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Can inflating braneworlds be stabilized?
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We investigate scalar perturbations from inflation in braneworld cosmologies with extra dimensions. For this
we calculate scalar metric fluctuations around five dimensional warped geometry with four dimensional de
Sitter slices. The background metric is determined self-consistently lgihigrary bulk scalar field potential,
supplemented by the boundary conditions at both orbifold branes. Assuming that the inflating branes are
stabilized(by the brane scalar field potentiglsve estimate the lowest eigenvalue of the scalar fluctuations—
the radion mass. In the limit of flat branes, we reproduce well known estimates of the positive radion mass for
stabilized branes. Surprisingly, however, we found that for de Sitiélating) branes the square of the radion
mass is typically negative, which leads to a strong tachyonic instability. Thus, parameters of stabilized inflating
braneworlds must be constrained to avoid this tachyonic instability. Instability of “stabilized” de Sitter branes
is confirmed by thesRANECODE numerical calculations of Martin, Felder, Frolov, Peloso, and Kofman. If the
model's parameters are such that the radion mass is smaller than the Hubble parameter, we encounter a new
mechanism of generation of primordial scalar fluctuations, which have a scale free spectrum and acceptable
amplitude.
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[. INTRODUCTION We will consider models where by the choice of the bulk
and brane potentials the interbrane separatibe so-called
One of the most interesting recent developments in highltadion can be fixed, i.e. models in which branes could in
energy physics has been the picture of braneworlds. Higheprinciple be stabilized. The theory of scalar fluctuations
dimensional formulations of braneworld models in super-around flat stabilized branes, involving bulk scalar field fluc-
string or M theory, supergravity and phenomenological mod+tyations 8¢, scalar 5D metric fluctuations and brane dis-
els of the mass hierarchy have the most obvious relevance lacements, is well understodiil]. Similar to Kaluza-Klein
cosmology. In application to the very early Universe this(KK) theories, the extra-dimensional dependence can be
leads to braneworld cosmology, where ouB+1)-  genarated out, and the problem is reduced to finding the ei-

dimensional universe is a 3D curved brane embedded in gonyaiyes of a second-order differential equation for the
higher-dimensional bulk2]. Early Universe inflation in this o .o 00 0ciono) W-dependent part of the fluctuation

picture corresponds to43l (quas) de_ Sr_[ter brane geometry, eigenfunctions subject to the boundary conditions at the
so that the background geometry is simply described by th ranes. The lowest eigenvalue corresponds to the radion

five-dimensional warped metric with four-dimensional de S "
P mass, which is positiver’>0 and exceeds the TeV scale or

Sitter slices: . -
so[12]. Tensor fluctuations around flat stabilized branes are
. also stable.
ds’=a’(w)[dw?—dt*+e”™dx?]. () Brane inflation, like all inflationary models, generates

