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Is it really naked? On cosmic censorship in string theory
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We investigate the possibility of cosmic censorship violation in string theory using a characteristic
double-null code, which penetrates horizons and is capable of resolving the spacetime all the way to the
singularity. We perform high-resolution numerical simulations of the evolution of negative mass initial
scalar field profiles, which were argued to provide a counterexample to cosmic censorship conjecture for
AdS-asymptotic spacetimes in five-dimensional supergravity. In no instances formation of naked
singularity is seen. Instead, numerical evidence indicates that black holes form in the collapse. Our
results are consistent with earlier numerical studies, and explicitly show where the ’no black hole’
argument breaks.
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I. INTRODUCTION

Cosmic censorship conjecture remains an unsolved
problem in general relativity. In the absence of proof,
finding an acceptable counterexample is very important,
as it would resolve the issue one way or the other. But even
that remains elusive. While there are numerous examples
of initial conditions that form a naked singularity in
general relativity, none of them are generic as required
by the terms of the cosmic censorship conjecture.

Recently, Hertog, Horowitz, and Maeda argued that
cosmic censorship is generically violated in asymptoti-
cally anti de Sitter spacetimes [1], particularly in five-
dimensional supergravity arising from string theory con-
structs [2]. The counterexample consists of an initial data
set which is known to form a singularity and an argument
that it cannot form a black hole in the collapse. That
would leave the possibilities that singularity is naked,
which would disprove cosmic censorship conjecture, or
consumes the entire spacetime (big crunch), which ini-
tially was deemed unlikely by the authors.

These papers have caused quite a controversy in the
literature. The arguments of [1,2] were called into ques-
tion by a number of papers, on grounds of both analytical
[3,4] and numerical [5–7] calculations. The authors them-
selves pointed out a gap [8] in their first example [1], and
reconsidered the possibility of a big crunch [9].

The present paper investigates the possibility of cosmic
censorship violation numerically. Earlier numerical stud-
ies [5–7] are suggestive of a black hole formation.
However, they are not conclusive due to the flawed coor-
dinate choice, which breaks at the moment of apparent
horizon formation, and prevents the code from seeing the
whole spacetime, thus leaving the possibility of a singu-
larity subsequently becoming naked. This shortcoming is
resolved in the present paper by using a characteristic
double-null code.
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Conceptually, the code is similar to the one used to
investigate the global structure of the spacetime in the
critical collapse of the scalar field [10], although the
implementation is entirely new. Several issues specific
to asymptotically AdS spacetimes had to be addressed,
particularly, boundary conditions at infinity.

We focus on cosmic censorship counterexample in the
string theory context [2], and perform high-resolution
numerical simulations of the evolution of two families
of negative mass initial scalar field profiles for various
values of parameters and different boundary conditions at
the cut-off. In no instances formation of naked singular-
ity is seen. Instead, numerical evidence indicates that
black holes form in the collapse, in agreement with [5].
Our results clearly show where the ‘‘no black hole’’ argu-
ment of [2] fails.

The paper is organized as follows: In Sec. II, the issue
of a coordinate choice is discussed in view of the require-
ments of testing cosmic censorship conjecture numeri-
cally. The scalar field evolution equations and the
implementation of the algorithm are described in
Sec. III. The numerical results of investigation of cosmic
censorship in string theory are given in Sec. IV, and
summarized in Sec. V.
II. COORDINATE CHOICE

In numerical investigations of singularity formation
and global structure of the spacetime, the coordinate
choice plays a crucial role. To study the global structure,
coordinates must cover the entire spacetime. To see the
singularity inside a black hole, coordinates must pene-
trate the horizon. To prevent the singularity from corrupt-
ing the rest of the spacetime once it forms (if it is not
naked, that is), the information propagation speed (both
numerical and true characteristic) must be under control.
These issues cannot be avoided if one wishes to study
cosmic censorship numerically.
23-1  2004 The American Physical Society
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In this paper, we adopt double-null coordinate system,
which is particularly suited for the above requirements.
The spherically symmetric �n� 2�-dimensional space-
time metric can be written as

ds2 � e�2�d�2 � r2d�2n; (1)

where d�2n is the metric of a unit n-dimensional sphere,
and the two-manifold metric d
2 � e�2�d�2 is written
in explicitly conformally-flat form. Throughout the paper,
we will be freely switching between Minkowski and
double-null coordinates on the flat two-manifold

d�2 � �dt2 � dx2 � �4dudv; (2)

with u � �t� x�=2 and v � �t� x�=2. The familiar form
of anti de Sitter metric in spherically symmetric static
coordinates

ds2 � �

�
1�

r2

‘2

�
dt2 �

dr2

1� r2

‘2

� r2d�2n (3)

transforms to

r � ‘ tan
x
‘
;� � ln

�
cos

x
‘

�
(4)

in coordinate system (1). One should note that the peculiar
property of AdS that the spatial infinity ’is not very far
away’ is reflected in the fact that a finite interval x 2
�0; �2 ‘� covers the whole AdS spacetime in conformal
coordinates (1). Indeed, these are the coordinates used
in construction of a Carter-Penrose conformal diagram of
the AdS spacetime.

