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The intent of this paper is to point out that the accretion of a ghost condensate by black holes could be
extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the
gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally
coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of
the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established,
it could be as high as a tenth of a solar mass per second for 10 MeVscale ghost condensate accreting onto
a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate
model.
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I. INTRODUCTION

Prompted by increasingly precise experimental mea-
surements of cosmological parameters, and, in particular,
detection of acceleration of the universe due to an un-
known source which looks like a cosmological constant,
in the recent years there has been a wide discussion in the
literature about modifications of Einstein gravity on cos-
mological scales as a possible alternative to dark matter
and/or energy. However, finding a self-consistent and
well-motivated theory which agrees with all the observa-
tions is proving to be quite a challenge.

Recently, Arkani-Hamed et. al. proposed a model [1],
dubbed a ghost condensation, which they argued to be
consistent with all experimental observations and provide
an interesting modification of gravity in the infrared,
with potential applications to inflation [2], dark matter
and cosmological constant problems. It involves an in-
troduction of a scalar field which develops a nonzero
expectation value of its (timelike) gradient in vacuum,
due to the nontrivial kinetic term in the action. Such
modifications of the scalar field kinetic term were con-
sidered earlier on phenomenological grounds in the model
known as k-inflation [3,4].

The ghost condensate model has been studied on
a perturbative level in effective field theory [1], which
already leads to interesting consequences such as star
trails [5,6]. We look at the ghost condensate from
a slightly different perspective; namely, we would
like to investigate its behavior in the strong gravi-
tational field, for instance, near a Schwarzschild black
hole

ds2 � �f�r�dt2 �
dr2

f�r�
� r2d�2

n; (1)

where f�r� � 1� rg=r, and rg � 2Gm is a gravitational
radius of Schwarzschild black hole of mass m. The prob-
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lem is similar to interaction of a cosmological scalar field
with a black hole [7], so one would expect ghost conden-
sate to be accreted by a black hole.

Accretion of fluid onto a black hole has long been an
important problem in astrophysics [8]. Spherically sym-
metric steady-state fluid accretion onto a Schwarzschild
black hole was derived in Ref. [9]. Minimally coupled
scalar field [10] and quintessence [7,11] accrete onto black
holes as well, although the accretion rate is limited by the
cosmological density of the field [7]. Accretion of exotic
matter fields can lead to unusual results. For instance,
accretion of a phantom energy (which violates energy
dominance conditions) decreases the black hole size [12].

In this paper, we calculate the steady-state accretion
rate of the ghost condensate by a black hole, and point out
that it could be extremely efficient. This puts serious
constraints on the parameters of the ghost condensate
model.

II. GHOST CONDENSATE AS A FLUID

The ghost condensate model adds a nonminimally
coupled scalar field to the Einstein theory of gravity.
However, instead of the usual kinetic term

X � ��r��2; (2)

the action is assumed to involve a more complicated
function of the field gradient squared

S �
Z �

R
16�G

�M4P�X�
� �������

�g
p

d4x; (3)

as well as higher-derivative terms. We will ignore higher-
derivative terms in what follows. They complicate calcu-
lations significantly, and we are concerned with large
scale flows, while one would expect higher-derivative
terms to be important on short scales.

As the ghost field � is not directly coupled to other
fields, its dimensionality and normalization are arbitrary.
If the field � is chosen to have dimension of length, the
field gradient X and the function P are dimensionless, and
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the only dimensional quantity in the ghost sector is M,
which sets the overall energy scale of the ghost conden-
sate. The specific form of the function P�X� is not rigidly
fixed, although the defining feature of the ghost conden-
sate model is that P has a minimum at nonvanishing
(timelike) value of the field gradient. Because of that,
the ghost field rolls even in its vacuum state. The simplest
choice for P with this property is

P�X� �
1

2
�X� A�2; (4)

illustrated in Fig. 1. One could also add a cosmological
constant term �, but since it is not accreted by a black
hole, we will not discuss it further.