long wavelength cosmological perturbations from the

For simplicity we use spatially flat slicing of the de Sitter vacuum fluctuations of all lighti.e. with mass less than the
metric ds2. The conformal warp factoa(w) is determined ~Hubble parameteH) degrees of freedom. The theory of
self-consistently by the five-dimensional Einstein equationsMetric fluctuations around the background geoméyywith
supplemented by the boundary conditions at two orbifolgnflating (de Sittej branes is more (_:ompllt_:at_ed than that for
branes. We assume the presence of a single bulk scalar figifde flat branes. For tensor fluctuatiofgsavitational waves
@ with the potentialV(¢) and self-interaction potentials the Iowgst elgenyalu_e of the extra—'dlmensmnal part of the
U.(¢) at the branes. The potentials can be pretty much art€nsor elgenfupctlon |s_zerm=0, which corresponds to the
bitrary as long as the phenomenology of the braneworld i&iSual 4D graviton. As it was shown [21,22, massive KK
acceptable. The class of metri¢® with bulk scalars and gravitons have a gap in the spectrum; the universal lower
two orbifold branes covers many interesting braneworld scebound on the mass is= \/§ H. This means that massive
narios including the Hava-Witten theory3,4], the Randall- KK tensor modes are not generated from brane inflation.
Sundrum modefl5,6] with phenomenological stabilization of Massless scalar and vector projections of the bulk gravitons
branes[7,8], supergravity with domain walls, and others are absent, so only the massless 4D tensor mode is generated.
[9,10]. Scalar cosmological fluctuations from inflation in the
braneworld settingl) have been considered in many impor-
tant works[13—20. The theory of scalar perturbations in
*Electronic address: frolov@cita.utoronto.ca braneworld inflation with bulk scalars is even more compli-
"Electronic address: kofman@cita.utoronto.ca cated than for tensor perturbations. This is because one has
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to consider 5D scalar metric fluctuations and brane displace- Now we consider scalar fluctuations around the back-
ments induced not only by the bulk scalar field fluctuationsground(1). The perturbed metric can be written in the lon-
d¢, but also by the fluctuation$y of the inflaton scalar field gitudinal gauge as
x living at the brane. In fact, most papers on scalar pertur-
bations from brane inflation concentrated mainly on the in- ds?=a(w)?(1+2d)dw?+ (1+2W¥)ds]]. (4)
flaton fluctuationsdy, while the bulk scalar fluctuations
were not included. This was partly because in the earliefhe linearized bulk Einstein equations and scalar field equa-
papers on brane inflation people considered a single brarfon relate two gravitational potentia(x*), ¥(x*) and
embedded in an AdS background without a bulk scalar fieldbulk scalar field fluctuationse(x*). The off-diagonal Ein-
and partly because for braneworlds with two stabilizedstein equations require that
branes there was an expectation that the fluctuations of the
bulk scalar would be massive and thus would not be excited V= @ )
during inflation. 2’

In this paper we focus on the bulk scalar field fluctuations,_. . . . '
assuming for the sake of simplicity that the inflaton fluctua-Slmllar to four-dimensional cosmology, although the coefi-

tions oy are subdominant. We consider a relatively simpleCient s different,
" . The symmetry of the background guarantees separation of
problem of scalar fluctuations around curvéde Sittej y y 9 g P

branes, involving only bulk scalar field fluctuatiods. We variables, so that perturbations can be decomposed with re-

. . g , spect to four-dimensional scalar harmonics, e.g.
find the extra-dimensional eigenvalues of the scalar fluctua-p 9

tions subject to boundary conditions at the branes, focusing R

especially on the radion mass for the inflating branes. In DX =2, D y(W)Qp(t,X), (6)
particular, we investigate the presence or absence of a gap in m

the KK spectrum of scalar fluctuations in view of the tensor . .

mode result. Our results are a generalization of the knowt{/nere the eigenvalues (constant of szeparat|0mppfar_as
results for flat stabilized brang&1], which we reproduce in 1€ four-dimensional masse§1Qn,=m’Qy,, where ‘L is

the limit where the branes are flattenikig—0. the D’A_Iembert op_erator on the 4D de Sitter slice. The four-
dimensional massive scalar harmonigg can be further de-
Il. BULK EQUATIONS composed aQ(t,x) = f{™(t)e’**dk. The temporal mode

functionsf(km)(t) obey the equation
The five-dimensional braneworld models with a scalar

field in the bulk are described by the action 'f'+3Hi:+(e—2Htk2+m2)f:0’ @
S= MsJ \/—_gd5x{R— (Vo)2—2V(e)} where dot denotes time derivative, and we dropped the labels
> k andm for brevity.

