
gests a slightly different physical interpretation of the glob
structure.

Critical spacetimes are only known as numerical so
tions, which makes questions about global structure har
answer. It is most easily studied in characteristic coordina
which follow light ray propagation@6#. In the subsequen
section we will describe our formulation and implementati
of the numerical procedures.

III. SPHERICALLY SYMMETRIC SCALAR FIELD
COLLAPSE

The spherically symmetric (n12)-dimensional spacetim
metric can be written as

ds25e22sdxW21e2mdV2, ~1!

wheredV2 is the metric of a unitn-dimensional sphere with
curvature K51, and the two-manifold metricdg2

5e22sdxW2 is conformally flat. The dynamics of the scal
field collapse are described by the reduced action

S} E d2xenm$22~¹f!222n~¹s•¹m!

1n~n21!@~¹m!21Ke22(s1m)#%, ~2!

where integration and differential operators are with resp
to the flat two-metricdxW2. Variation of the above action with
respect to the fieldsf, m, ands gives equations of motion

hf1n~¹m•¹f!50, ~3a!

hm1n~¹m!22~n21!Ke22(s1m)50, ~3b!

hs2~n/2!$hm1~¹m!2%2~¹f!250, ~3c!

while the two constraint equations are recovered by varia
with respect to the~flat! metric

Traceless$m ;ab1m ,am ,b12m (,as ,b)1~2/n!f ,af ,b%50.
~4!

For the particular case of spherically symmetric scalar fi
collapse in four dimensions (n52), the equations of motion
~3! can be simplified by introducing auxiliary field variable
r 5em andw5rf:
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h~r 2!52e22s, ~5a!

hw5~hr /r ! w, ~5b!

hs5~hr /r !1~¹f!2. ~5c!

This form of the dynamical equations is better suited
numerical evolution.

IV. CHARACTERISTIC CODE

We discretize and evolve the collapsing scalar field spa
time in double-null coordinatesdxW2522 dudv, where the
radial characteristics of the wave equations are made
plicit: the outgoing characteristic propagates at constantu in
the direction of increasingv, while the incoming character
istic propagates at constantv in the direction of increasingu.
This approach has a number of advantages over some o
more traditional spacetime slicings.

The characteristic code only propagates information alo
characteristics at a numerical speed equal to the true cha
teristic speed. The numerical domain of dependence is
larger than the physical domain of dependence, and the c
still maintains full~second-order! accuracy. Horizons are no
particularly special as far as ingoing null characteristics
concerned. This allows us to follow collapse all the way
the singularity. Even as an outgoing characteristic hits a
gularity and the floating point numbers denormalize, t
does not affect any of the other characteristics, which can
integrated to fill the whole maximally extended spacetim
determined by the initial data. To illustrate this point, in Fi
2 we present Penrose and Kruskal diagrams of a space
with a large black hole formed in the collapse of the sca
field wavepacket.

The two-dimensional metricdg2 has a residual gaug
freedom under redefinition of the null coordinat
u°U(u), v°V(v). These two free functions~of a single
variable! are used to define the coordinatev on the initial
slice and to map the central pointr 50 to a straight line in
the (u,v) plane:

vuu505A2 r , uur 505v. ~6!

The second gauge condition is particularly convenient, si
it places the central point at a known location on the g
when discretizing.

The initial conditions are specified on a surface of co
stantu by giving a scalar field profilef(v). Together with
the gauge choice~6!, this determines the rest of the variable
In particular,s(v) is obtained by integrating the outgoin
(vv) constraint equation~4!:

suu5052
1

2 E f ,v
2 vdv. ~7!

The integration is implemented as a fourth-order Run
Kutta algorithm with a fixed step. Although strictly speakin
it is not necessary, as the evolution code is second-order,
no more complicated than a second order integrator wo
be.
4-2
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NAKED SINGULARITY IN THE GLOBAL STRUCTURE . . . PHYSICAL REVIEW D 68, 124024 ~2003!
Although the constraint equations follow from the d
namical equations, their use might be required for stabi
@7#. Using the outgoing constraint equation for evoluti
~rather than just for initial conditions! is not a good idea,
however. It becomes degenerate on the apparent hor
where the outgoing light rays become~marginally! trapped