Variation of the action (3) with respect to the ghost
field � yields equation of motion

r��P
0�X�r��
 �

1�������
�g

p @��
�������
�g

p
P0�X�@��
 � 0: (5)

The equation of motion is implied by conservation of the
stress-energy tensor, which for the ghost condensate is

T�� � 2M4P0�X��;��;� �M4P�X�g��: (6)

Configurations with P0�X� � 0 solve the equation of mo-
tion identically for any spacetime metric. However, such
configurations are indistinguishable gravitationally from
a purely Einstein theory, as the stress-energy tensor be-
comes trivial as well.

The stress-energy tensor of the ghost condensate (6)
can be transformed into that of a perfect fluid
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FIG. 1 (color online). Ghost condensate kinetic term (top)
and equivalent fluid description (bottom). Equation of state w
and sound speed c2s are shown by dashed curves and solid
curves, respectively.
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T�� � ��� p�u�u� � pg�� (7)

by a formal identification

� � M4�2XP0 � P�; p � M4P; u� �
�;�����
X

p : (8)

The fluid analogy is very useful in understanding the
physics behind the solutions of the ghost equation of
motion (5), although it is not an exact correspondence.
Unlike ordinary fluids, ghost condensate is irrotational,
that is, the vorticity tensor of the flow u� vanishes iden-
tically

!� �
1

2
�u�;�q

�
 � u ;�q

�
� � � 0; (9)

where q�� � g�� � u�u�. This is a direct consequence of
the vector flow u� being derived from a scalar.

Important parameters of the fluid are its equation of
state and sound speed

w �
p
�
; c2s �

dp
d�

�
p0

�0
: (10)

For the ghost condensate with kinetic term (4), they are

w �
X� A
3X� A

; c2s �
X� A
3X� A

: (11)

The equation of state and the sound speed change from
dustlike in the minimum X � A to radiationlike for large
displacements X � A, as shown in Fig. 1. Configurations
with X < A are unstable, as the sound speed squared
becomes negative.

Cosmological expansion of the universe dilutes the
density of the homogeneous ghost condensate and drives
its gradient toward the minimum of the kinetic term P
[1]. Dust-like equation of state of the ghost condensate
near its minimum lends itself to interpretation of ghost
condensate as a dark matter in late-time cosmology [1]. If
this is the case, the energy density of the ghost condensate
� is the energy density of the dark matter, and displace-
ment of the ghost condensate from the minimum is small,
P0 � �=�2M4A�, but nonzero. ‘‘Modification of gravity’’
depends on the excitations in the ghost condensate, which
displace the ghost condensate from its minimum and
carry energy density [1]. Indeed, as the ghost condensate
with P0 � 0 is identical to the cosmological constant,
such a restriction would greatly diminish the attractive-
ness of the ghost condensate model. In view of the above,
we assume the ghost condensate distribution which is
homogeneous far from the black hole, but could be dis-
placed from the minimum (by a small amount).

III. STEADY-STATE ACCRETION

Steady-state accretion means that the flow of the field
(i.e. its gradient) does not change with time, that is
L 6L@t�r��� � @�@t� � 0, which in turn implies that
-2
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FIG. 2. Flow diagrams v�x� of the ghost condensate accre-
tion onto a black hole for A � 3=4 (top) and A � 1 (bottom).
Inflow, no-flow, and (unstable) outflow branches are shown by
solid lines, dot-dash lines , and dotted lines correspondingly.
Flow trajectories passing through the critical point are empha-
sized by thicker lines. Negative v region corresponds to re-
versed flow direction, and is not shown.
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@t� is constant (and can be set to one by a choice of the
field normalization). Therefore, a general steady-state
spherically symmetric field configuration is of the form

� � t�  �r�; (12)

and, in Schwarzschild spacetime (1), has a gradient

X �
1� �@�r �2

f�r�
; (13)

where we introduced a ‘‘tortoise’’ derivative @�r � f�r�@r.
For steady-state accretion of the spherically symmetric

ghost condensate profile (12) onto a Schwarzschild black
hole (1), the equation of motion (5) becomes

@�r�r
2P0@�r � � 0; (14)

which can be immediately integrated to yield the flow
conservation equation

P0@�r � �
r2g
r2
: (15)

The meaning of the dimensionless constant of integration
� becomes clear if one looks at the accretion rate

_m � 4�r2Trt � 2� � 4�r2gM
4; (16)

which does not depend on r and describes a steady-state
transfer of mass from infinity into a black hole.
The numerical value of the coefficient � is picked by
the solution of the flow Eq. (15) that is regular at the
horizon and becomes homogeneous far from the black
hole.