Out of the remaining linearized Einstein equation we get

—2|v|§2 fw/—qu'X{UC]-i‘U((p)}, 2) the f_ollowing equations for the extra-dimensional mode
functions®,,(w) and ¢, (w):

where the first term corresponds to the bulk and the sum 2

contains contributions from each brane. The jump of the ex- (a’®)' = -a’¢’ 5o, (8
trinsic curvaturdg K] provides the junction conditions across 3

the brane$see Eq(11) below]. Variation of this action gives

the bulk EinsteinGag=Tag(¢) and scalar fieldde=V , a '_ 3 m?+4H?
equations. For théstationary warped geometryl) they are ;59" ) o2 a®, (8b)
(P,,+3a_’¢, —a2y'=0 (33 where we again omitted the label for transparency.
a L

These are very similar to the scalar perturbation equations
in four-dimensional cosmology with a scalar figl2i3], ex-
a” a'? 5 ¢'? cept for some numerical coefficients and powersa¢iv)
§=2¥— H= 3 (3D (because the spacetime dimensionality is highemd up to
time to extra spatial dimension exchange. Indeed, we can
introduce the higher-dimensional analog of the Mukhanov’s
6( a'? 2) ¢'? 22V variable. However, in the presence of the curvature tefm

2 (30 the eigenvaluen? enters the second order equation for it in a

complicated way, similar to that in the 4D problem with
where the prime denotes the derivative with respect to th@onzero spatial curvature, see e[84]. We can introduce
extra dimension coordinate. The first two equations are another convenient variabla,= \/%(aw/go)d)m. Then
dynamical, and the last is a constraint. The solutions of Eqghe two first order differential equatiori8) can be combined
(3) were investigated in detail ifiL0O]. into a single Schidinger-type equation
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U+ [M*+4H?= V(W) Jup=0 (9) Using expressiolil2) for the trace of the extrinsic curva-
ture, the first of Eqs(11) gives us the junction condition
with the effective potentiaVeq=(2"/2) +2¢’2, where we for linearized perturbations at the two branes®)’|,, .
definedz=(%a¢’'?) 12 =+1iU ’a3§<,o|w+. However, this junction condition does not
There are two main differences relative to the four-really place any further restrictions on the bulk field pertur-
dimensional cosmology. First, in the latter case, FRW geombations, as it identically follows from the bulk perturbation
etry with flat 3D spatial slices is usually considered, while equations(8) and the background junction conditidd3).
the five-dimensional brane inflation metric hesrved4D  Rather, this junction condition would relate the brane dis-
slices, which results in extra terms liké44 in Eq. (9). Sec-  placement to the matter perturbations on the brane if they
ond, here we are dealing not with &mtial but aboundary  were not absent.
value problem, with associated boundary conditions for per- The second of Eqs(11) gives us a physically relevant
turbations at the branes on the edges. After we derive thboundary condition for the bulk field perturbations
boundary conditions, we will calculate the KK spectrum of

the eigenvalues.

(5(p'—(p'<I))|Wt=i U"ade| . (14
W,

IIl. BRANE EMBEDDING AND BOUNDARY CONDITIONS -

The embedding of each brane is describedvbyw,  Using the bulk equatione3), this can be rewritten in a more
+&.(x®), where£. is the transverse displacement of the Suggestive form
perturbed brane and.. is the position of the unperturbed
brane. Holonomic basis vectors along the brane surface are 15
€(ny=0x"19x?= (£ 5,5%), while the unit normal to the brane

N -

3 m?+4H? a*®d
2 a<p’2 a2V’ a’

!

. . . ¢ W — ”

is na=a(l+®,—£,53). The induced four-metric on the : —,—4§+an

branedo?=q,,dx2dx® does not feel the brane displacement ¢ w.

