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Can inflating braneworlds be stabilized?

Andrei V. Frolov* and Lev Kofman†

CITA, University of Toronto, Toronto, Ontario, Canada M5S 3H8
~Received 26 September 2003; published 27 February 2004!

We investigate scalar perturbations from inflation in braneworld cosmologies with extra dimensions. For this
we calculate scalar metric fluctuations around five dimensional warped geometry with four dimensional de
Sitter slices. The background metric is determined self-consistently by the~arbitrary! bulk scalar field potential,
supplemented by the boundary conditions at both orbifold branes. Assuming that the inflating branes are
stabilized~by the brane scalar field potentials!, we estimate the lowest eigenvalue of the scalar fluctuations—
the radion mass. In the limit of flat branes, we reproduce well known estimates of the positive radion mass for
stabilized branes. Surprisingly, however, we found that for de Sitter~inflating! branes the square of the radion
mass is typically negative, which leads to a strong tachyonic instability. Thus, parameters of stabilized inflating
braneworlds must be constrained to avoid this tachyonic instability. Instability of ‘‘stabilized’’ de Sitter branes
is confirmed by theBRANECODE numerical calculations of Martin, Felder, Frolov, Peloso, and Kofman. If the
model’s parameters are such that the radion mass is smaller than the Hubble parameter, we encounter a new
mechanism of generation of primordial scalar fluctuations, which have a scale free spectrum and acceptable
amplitude.

DOI: 10.1103/PhysRevD.69.044021 PACS number~s!: 04.50.1h, 98.80.Cq
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I. INTRODUCTION

One of the most interesting recent developments in h
energy physics has been the picture of braneworlds. Hig
dimensional formulations of braneworld models in sup
string or M theory, supergravity and phenomenological m
els of the mass hierarchy have the most obvious relevanc
cosmology. In application to the very early Universe th
leads to braneworld cosmology, where our~311!-
dimensional universe is a 3D curved brane embedded
higher-dimensional bulk@2#. Early Universe inflation in this
picture corresponds to 311 ~quasi! de Sitter brane geometry
so that the background geometry is simply described by
five-dimensional warped metric with four-dimensional
Sitter slices:

ds25a2~w!@dw22dt21e2HtdxW2#. ~1!

For simplicity we use spatially flat slicing of the de Sitt
metric ds4

2. The conformal warp factora(w) is determined
self-consistently by the five-dimensional Einstein equatio
supplemented by the boundary conditions at two orbif
branes. We assume the presence of a single bulk scalar
w with the potentialV(w) and self-interaction potential
U6(w) at the branes. The potentials can be pretty much
bitrary as long as the phenomenology of the braneworld
acceptable. The class of metrics~1! with bulk scalars and
two orbifold branes covers many interesting braneworld s
narios including the Horˇava-Witten theory@3,4#, the Randall-
Sundrum model@5,6# with phenomenological stabilization o
branes@7,8#, supergravity with domain walls, and othe
@9,10#.

*Electronic address: frolov@cita.utoronto.ca
†Electronic address: kofman@cita.utoronto.ca
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We will consider models where by the choice of the bu
and brane potentials the interbrane separation~the so-called
radion! can be fixed, i.e. models in which branes could
principle be stabilized. The theory of scalar fluctuatio
around flat stabilized branes, involving bulk scalar field flu
tuations dw, scalar 5D metric fluctuations and brane d
placements, is well understood@11#. Similar to Kaluza-Klein
~KK ! theories, the extra-dimensional dependence can
separated out, and the problem is reduced to finding the
genvalues of a second-order differential equation for
extra-dimensional (w-dependent! part of the fluctuation
eigenfunctions subject to the boundary conditions at
branes. The lowest eigenvalue corresponds to the ra
mass, which is positivem2.0 and exceeds the TeV scale
so @12#. Tensor fluctuations around flat stabilized branes
also stable.