The flow Eq. (15) is actually algebraic in @�r , and
could be analyzed for an arbitrary function P. We will
restrict our discussion to the ghost condensate with
kinetic term (4) and further assume A � 1, as the choice
A > 1 places the solution (12) on the unstable branch
of the kinetic term far from a black hole and is not
physically relevant. Introducing the shorthand notation
v � @�r and x � f�r�, the flow Eq. (15) can be written
as

�
1� v2

x
� A

�
v

�1� x�2
� �: (17)

Solutions v�x� for various values of � are shown in Fig. 2.
Although cubic Eq. (17) can be directly solved in radi-
cals, the flow is more readily analyzed using standard
phase space diagram techniques.

Both at the horizon (x � 0) and infinity (x � 1), all
flow trajectories converge to one of three roots

x � 0: v0 � 0;�1 x � 1: v1 � 0;�
�������������
1� A

p
: (18)

All flow trajectories must start and end at these roots, and
they do not intersect except at the critical points. The
critical points are defined as the points where the full
differential of (17),
061501
�
3v2 � 1� Ax

x�1� x�2
dv�

�1� v2��1� 3x� � 2Ax2

x2�1� x�3
vdx � 0;

(19)
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becomes degenerate, i.e., when coefficients in front of dv
and dx both vanish. In the positive v region, there is (at
most) one critical point

v2� �
A�

��������������������������������
A2 � 36A� 36

p

18
; x� �

1� 3v2�
A

: (20)

Regularity at the horizon for ingoing flow demands that
v0 � 1, while proper fall-off at infinity requires v1 � 0.
For A< 1, the only flow trajectory that connects the two
is the one that passes through the critical point (20), as it
is clear from the top panel of Fig. 2. The flow starts out
subsonic at infinity, and turns supersonic at the critical
point. Thus, the accretion rate for the steady-state flow is
set by the local conditions at the supersonic transition,
which happens in the immediate vicinity of the black
hole, and depends little on the actual boundary conditions
at infinity. The coefficient � is calculated by evaluating
Eq. (17) at the critical point (20). The resulting expression
is straightforward, but cumbersome for arbitrary A, so we
will not write it down here. Instead, we will show the
graph of � as a function of A in Fig. 3. The coefficient �
decreases monotonically from 3

���
3

p
=2 at A � 0 to 1 at A �

1. Note that it does not vanish even as displacement of the
ghost condensate from the minimum approaches zero.

Asymptotics of the ghost condensate profile far from
the black hole are easy to analyze directly from the flow
Eq. (17). For the slow flow (v� 1), v2 term in Eq. (17)
can be neglected, and we have

v ’ �
�1� x�2

x�1 � A
;  ’

�
A
rg ln

r
Arg � �1� A�r

: (21)

As can be seen from the above expressions, sufficiently
far from the black hole the field gradient v falls off at
infinity as r�2, while the field profile levels off as r�1. The
field profile is influenced by the black hole and deviates
from homogeneous significantly inside a ‘‘sphere of in-
fluence’’ of radius ri � Arg=�1� A�.

The case of A � 1 is special, and is shown on the
bottom panel of Fig. 2. The three roots at infinity merge
into one triple root at v1 � 0, and one can get from
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FIG. 3 (color online). Dependence of the accretion rate
coefficient � on A.
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infinity to horizon without going through a critical point.
These solutions correspond to a dustlike flow with 0 �
�< 1, and are always supersonic. However, their gradient
v falls off at infinity only as r�

1
2, which means that the

ghost field does not become homogeneous far from a black
hole, but in fact grows as r

1
2. In particular, the trivial

solution (P0 � 0, � � 0) is

� � t� 2r
1
2
g

�
r
1
2 � r

1
2
garctanh

�����
rg
r

r 	
: (22)

The likely reason behind the change in field asymptotic is
that spherically symmetric dust accretion is not steady-
state. The accretion rate is ever growing, as the dust from
larger and larger volume falls inside the black hole.