FIG. 2. Penrose~top! and Kruskal~bottom! style diagrams of
the spacetime with a large black hole produced in the collapse
sine-squared scalar field wave packet~14!. The grid lines on the
Penrose diagram show observers at constant radius and the p
time according to their clocks~note that the plot is rotated 45
compared to Fig. 1; the diagonal lineu5v is the originr 50). The
Kruskal diagram shows the trajectories of outgoing null rays
emitted from the center of spacetime at subsequent momen
time. The code sees both real and apparent horizons, as well a
formation of the spacelike singularity~small region around which is
excised!. Note that the apparent and event horizons are not
same, as the spacetime is not static.
12402
y
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r ,v50. The incoming constraint equation is perfectly fin
though, and could be followed all the way to the center of
spacetime, whether it is singular or not. By introducing
auxiliary field variablet5s1 1

2 ln (2A2 r ,u), the incoming
constraint equation~4! can be written in a form that is very
simple to integrate:

t ,u52
1

2

f ,u
2

~ ln r ! ,u
. ~8!

To integrate the incoming constraint, one would need
know the values oft on the initial sliceu5const. These can
be found by integration of the equation

t ,v52
1

2
f ,v

2 v2
1

2v
@12e22t#, ~9!

which is obtained by combining the constraints with the ev
lution equation~5a! to solve forr ,u on the initial slice.

Having discussed our gauge choice, initial conditions a
constraint equations, we now come to the discretization
the evolution equations. The covariant differential operat
in the evolution equations~5! are with respect to a flat met
ric, so in null coordinates they are written simply as

hx522]u]vx, ~¹x!2522~]ux!~]vx!, ~10!

wherex denotes any one of the three dynamical variables
equations~5!. We discretize by finite differencing on a rect
linear (u,v) grid with equal spacingdu5dv5D, which to
second-order accuracy gives

~hx!352
2

D2
@x111x222x122x21#,

~¹x!3
2 52

1

2D2
@~x112x22!22~x212x12!2#,

~11!

where the differential operators are evaluated at the cente
a grid cell ~see Fig. 3!. The code takes a step by using di
cretized evolution equations to find the values of the fields
the (11) grid point ~shaded node in Fig. 3!. The only
non trivial operation involved in this is findingr 11 accurate
to second order, which is done by solving equation~5a! dis-
cretized in the following fashion:

r 11
2 1r 22

2 2r 12
2 2r 21

2

5
D

A2
exp~2t122t21!~r 111r 122r 212r 22!.

~12!

The rest is then straightforward, as the right hand sides
equations~5b,c! become known.

As the code advances to the next slice of constantu, the
very first point on the grid (u5v) is the center of the space
time (r 50) and has to be treated specially. The asympto
form of the evolution equations atr 50
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¹r •¹f50, s52
1

2
ln ~¹r !2 ~13!

is used to calculate the values of the fields in the center.

V. RESULTS

We tested the code on the collapse of a scalar field w
various initial conditions. In particular, we used pulse

f~v !5H p sin2 4pv,
1

4
,v,

1

2

0 otherwise

~14!

and kink

f~v !5H p1p tanhF5 tanpS 4

3
v2

1

2D G , v,
3

4

2p, v>
3

4

~15!

field profiles in our simulations. Both profiles are fair
smooth functions with field energy density having comp
support on the initial slice. This avoids the interference
long-range tails in the initial data on the late-time evolutio

All runs shown in this paper used 65 536 uniform
spaced grid points. The critical scaling of black hole mas
shown in Fig. 4. It agrees well with the literature@1,8#. Our
achievable dynamic range shows scaling over three orde
magnitude in black hole mass without the use of adap
mesh refinement. This is sufficient for our study. Further i
provements in dynamic range can be sought after using a
tive mesh refinement techniques or adopting an initial ga
which places ingoing null rays on a grid more densely n
the collapse point@6#. As the grid resolution is increased, th
double arithmetic precision and round-off errors become
main obstacles in the quest for higher dynamical range.