Brane inflation, like all inflationary models, generat
long wavelength cosmological perturbations from t
vacuum fluctuations of all light~i.e. with mass less than th
Hubble parameterH) degrees of freedom. The theory o
metric fluctuations around the background geometry~1! with
inflating ~de Sitter! branes is more complicated than that f
the flat branes. For tensor fluctuations~gravitational waves!,
the lowest eigenvalue of the extra-dimensional part of
tensor eigenfunction is zero,m50, which corresponds to the
usual 4D graviton. As it was shown in@21,22#, massive KK
gravitons have a gap in the spectrum; the universal lo

bound on the mass ism>A3
2 H. This means that massiv

KK tensor modes are not generated from brane inflati
Massless scalar and vector projections of the bulk gravit
are absent, so only the massless 4D tensor mode is gene

Scalar cosmological fluctuations from inflation in th
braneworld setting~1! have been considered in many impo
tant works @13–20#. The theory of scalar perturbations i
braneworld inflation with bulk scalars is even more comp
cated than for tensor perturbations. This is because one
©2004 The American Physical Society21-1
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to consider 5D scalar metric fluctuations and brane displa
ments induced not only by the bulk scalar field fluctuatio
dw, but also by the fluctuationsdx of the inflaton scalar field
x living at the brane. In fact, most papers on scalar per
bations from brane inflation concentrated mainly on the
flaton fluctuationsdx, while the bulk scalar fluctuation
were not included. This was partly because in the ear
papers on brane inflation people considered a single b
embedded in an AdS background without a bulk scalar fie
and partly because for braneworlds with two stabiliz
branes there was an expectation that the fluctuations of
bulk scalar would be massive and thus would not be exc
during inflation.

In this paper we focus on the bulk scalar field fluctuatio
assuming for the sake of simplicity that the inflaton fluctu
tions dx are subdominant. We consider a relatively simp
problem of scalar fluctuations around curved~de Sitter!
branes, involving only bulk scalar field fluctuationsdw. We
find the extra-dimensional eigenvalues of the scalar fluc
tions subject to boundary conditions at the branes, focus
especially on the radion massm2 for the inflating branes. In
particular, we investigate the presence or absence of a ga
the KK spectrum of scalar fluctuations in view of the tens
mode result. Our results are a generalization of the kno
results for flat stabilized branes@11#, which we reproduce in
the limit where the branes are flatteningH→0.

II. BULK EQUATIONS

The five-dimensional braneworld models with a sca
field in the bulk are described by the action

S5M5
3E A2gd5x$R2~¹w!222V~w!%

22M5
3( E A2qd4x$@K#1U~w!%, ~2!

where the first term corresponds to the bulk and the s
contains contributions from each brane. The jump of the
trinsic curvature@K# provides the junction conditions acros
the branes@see Eq.~11! below#. Variation of this action gives
the bulk EinsteinGAB5TAB(w) and scalar fieldhw5V,w
equations. For the~stationary! warped geometry~1! they are

w913
a8

a
w82a2V850, ~3a!

a9

a
52

a82

a2
2H22

w82

3
, ~3b!

6S a82

a2
2H2D 5

w82

2
2a2V, ~3c!

where the prime denotes the derivative with respect to
extra dimension coordinatew. The first two equations are
dynamical, and the last is a constraint. The solutions of E
~3! were investigated in detail in@10#.
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Now we consider scalar fluctuations around the ba
ground~1!. The perturbed metric can be written in the lo
gitudinal gauge as

ds25a~w!2@~112F!dw21~112C!ds4
2#. ~4!

The linearized bulk Einstein equations and scalar field eq
tion relate two gravitational potentialsF(xA), C(xA) and
bulk scalar field fluctuationsdw(xA). The off-diagonal Ein-
stein equations require that

C52
F

2
, ~5!

similar to four-dimensional cosmology, although the coe
cient is different.

The symmetry of the background guarantees separatio
variables, so that perturbations can be decomposed with
spect to four-dimensional scalar harmonics, e.g.