(to linear ordey and is conformally flat (15
do?=a?(1—®)[ — dt?+e?tdx?]. (100 The eigenvaluem? of bulk perturbation equations subject to

the boundary conditiofil5) form a KK spectrum, which we
The junction conditions for the metric and the scalar field affind numerically. We considered several examples of the po-

the brane are tentialsV and U.., and found no universal positive mass
gap. Moreover, for the most interesting models we found
3 3 negativem?.
[Kap=K0ap] =U(¢)Gap, [n-Ve]= Ers (1D To understand the KK spectrum of?, we make a sim-

plification of the boundary conditiofil5) which will allow
where the extrinsic curvature is defined byC,, us to treat the eigenvalue problem analytically, and which
:eé\a)e?b)nA;B, We will only need its trace, which up to lin- well corresponds to a spirit of brane stabilizat[@. Indeed,

ear order in perturbations is rigid stabilization of branes is thought to be achieved by
takingU” (i.e. the brane mass of the figidery large, so that
a’  (a’d) ‘0O¢ the scalar field gets pinned down at the positions of the
K:4¥_ZT_ = (12 Dpranes. In this case, the right hand side of @¢) becomes

very small, which leads to the boundary condition

For the background geometfunder the assumption of Sel, =0 (16)
reflection symmetry across the brapdsgs.(11) reduce to We

U , U’ This by itselfdoes not guarantee stabilitpr vanishing of
—, ¢ - (13)  the metric perturbations on the brane for that matter, as per-
6° a 2 turbations live in the bulk and only need to satisfy Etp)

on the branes. This poses an eigenvalue problem for the mass
For the perturbed geometry, the traceless part of the extrinsigpectrum of the perturbation modes, which we study next.
curvature must vanish in the absence of matter perturbations
on the brane. Since it contains second cross-derivativés of
the brane displacemeftis severely restricted. Basically, this
means that the oscillatory modes of brane displacement are Unlike the situation with gravitational wavé22], for the
not excited without matter support at the brane. While therescalar perturbations there is no zero mode witis 0, nor
could possibly be global displacements of the brane, they diz there a “supersymmetric” factorized form of the
not interest us, so in the following we sét0. Of course, “Schrodinger”-like Eq. (9). To find the lowest mass eigen-
for the more complete problem which includes fluctuationsvalue, we have to use other ideas. Powerful methods for
ox of the “inflaton” field on the brane, the displacemefit analyzing eigenvalue problems exist for normal self-adjoint
does not vanish. systems[25]. To use them, we transform our eigenvalue

IV. KK MASS SPECTRUM
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problem (8) and (16) into the self-adjoint form. While the V. TACHYONIC INSTABILITY OF THE RADION
second order differential equatiof®) is self-adjoint, the FOR INFLATING BRANES
boundary conditions fou are not. Therefore, we introduce a
new variableY =u/z=a?® and impose the boundary condi-
tions (16) to obtain the boundary value problem

The most striking feature of the mass boui2d) is that
m? for de Sitter branes is typically negative. Trying, for in-
stance, to do Goldberger-Wise stabilization of braneworlds
with inflating branes while taking bulk gradiengs ? small
enough to ignore their backreacti¢as it is commonly done
for flat branegis a sure way to get a tachyonic radion mass:
Y'(w.)=0, (17D an estimate of the integrals givas’<—4H?+0(¢’'?),
which will go negative if the bulk scalar field is negligible
where we have introduced the short-hand notafienl/a, @'?<H?2,
g=7°=(%a¢’?) !, andA=m?+4H?2. Since the boundary In what follows we consider two situations. In this sec-

value problem(17) is self-adjoint, it is guaranteed that the tion, we consider braneworld models ZV\(hGTé is negative
eigenvalues\ are real and non-negative=0. To estimate and mostly defined by the first term4H< in Eq. (20). In the

apply the Rayleigh’s formul&25], which places a rigorous (20) are tuned to be comparable and the net radion mass is
upper bound on, smaller than the Hubble parameter’|<H?2. In the last sec-

tion we will discuss how these two cases may be dynami-
cally connected.