FIG. 3. Discretization on a (u,v) grid.
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Figure 5 shows the Penrose diagram of a subcrit
spacetime just below the threshold of black hole formati
The lines of constant radiusr are drawn as solid curves, an
the proper time along such lines are drawn as dashed cu
Most of the scalar field mass is shed beforeu;0.6, but the
field oscillating on ever smaller scales creates near-sing
curvature in the center of spacetime.

When we examine the Penrose diagram of a supercrit
collapse as shown in Fig. 6, we see the formation of a h
zon nearu'0.55. The code evolves well inside the eve
horizon, and we can identify the apparent horizon in t
interior of the black hole. The lines of constantr become
spacelike beyond the apparent horizon. All the larger ra
outside the black hole pile up at the horizon in this diagra

We can pose the question if the spacetime described
Fig. 6 could possibly be the same as Fig. 5. Our origi
gauge choice from Eq.~6! fixes the r 50 line to coincide

FIG. 4. Black hole mass scaling for single kink wave, given
Eq. ~15!. The upper panel shows a power law fit to the numeri
data with critical exponentg'0.373 which holds over three order
of magnitude in black hole masses, corresponding to nine orde
magnitude in the tuning parameter. The lower panel shows the
sidual after the power law fit, demonstrating periodic fine struct
due to discrete self-similarity of the collapse. Its periodv'4.63
corresponds to the value of the echoing parameterD'3.45. The
lower panel inset shows the residual mapped to a single pe
~outlier points removed!, illustrating that the numerical data are i
good agreement with a periodic modulation of the black hole ma
4-4
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NAKED SINGULARITY IN THE GLOBAL STRUCTURE . . . PHYSICAL REVIEW D 68, 124024 ~2003!
with u5v. It does not have to be this way; the null coord
nates leave the possibility for a global gauge chan
u°U(u). One can try to ‘‘unpile’’ the lines of constantr
observers for the supercritical collapse spacetime in Fig. 6
defining a gauge changeU(u) such that the secondr curve
coincides with that in a subcritical collapse spacetime of F
5. The result is shown in Fig. 7.

This stretching is rather sudden and throws ther 50 line
into an almost null direction, but all the other finiter 8s ap-
pear to coincide. This is nontrivial, since the residual gau
freedom is a single function of one variable, which we us
to fix one valuer. If the spacetimes are equivalent, the oth

FIG. 5. Penrose diagram for subcritical collapse.

FIG. 6. Penrose diagram for supercritical collapse w
MBH /M0'0.046.
12402
e

y

.

e
d
r

r andt should fall into place, and similarly if the spacetime
are different they should diverge. We indeed see that
proper time and outer radii move into place, as would
expected in a convergent spacetime. It is also clear that
r 50 line is not convergent, and the limiting spacetime e
periences infinite curvature at that one point. To address
future of this singular event, we can look at the spacetime
the limiting sequence of super- and subcritical collapses.

We now discuss the global structure of the critical spa
time. Our first question is the nature of ther 50 line in the
course of the singular collapse event. An observer movin
some finite radiusr sees the collapse of a scalar field to
point, and a rebound. This is true for both the supercriti
and subcritical collapse, since even when a black hole for
the majority of the initial scalar field energy escapes, and
black hole only contains an ever smaller fraction of the i
tial mass as the parameter is tuned to criticality. Long a
the field rebounds, the observer can measure the gravitati
redshift to adjacent interior radii, and concludes that ther
no redshift for most radii. In the supercritical scenario, the
are significant redshifts at scalesr &MBH . But for any fixed
radius observer, as one takes the limit ofp→p* , the sphere
of influence of the ever diminishing black hole mass shrin
to zero, and the spacetime converges pointwise
Minkowski at r .0. The convergence is not uniform, sinc
for any given redshift differencee between the observer an
a fiducial interior radius, one can construct a radiusr
;M /e inside which the redshift is larger thane. In the two
limits p→p1* and p→p2* , the spacetimes converge poin
wise everywhere except for the liner 50.