F~xA!5(
m

Fm~w!Qm~ t,xW !, ~6!

where the eigenvaluesm ~constant of separation! appear as
the four-dimensional masses4hQm5m2Qm , where 4h is
the D’Alembert operator on the 4D de Sitter slice. The fo
dimensional massive scalar harmonicsQm can be further de-
composed asQm(t,xW )5* f k

(m)(t)eikWxWd3k. The temporal mode
functions f k

(m)(t) obey the equation

f̈ 13H ḟ 1~e22Htk21m2! f 50, ~7!

where dot denotes time derivative, and we dropped the la
k andm for brevity.

Out of the remaining linearized Einstein equation we g
the following equations for the extra-dimensional mo
functionsFm(w) anddwm(w):

~a2F!85
2

3
a2w8dw, ~8a!

S a

w8
dw D 8

5S 12
3

2

m214H2

w82 D aF, ~8b!

where we again omitted the labelm for transparency.
These are very similar to the scalar perturbation equati

in four-dimensional cosmology with a scalar field@23#, ex-
cept for some numerical coefficients and powers ofa(w)
~because the spacetime dimensionality is higher!, and up to
time to extra spatial dimension exchange. Indeed, we
introduce the higher-dimensional analog of the Mukhano
variable. However, in the presence of the curvature termH2,
the eigenvaluem2 enters the second order equation for it in
complicated way, similar to that in the 4D problem wi
nonzero spatial curvature, see e.g.@24#. We can introduce

another convenient variableum5A3/2(a3/2/w)Fm . Then
the two first order differential equations~8! can be combined
into a single Schro¨dinger-type equation
1-2
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um9 1@m214H22Veff~w!#um50 ~9!

with the effective potentialVeff5(z9/z)1 2
3 w82, where we

definedz5( 2
3 aw82)21/2.

There are two main differences relative to the fou
dimensional cosmology. First, in the latter case, FRW geo
etry with flat 3D spatial slices is usually considered, wh
the five-dimensional brane inflation metric hascurved 4D
slices, which results in extra terms like 4H2 in Eq. ~9!. Sec-
ond, here we are dealing not with aninitial but aboundary
value problem, with associated boundary conditions for p
turbations at the branes on the edges. After we derive
boundary conditions, we will calculate the KK spectrum
the eigenvaluesm.

III. BRANE EMBEDDING AND BOUNDARY CONDITIONS

The embedding of each brane is described byw5w6

1j6(xa), where j6 is the transverse displacement of t
perturbed brane andw6 is the position of the unperturbe
brane. Holonomic basis vectors along the brane surface
e(a)

A []xA/]xa5(j ,a ,da
A), while the unit normal to the bran

is nA5a(11F,2j ,adA
a). The induced four-metric on the

braneds25qabdxadxb does not feel the brane displaceme
~to linear order! and is conformally flat

ds25a2~12F!@2dt21e2HtdxW2#. ~10!

The junction conditions for the metric and the scalar field
the brane are

@Kab2Kqab#5U~w!qab , @n•¹w#5
]U

]w
, ~11!

where the extrinsic curvature is defined byKab

5e(a)
A e(b)

B nA;B . We will only need its trace, which up to lin
ear order in perturbations is

K54
a8

a2
22

~a2F!8

a3
2

4hj

a
. ~12!

For the background geometry~under the assumption o
reflection symmetry across the branes!, Eqs.~11! reduce to

a8

a2
57

U

6
,

w8

a
56

U8

2
. ~13!