DY=—(gY')' +fY=\gY, (173

J FDFdw Suppose we start with a braneworld with curved de Sitter
s T————, (18  branes, and we find the mass squared of the radion to be
ngde negative. The extra-dimensional eigenfunctidn,(w) is
regular in the intervalv_<ws=w, . Let us turn, however, to

. o ~ the four-dimensional eigenfunctio@m(t,i). Bearing in
whereF can beany function satisfying the boundary condi- mind the evolution of the quantum fluctuations of the bulk
tions (17b), and does not have to be a solution of ELjza.  field, we choose the positive frequency vacuum-like initial

Taking a trial functionF=1, we have conditions in the far past——o, f,(t)=(1/y2k)e*”, »
= [dte ', For the tachyonic moden?<0 the solution to
td Eq. (7) with this initial condition is given in terms of Hankel
N w 19 functionsf{™ () = (\w/2)H| 7|¥2H P(kx), with the index
< . ; : ;
. g w=\32+(|m?|/H?). The late-time asymptotic of this solu-
gaw tion diverges exponentially &s—« (7—0)
This bound on the lowest mass eigenvalue is our main result: 9 |m? 3
f(km)(t)ocex 2t 23 Ht (22
dw
2 ) a . . 5
ml< —4H%+ - ———. (200  Thus the negative tachyon mass of the radjor|~4H
3 dw leads to a strong exponential instability of scalar fluctuations
ag'? doceM. This instability is observed using a completely dif-

ferent method in the accompanyimgRANECODE paper[1],
where we give a fully nonlinear numerical treatment of in-
flating branes which were initially set to be stationary by the
potentialsU . (¢), and without any simplifications like ap-
groximating boundary conditiofiL5) with (16).

Tachyonic instability of the radion for inflating branes
means that, in generdraneworlds with inflation are hard to
stabilize.From the point of view of 4D effective theory one

) N would expect brane stabilization at energies lower than the
cluding the implicitH-dependence of the warp factaJ. In mass of the flat brane radicmg, which is roughly equal to

t_he limit of flat.brz_an<_39—|—>0 we h?"e only the §econd, POSI* the second term in E@20). If the energy scale of inflatioHl
tive term. In this limit our expression agrees with the estima-

25 m2  thi fo e
tion of the radion massi3 for flat branes, obtained in various Is larger tharm_o, H > Mo, .thls expectation |s_|lncorregt.
approximations[11,12,2Q. A nonvanishingH alters m? SUCQGSSM |an2at|0r(Iast|ng more thgn 6377) requires
through both terms. The most drastic alteratiomBfdue to the radion massn* to be not too negative
H comes from the big negative term4H2. For the particu-

. . . H2
lar case of two de Sitter branes embedded in 5D AdS without m2= _ 22)

a bulk scalar this negative term was noticed 19]. 20°

In practice,F =1 is a pretty good guess for the lowest eigen-
function, so the boun20) is usually close to saturatioip
to a few percent accuracy in some cases we have ob-
served in direct computations using a numerical eigenvalu
finder.

The right hand side of Eq20) has the structure- 4H?
+mZ(H), where the second term is a functional tf(in-
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This is possible if both terms in Eq20) are of the same ~ 1

order. In the popular braneworld models the radion mass in V=—0=50. (24)
the low energy limit,m,, is of order of a TeV. For these

models the scale of “stable” inflation would be the same
order of magnitudetd ~TeV. Although there is no evidence

that this scale of inflation is too low, it is not a comfortable
scale from the point of view of the theory of primordial

The sign of the first equality here is opposite to what we
usually have for (3-1)-dimensional inflation with a scalar

field. It implies that the 4D Weyl tensor of the induced metric
perturbations from inflation. vanishes, as the induced fluctuations are conformally flat.