A simple analogy is a singular weak field star. Conside
sequence of spacetimes with a single star of massM* and
radiusr * 5M* /e. The Newtonian potential outside the st

FIG. 7. Regauged supercritical collapse of Fig. 6. The regaug
was done at the postprocessing stage from the same simulation
One sees the clear similarity with the subcritical collapse shown
Fig. 5.
4-5
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A. V. FROLOV AND U.-L. PEN PHYSICAL REVIEW D68, 124024 ~2003!
is V(r )52M* /r for r .M* /e. To simplify the argument,
we make the potential continuous and constant interior to
radiusV(r )5e. For small values ofe, the spacetime is in
the weak field regime everywhere to ordere. If we take a
sequence of such space times with fixede and decreasing
M* , the maximal curvatureR}e3/M

*
2 increases without

bound. There appears to be an illusory naked singularit
that limit. We can ask what the limiting spacetime looks li
asM* →0. The obvious answer would be empty Minkows
space. The convergence to this space is pointwise, but
uniform. In the limit, V0(r )5 limM

*
→0M* /r . V0(r ) con-

verges to 0 pointwise, but not uniformly, so in the lim
V0(r )50 everywhere except forr 50, and it is undefined a
that point. This is a removable singularity since we can
fine V0(0)[ limr→0V0(r )50, which is a unique and physi
cally acceptable solution. We suggest that the future of
singular collapse is likewise regular everywhere, with a
movable singularity atr 50 in the future of the collapse
event.

The apparent paradox in the Penrose diagram seen in
1 arises from the gauge choice atr 50. This one line is
poorly defined in the limit, since it becomes singular. The l
panel describes the physical spacetime in the critical colla
limit, and the right one is related by a singular gauge chan

Our analysis takes a very different approach from Mart
Garcia and Gundlach@5#. These authors solve an ellipti
equation satisfying an ansatz of discretely self-similar criti
collapse. We took a limit of a series of hyperbolic initi
value problems. Those authors found a possibility of spe
fying new Cauchy data in the elliptic solution, which is nev
an option for our evolutionary approach. The qualitative
lution for their unique regular extension looks similar to o
critical spacetime.
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VI. CONCLUSIONS

We have implemented a characteristic code in double-
coordinates and used it to study the global spacetime st
ture of a critical collapse of a scalar field. We reproduce
standard critical behavior and universal scaling. We comp
the limiting spacetime from the subcritical and the supercr
cal collapse limits. These two limits appear qualitatively d
ferent. Based on the numerical simulations, we conject
that the two limits converge pointwise to the same spaceti
but not uniformly. In particular, ther 50 line is not conver-
gent, but all other points appear to converge pointwise. T
two apparently different solutions then only differ by a gau
change. The apparent naked singularity in the upper li
obtained by the sequence of spacetimes with ever decrea
black hole mass becomes a removable singularity in
limit.

We conclude that the nature of the limiting critical co
lapse spacetime requires a careful definition of the orde
which limits are taken, since the convergence is not unifo
For any collapse parameterp within the critical value
up2p* u5d.0, one can find sufficiently small radii within
which the supercritical and subcritical solutions differ. Co
versely, for any fixedr .0, one can find a valued(r ) where
the super– and subcritical spacetimes agree to some t
ance e at radiusr. There is a unique limit, with no new
Cauchy data that emit from the singular event.
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