For the perturbed geometry, the traceless part of the extri
curvature must vanish in the absence of matter perturbat
on the brane. Since it contains second cross-derivatives oj,
the brane displacementj is severely restricted. Basically, th
means that the oscillatory modes of brane displacement
not excited without matter support at the brane. While th
could possibly be global displacements of the brane, they
not interest us, so in the following we setj50. Of course,
for the more complete problem which includes fluctuatio
dx of the ‘‘inflaton’’ field on the brane, the displacementj
does not vanish.
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Using expression~12! for the trace of the extrinsic curva
ture, the first of Eqs.~11! gives us the junction condition
for linearized perturbations at the two branes (a2F)8uw6

56 1
3 U8a3dwuw6

. However, this junction condition does no
really place any further restrictions on the bulk field pertu
bations, as it identically follows from the bulk perturbatio
equations~8! and the background junction condition~13!.
Rather, this junction condition would relate the brane d
placementj to the matter perturbations on the brane if th
were not absent.

The second of Eqs.~11! gives us a physically relevan
boundary condition for the bulk field perturbations

~dw82w8F!uw6
56

1

2
U9adwU

w6

. ~14!

Using the bulk equations~8!, this can be rewritten in a more
suggestive form

S a

w8
dw D U

w6

5
3

2

m214H2

aw82

a2F

a2V8

w8
24

a8

a
7aU69

U
w6

.

~15!

The eigenvaluesm2 of bulk perturbation equations subject
the boundary condition~15! form a KK spectrum, which we
find numerically. We considered several examples of the
tentials V and U6 , and found no universal positive mas
gap. Moreover, for the most interesting models we fou
negativem2.

To understand the KK spectrum ofm2, we make a sim-
plification of the boundary condition~15! which will allow
us to treat the eigenvalue problem analytically, and wh
well corresponds to a spirit of brane stabilization@7#. Indeed,
rigid stabilization of branes is thought to be achieved b
takingU9 ~i.e. the brane mass of the field! very large, so that
the scalar field gets pinned down at the positions of
branes. In this case, the right hand side of Eq.~15! becomes
very small, which leads to the boundary condition

dwuw6
50. ~16!

This by itself does not guarantee stability, or vanishing of
the metric perturbations on the brane for that matter, as
turbations live in the bulk and only need to satisfy Eq.~16!
on the branes. This poses an eigenvalue problem for the m
spectrum of the perturbation modes, which we study nex

IV. KK MASS SPECTRUM

Unlike the situation with gravitational waves@22#, for the
scalar perturbations there is no zero mode withm50, nor
is there a ‘‘supersymmetric’’ factorized form of th
‘‘Schrödinger’’-like Eq. ~9!. To find the lowest mass eigen
value, we have to use other ideas. Powerful methods
analyzing eigenvalue problems exist for normal self-adjo
systems@25#. To use them, we transform our eigenval
1-3
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problem ~8! and ~16! into the self-adjoint form. While the
second order differential equation~9! is self-adjoint, the
boundary conditions foru are not. Therefore, we introduce
new variableY5u/z5a2F and impose the boundary cond
tions ~16! to obtain the boundary value problem

DY[2~gY8!81 f Y5lgY, ~17a!

Y8~w6!50, ~17b!

where we have introduced the short-hand notationf 51/a,

g5z25( 2
3 aw82)21, and l5m214H2. Since the boundary

value problem~17! is self-adjoint, it is guaranteed that th
eigenvaluesl are real and non-negative,l>0. To estimate
the lowest eigenvaluel1 of the eigenvalue problem~17!, we
apply the Rayleigh’s formula@25#, which places a rigorous
upper bound onl1

l1<
E FDFdw

E gF2dw

, ~18!

whereF can beany function satisfying the boundary cond
tions ~17b!, and does not have to be a solution of Eq.~17a!.
Taking a trial functionF51, we have

l1<
E f dw

E gdw

. ~19!

This bound on the lowest mass eigenvalue is our main re

m2<24H21
2

3

E dw

a

E dw

aw82

. ~20!

In practice,F51 is a pretty good guess for the lowest eige
function, so the bound~20! is usually close to saturation~up
to a few percent accuracy in some cases!, as we have ob-
served in direct computations using a numerical eigenva
finder.