It is interesting to note that the system of curved braneir he conformal structure of fluctuationi24) is typical [28]

2 . . . . .
may dynamically reconfigure itself to reach a state where th or a'R inflation mf thehStarollalnsfky frlno_dé%]. Itis ncit a h
condition (22) is satisfied. In the case of the bulk scalar field SUrPrise, because for the scale of inflation comparable to the

¢ acting alone, for quadratic potentidls. suitable for brane massio of the flat brane radion we expect higher derivative
stabilization, there may be two stationary warped geometr orrections to th? 4D effective gravity on_the brang. |r_1deed,
solutions (1) with two different values ofH. The solution he massive radion corresponds to a higher derivative 4D
with the larger Hubble parametét might be dynamically —9ravity [20]- . .
unstable due to the tachyonic instability of the radion, which '!'he amplitude and spectrum of mdu<_;e_d fluctuations are
we described above. The second solution with the lomer defined by®. From the mode decompositidf) we get

which satisfies Eq(22) might be stable. A fully nonlinear
study of this model was performed numerically with the
BRANECODE and is reported in the accompanying papHt

It shows that, indeed, the tachyonic instability violently re-

configures the startin_g brane state W_ith the Ia_rlgeint(_) the  \where ®,(w,) is the amplitude of the extra-dimensional
stable brane state with the lowkl This reconfiguration of eigenmode at the observable brane, normalized in such a

the brane system has a spirit of the Higgs mechanism. . - . :
If we add an “inflaton” scalar fieldy located at the brane, way that the fluctuation® (w,t,x) are canonically quantized

its slow roll contributes to the decreasedf on the 4D slice, namelyM3[3(a%¢'?)|®m(w)|*dw=1.
Thus, for the “stable” brane we have a radion m#28). The normalizationM, of the 4D mode functions follows
This condition includes the case when the radion is lightefrom canonical quantization of the perturbed acti@n the
thanH, |m?|<H?. Even if the radion tachyonic instability is usual 4D Planck masd; is expected to be recovered in the
avoided, the light radion leads us to the other side of theeffective field theory on the observable brdaé].
story, a new mechanism of generation of scalar fluctuations The scalar metric fluctuations induced by the bulk scalar
from inflation associated with the radion. field fluctuations are scale-free and have the amplitude
k3’2@ka/Mp, with the numerical coefficient depending on
the details of the warped geometry. The nature of these fluc-
tuations is very different from those in {31)-dimensional
inflation, where the inflaton scalar field is time dependent.
Suppose that the radion mass is smaller thgnm?| Ind_uced scalar fluctl_Jations do not require “slow—roll” prop-
<H?, so that from Eq.(21) we get the amplitude of the erties of the potentiald/ and U... The underlying back-
temporal mode functiori{™(t) in the late time asymptotic ground bulk scalar field has no time-dependence, but pnly

frozen at the Ievef(km)(t)zH/(\/fkw). This is nothing but dependence. Thus, generation of induced scalar metric fluc-

the familiar generation of inhomogeneities of a light s;calartuatlons from braneworld inflation is a new mechanism for

field from its quantum fluctuations during inflation. There- prohEiumngdct:josmolr(])g|C_<':1Iﬂ|nhorr;_og|]enleltlel_s. d he b
fore an observer at the observable brane will encounter lon vr\]/e ?d anot eL’ mﬂaton 1€ ¥ oc;atljzeh ?t Itd N rr]ang, Ik
wavelength scalar metric fluctuations generated from brane/® Should expect that fluctuations of both fields, the bu
world inflation. scalar_&p and the mflat_onBX, contribute to the metric per-
The four-dimensional metric describing scalar fluctuationstl?rpat'ons' We can _conjgcture that t_he net fluctuations will be
around an inflating background is usually written as §|m|lar to those dgnved in the combined model withgrav-
ity and a scalar field27].