For A � 1, the flow trajectory which passes through a
critical point (� � 1) is simply v � 1� x � rg=r. The
corresponding field profile is

� � t� rg ln
�
r
rg

� 1
	
: (23)

Its asymptotic at infinity is also nonhomogeneous, but the
growth is only logarithmic. This solution emerges from
steady-state flow solutions (21) with A< 1 in the limit
when the sphere of influence of the black hole grows
infinitely large.
IV. DISCUSSION

In the last section, we calculated the steady-state ac-
cretion rate of the ghost condensate by a black hole for
spherically symmetric flows. The most important result of
the calculation is that the dimensionless coefficient �,
which determines the accretion rate of the flow, is
bounded below by 1 even as the density of the ghost
condensate far from a black hole becomes vanishingly
small. This means that it is the energy scaleM of the ghost
condensate theory that sets the accretion rate, and not the
cosmological abundance of the ghost condensate field as
one might have naively expected.

The physical reason for this is that unlike the usual
dark matter, the homogeneous ghost condensate does not
have angular momentum and can be prevented from
falling onto a gravitating body only by building up pres-
sure support, which requires significant displacement
from the minimum and densities of order M4. This con-
sideration alone might pose significant problems for ghost
condensate as a realistic dark matter candidate, as dark
matter galaxy halos are thought to be virialized and not
pressure-supported. This seems impossible to achieve in
the framework of the ghost condensate model, unless the
condensate becomes strongly nonhomogeneous and
breaks up into ‘‘particles’’, in which case it is hard to
view it in any sense as a modification of gravity.

Up to a numerical coefficient of order 1, the steady-
state accretion rate is equal to the energy density
-4
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M4 falling down through the horizon area 4�r2g at the
speed of light. The top value of 10 MeV for the ghost
energy scale quoted in [1] corresponds to a rather high
density

�10 MeV�4 �
�10 MV � e�4

�h3c5
� 2:32 � 1012

kg

m3 : (24)

If the steady-state flow of the kind we considered is
established, the accretion rate of a 10 MeV scale ghost
condensate by an astrophysical black hole would be enor-
mous

_m � 0:08�
M�

s
�
rg

3 km
�2�

M
10 MeV

�4: (25)

To avoid rapid black hole growth and its astrophysical
consequences, energy scale M of the ghost condensate
should be significantly less than 10 MeV. A stellar-size
black hole would double in size over the lifetime of the
universe (roughly 14 Gyrs, or 4 � 1017s) for the ghost
energy scale of order 1 keV. This estimate goes down to
10 eV for supermassive (109 M�) black holes.

In our calculations, we ignored the backreaction of
the accreting ghost condensate matter onto a black hole
metric. This is a good approximation for low accretion
rates and ghost energy scales. However, if the accretion
rate becomes as large as the above estimate, backreaction
can no longer be ignored, both because the density of
the ghost condensate near the black hole is high and
a large supply of ghost matter far from the black hole
is needed to sustain the flow. Although proper treatment
061501
of backreaction is unlikely to alleviate the problem
of excessive accretion rates, as it is caused by the large-
ness of the effect in the first place, sustainability of
the steady-state flow with such enormous accretion rates
is questionable. It would seem more likely that the black
holes would completely evacuate all ghost matter
from their gravitational potential wells, growing in the
process.

Spherically symmetric steady-state accretion is an
idealized situation, of course. We have not considered
time-scale required to establish such flows, the role of
initial conditions, motion of the black hole with respect
to the condensate, or what happens if the ghost field
becomes highly inhomogeneous. All of these are much
harder problems, and it might turn out that some factors
prevent the accretion from settling into an efficient
steady-state regime. Still, having ghost condensate ca-
pable of such high accretion rates is alarming, and the
issue should be further addressed by the ghost condensate
scenario.
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