The right hand side of Eq.~20! has the structure24H2

1m0
2(H), where the second term is a functional ofH ~in-

cluding the implicitH-dependence of the warp factora). In
the limit of flat branesH→0 we have only the second, pos
tive term. In this limit our expression agrees with the estim
tion of the radion massm0

2 for flat branes, obtained in variou
approximations@11,12,20#. A nonvanishing H alters m2

through both terms. The most drastic alteration ofm2 due to
H comes from the big negative term24H2. For the particu-
lar case of two de Sitter branes embedded in 5D AdS with
a bulk scalar this negative term was noticed in@19#.
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V. TACHYONIC INSTABILITY OF THE RADION
FOR INFLATING BRANES

The most striking feature of the mass bound~20! is that
m2 for de Sitter branes is typically negative. Trying, for in
stance, to do Goldberger-Wise stabilization of branewor
with inflating branes while taking bulk gradientsw82 small
enough to ignore their backreaction~as it is commonly done
for flat branes! is a sure way to get a tachyonic radion ma
an estimate of the integrals givesm2<24H21O(w82),
which will go negative if the bulk scalar field is negligibl
w82!H2.

In what follows we consider two situations. In this se
tion, we consider braneworld models wherem2 is negative
and mostly defined by the first term24H2 in Eq. ~20!. In the
next section, we consider the case where both terms in
~20! are tuned to be comparable and the net radion mas
smaller than the Hubble parameterum2u<H2. In the last sec-
tion we will discuss how these two cases may be dyna
cally connected.

Suppose we start with a braneworld with curved de Si
branes, and we find the mass squared of the radion to
negative. The extra-dimensional eigenfunctionFm(w) is
regular in the intervalw2<w<w1 . Let us turn, however, to
the four-dimensional eigenfunctionQm(t,xW ). Bearing in
mind the evolution of the quantum fluctuations of the bu
field, we choose the positive frequency vacuum-like init
conditions in the far pastt→2`, f k(t).(1/A2k)eikh, h
5*dte2Ht. For the tachyonic modem2,0 the solution to
Eq. ~7! with this initial condition is given in terms of Hanke
functions f k

(m)(h)5(Ap/2)Huhu3/2H m
(1)(kh), with the index

m5A 9
4 1(um2u/H2). The late-time asymptotic of this solu

tion diverges exponentially ast→` (h→0)

f k
(m)~ t !}expF SA9

4
1

um2u

H2
2

3

2D HtG . ~21!

Thus the negative tachyon mass of the radionum2u;4H2

leads to a strong exponential instability of scalar fluctuatio
F}eHt. This instability is observed using a completely d
ferent method in the accompanyingBRANECODE paper@1#,
where we give a fully nonlinear numerical treatment of i
flating branes which were initially set to be stationary by t
potentialsU6(w), and without any simplifications like ap
proximating boundary condition~15! with ~16!.

Tachyonic instability of the radion for inflating brane
means that, in general,braneworlds with inflation are hard to
stabilize.From the point of view of 4D effective theory on
would expect brane stabilization at energies lower than
mass of the flat brane radionm0

2, which is roughly equal to
the second term in Eq.~20!. If the energy scale of inflationH
is larger thanm0 , H2@m0

2, this expectation is incorrect.
Successful inflation~lasting more than 65H21) requires

the radion massm2 to be not too negative

m2*2
H2

20
. ~22!
1-4
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This is possible if both terms in Eq.~20! are of the same
order. In the popular braneworld models the radion mas
the low energy limit,m0, is of order of a TeV. For these
models the scale of ‘‘stable’’ inflation would be the sam
order of magnitude,H;TeV. Although there is no evidenc
that this scale of inflation is too low, it is not a comfortab
scale from the point of view of the theory of primordi
perturbations from inflation.