k3’2<T>k:<bm<w+>Mi, (25
4

VI. INDUCED SCALAR METRIC PERTURBATIONS
AT THE OBSERVABLE BRANE

do?=—(1423)d 12+ (1-2%)e?tdx®, (23 VIl DISCUSSION
~ ~ . . . Let us discuss the physical interpretation and the meaning
where® and"V’ are scalar metric fluctuations. The induced of our result. Stabilization of flat branes is based on the bal-

four-metric on the bran€&l0) in our problem can be rewritten ance between the aradiest of the bulk scalar field and the
in this standard forn{23) if we absorb theconstant warp brane potentialy(?b) w??ihch keepse pinned down to its

factora(w.) in the redefined time=at and spatial coordi- values ¢; at the branes. The interplay between different
natesx=ax and rescale the Hubble parametdr=H/a. forces becomes more delicate if the branes are curved. The
Then we see that the induced scalar perturbations on thgarped configuration of curved branes has the lowest eigen-
brane are value for scalar fluctuations around it,
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m2= —4H?2+ mS(H). (26) effective cosmological constant at the brane. Indeed, in terms
of brane geometry, the 4D cosmological constant is related to
The termmZ(H) is a functional ofH, and depends on the the 4D curvature of the brane. Suppose we have two solu-
parameters of the model. If parameters are suchrtifabe-  tions of the background equatiof® with higher and lower
comes negative due to excessive curvatuid?, the brane Vvalues of the curvature of de Sitter brane, which is propor-
configuration becomes unstable. This is analogous to an irfional to H?. (The existence of two solutions for certain
stability of a simple elastic mechanical system supported bghoices of parameters of the Goldberger-Wise type potentials
the balance of opposite forces, which arises for a certaitised for brane stabilization can be demonstrated]k&6).)
range of the underlying parameters. Suppose that the solution with the larger value of brane cur-
Tachyonic instability of curved branes has serious impli-vature is unstable. Then the brane configuration will vio-
cations for the theory of inflation in braneworlds. It may not lently restructure into the other static configuration, which is
be so easy to have a realization of inflation in the braneworlgharacterized by the lower value of brane curvature where
picture without taking care of parameters of the model. In-the tachyonic instability is absent. The branes are flattening,
flation wherem? in Eq. (26) is negative andm?| is larger ~ which for a 4D observer means the lowering of the cosmo-
thanH? is a short-lived stage because of this instability. Af-logical constant. It will be interesting to investigate how this
ter inflation, the late time evolution should bring the branemechanism works for brane configurations with several sca-
configuration to(almos} flat stabilized branes in the low lar fields or potentials which can admit more than two static
energy limit. This by itself requires fine tuning of the poten- solutions.
tials V and U to provide stabilization. Stabilization at the ~ The problem of the cosmological constant from a brane-
inflation energy scale requires extra fine tuning to get rid ofvorld perspectiveas a flat branewas discussed in the lit-
the tachyonic effect. erature. There was a suggestion that the flat brane is a special
Working with a single bulk scalar field, it is probably not solution of the bulk gravity/dilaton system with a single
easy to simultaneously achieve stabilization not only at lowbrane[29,30, a claim which was later dismiss¢81]. In our
energy, but also at the high energy scale of inflation, to insur&etup, we consider two branes in order to screen the naked
that|m?|<H2, and to provide a graceful exit from inflation. bulk singularity, which was one of the factors spoiling the
One may expect that introduction of another scalar fiegsh ~ models[29,30. The new element which emerges from our
the brane can help to have stabilization both at the scale gftudy is the instability of the curved branes.
inflation and in the low energy limit. If we can achieve brane
stabilization during inflation by suppression of the tachyonic
instability, we encounter a byproduct effect. Light modes of
radion fluctuations inevitably contribute to the induced scalar We are grateful to R. Brandenberger, J. Cline, C. Def-
metric perturbations. Therefore the theory of braneworld infayet, J. Garriga, A. Linde, S. Mukohyama, D. Pogosyan and
flation has an additional mechanism of generation of primorV. Rubakov for valuable discussions. We are especially in-
dial cosmological perturbations. This new mechanism is dif-debted to our collaborators on tlB®RANECODE project, G.
ferent from that of the usual 4D slow roll inflation. Felder, J. Martin and M. Peloso. This research was supported
It appears that one of the most interesting potential appliin part by the Natural Sciences and Engineering Research
cations of our effect is a mechanism for reducing the 4DCouncil of Canada and CIAR.
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