It is interesting to note that the system of curved bra
may dynamically reconfigure itself to reach a state where
condition~22! is satisfied. In the case of the bulk scalar fie
w acting alone, for quadratic potentialsU6 suitable for brane
stabilization, there may be two stationary warped geome
solutions ~1! with two different values ofH. The solution
with the larger Hubble parameterH might be dynamically
unstable due to the tachyonic instability of the radion, wh
we described above. The second solution with the loweH
which satisfies Eq.~22! might be stable. A fully nonlinear
study of this model was performed numerically with t
BRANECODE and is reported in the accompanying paper@1#.
It shows that, indeed, the tachyonic instability violently r
configures the starting brane state with the largerH into the
stable brane state with the lowerH. This reconfiguration of
the brane system has a spirit of the Higgs mechanism.

If we add an ‘‘inflaton’’ scalar fieldx located at the brane
its slow roll contributes to the decrease ofH.

Thus, for the ‘‘stable’’ brane we have a radion mass~22!.
This condition includes the case when the radion is ligh
thanH, um2u,H2. Even if the radion tachyonic instability i
avoided, the light radion leads us to the other side of
story, a new mechanism of generation of scalar fluctuati
from inflation associated with the radion.

VI. INDUCED SCALAR METRIC PERTURBATIONS
AT THE OBSERVABLE BRANE

Suppose that the radion mass is smaller thanH, um2u
!H2, so that from Eq.~21! we get the amplitude of the
temporal mode functionf k

(m)(t) in the late time asymptotic
frozen at the levelf k

(m)(t).H/(A2k3/2). This is nothing but
the familiar generation of inhomogeneities of a light sca
field from its quantum fluctuations during inflation. Ther
fore an observer at the observable brane will encounter l
wavelength scalar metric fluctuations generated from bra
world inflation.

The four-dimensional metric describing scalar fluctuatio
around an inflating background is usually written as

ds252~112F̃!d t̃21~122C̃!e2H̃ t̃dx̃2, ~23!

whereF̃ and C̃ are scalar metric fluctuations. The induc
four-metric on the brane~10! in our problem can be rewritten
in this standard form~23! if we absorb the~constant! warp
factora(w1) in the redefined timet̃ 5at and spatial coordi-
nates x̃5axW and rescale the Hubble parameterH̃5H/a.
Then we see that the induced scalar perturbations on
brane are
04402
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C̃52F̃5
1

2
F. ~24!

The sign of the first equality here is opposite to what
usually have for (311)-dimensional inflation with a scala
field. It implies that the 4D Weyl tensor of the induced met
vanishes, as the induced fluctuations are conformally
The conformal structure of fluctuations~24! is typical @28#
for a R2 inflation in the Starobinsky model@26#. It is not a
surprise, because for the scale of inflation comparable to
massm0 of the flat brane radion we expect higher derivati
corrections to the 4D effective gravity on the brane. Inde
the massive radion corresponds to a higher derivative
gravity @20#.

The amplitude and spectrum of induced fluctuations
defined byF. From the mode decomposition~6! we get

k3/2F̃k.Fm~w1!
H

M4
, ~25!

where Fm(w1) is the amplitude of the extra-dimension
eigenmode at the observable brane, normalized in suc
way that the fluctuationsF(w,t,xW ) are canonically quantized

on the 4D slice, namelyM5
3* 3

2 (a3/w82)uFm(w)u2dw51.
The normalizationM4 of the 4D mode functions follows
from canonical quantization of the perturbed action~2!; the
usual 4D Planck massM p is expected to be recovered in th
effective field theory on the observable brane@11#.

The scalar metric fluctuations induced by the bulk sca
field fluctuations are scale-free and have the amplitu
k3/2F̃k}H/M p , with the numerical coefficient depending o
the details of the warped geometry. The nature of these fl
tuations is very different from those in (311)-dimensional
inflation, where the inflaton scalar field is time depende
Induced scalar fluctuations do not require ‘‘slow-roll’’ prop
erties of the potentialsV and U6 . The underlying back-
ground bulk scalar field has no time-dependence, but ony
dependence. Thus, generation of induced scalar metric
tuations from braneworld inflation is a new mechanism
producing cosmological inhomogeneities.

If we add another, inflaton fieldx localized at the brane
we should expect that fluctuations of both fields, the b
scalardw and the inflatondx, contribute to the metric per
turbations. We can conjecture that the net fluctuations will
similar to those derived in the combined model withR2 grav-
ity and a scalar field@27#.

VII. DISCUSSION

Let us discuss the physical interpretation and the mean
of our result. Stabilization of flat branes is based on the b
ance between the gradientf8 of the bulk scalar field and the
brane potentialsU(f) which keepsf pinned down to its
values f i at the branes. The interplay between differe
forces becomes more delicate if the branes are curved.
warped configuration of curved branes has the lowest eig
value for scalar fluctuations around it,
1-5
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m2524H21m0
2~H !. ~26!

The termm0
2(H) is a functional ofH, and depends on th

parameters of the model. If parameters are such thatm2 be-
comes negative due to excessive curvature;H2, the brane
configuration becomes unstable. This is analogous to an
stability of a simple elastic mechanical system supported
the balance of opposite forces, which arises for a cer
range of the underlying parameters.

Tachyonic instability of curved branes has serious imp
cations for the theory of inflation in braneworlds. It may n
be so easy to have a realization of inflation in the branewo
picture without taking care of parameters of the model.
flation wherem2 in Eq. ~26! is negative andum2u is larger
thanH2 is a short-lived stage because of this instability. A
ter inflation, the late time evolution should bring the bra
configuration to~almost! flat stabilized branes in the low
energy limit. This by itself requires fine tuning of the pote
tials V and U6 to provide stabilization. Stabilization at th
inflation energy scale requires extra fine tuning to get rid
the tachyonic effect.

Working with a single bulk scalar field, it is probably no
easy to simultaneously achieve stabilization not only at l
energy, but also at the high energy scale of inflation, to ins
that um2u!H2, and to provide a graceful exit from inflation
One may expect that introduction of another scalar fieldx on
the brane can help to have stabilization both at the scal
inflation and in the low energy limit. If we can achieve bra
stabilization during inflation by suppression of the tachyo
instability, we encounter a byproduct effect. Light modes
radion fluctuations inevitably contribute to the induced sca
metric perturbations. Therefore the theory of braneworld
flation has an additional mechanism of generation of prim
dial cosmological perturbations. This new mechanism is
ferent from that of the usual 4D slow roll inflation.

It appears that one of the most interesting potential ap
cations of our effect is a mechanism for reducing the
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effective cosmological constant at the brane. Indeed, in te
of brane geometry, the 4D cosmological constant is relate
the 4D curvature of the brane. Suppose we have two s
tions of the background equations~3! with higher and lower
values of the curvature of de Sitter brane, which is prop
tional to H2. ~The existence of two solutions for certa
choices of parameters of the Goldberger-Wise type poten
used for brane stabilization can be demonstrated, see@1,10#.!
Suppose that the solution with the larger value of brane c
vature is unstable. Then the brane configuration will v
lently restructure into the other static configuration, which
characterized by the lower value of brane curvature wh
the tachyonic instability is absent. The branes are flatten
which for a 4D observer means the lowering of the cosm
logical constant. It will be interesting to investigate how th
mechanism works for brane configurations with several s
lar fields or potentials which can admit more than two sta
solutions.

The problem of the cosmological constant from a bra
world perspective~as a flat brane! was discussed in the lit
erature. There was a suggestion that the flat brane is a sp
solution of the bulk gravity/dilaton system with a sing
brane@29,30#, a claim which was later dismissed@31#. In our
setup, we consider two branes in order to screen the na
bulk singularity, which was one of the factors spoiling th
models@29,30#. The new element which emerges from o
study is the instability of the curved branes.
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