In spherical symmetry, one can define a local mass by

f 	 g��r;�r;� � 1�
2m

rn�1
: (5)

The function f carries information about the spacetime
structure: it is negative in the trapped (or antitrapped)
region, positive in the regular region, and vanishes on the
apparent horizon. The mass function defined by (5) co-
incides with ADM mass in asymptotically flat space-
times. In asymptotically AdS spacetimes, however, it
diverges near spatial infinity. The physical cause for this
is simple: AdS has a constant (negative) energy density
while the volume is infinite. To avoid infinities, one can
subtract the divergent part from the definition of the mass

� � m�
1

2

rn�1

‘2
; (6)

where ‘ is the curvature radius of the asymptotic AdS. We
will refer to this mass definition as the reduced mass.

Although traditionally used in numerical relativity,
Schwarzschild coordinates, like the ones in metric (3),
are not suited to study the possible violation of cosmic
censorship in dynamical evolution. They do not penetrate
horizons (at the apparent horizon, f � grr � 0, so the
104023
metric coefficient grr necessarily diverges), and therefore
have no chance of seeing, for example, the destruction of
a black hole by infall of a negative mass and ’baring’ of
the singularity inside (if it actually happens).
Unfortunately, Schwarzschild coordinates were the coor-
dinates used in recent numerical studies [5–7] of the
possible counterexamples to cosmic censorship in asymp-
totically AdS spacetimes [1,2]. Although the formation of
a trapped surface is seen, the further fate of the spacetime
remains unknown. This renders the results of [5–7]
largely inconclusive as far as the possible violation of
the cosmic censorship goes.

There are coordinate systems other than (1) which do
penetrate the horizon, most notably the ingoing
Eddington-Finkelstein coordinates

ds2 � �fe2gdv2 � 2egdvdr� r2d�2n: (7)

However, in implementation of the evolution code based
on this coordinate system (which we did as well, although
it is not going to be further discussed in this paper) one
encounters a problem that the numerical information
propagation speed is higher than the true speed of the
outgoing characteristic (which varies on the grid). This
leads to termination of the numerical evolution in the
regions causally disconnected from the singularity, which
is not a satisfactory behavior for a code that aspires to
resolve the global structure of the spacetime.

The true strength of double-null coordinate system (1)
is the advantage of knowing the speed of information
propagation everywhere in advance. The importance of
this point cannot be overemphasized, as numerical infor-
mation propagation properties is what makes or breaks
the numerical code which has to deal with singularities
before any other factor even comes into play.

The final issue that needs to be discussed before we go
over to evolution equations is the gauge choice. The form
of the metric (1) is left invariant under rescaling of null
coordinates

u � U�u�; v � V�v�: (8)

We use this gauge freedom to place initial and boundary
surfaces at known coordinate locations, namely, fix center
of spacetime and constant-r cut-off at x � 0 and x � c
correspondingly, and put initial data surface at t � 0
timeslice, as illustrated in Fig. 1. This can always be
achieved simply by putting u � v at r � 0 and u � �v
at initial surface, while rescaling v to have v� u � c at
cut-off. In fact, it does not even fix the gauge uniquely.
The residual gauge freedom (8) is determined by

V�u� �U�u� � 0; u > 0; (9a)

V�u� c� �U�u� � c; u >�c; (9b)

V��u� �U�u� � 0; 0 
 u 
 �c; (9c)

and amounts to an odd periodic function ! of period c,
with V�u� � U�u� � u�!�u�.
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FIG. 1. Coordinate choice.
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III. SCALAR FIELD EVOLUTION

The dynamics of a scalar field � with potential V���
minimally coupled to gravity inN � 2� n dimensions is
described by the action

S �
1

16�G

Z
fR� g���;��;� � 2V���g

�������
�g

p
dNx: (10)

Spherical symmetry effectively reduces the problem to
evolution of three nonlinearly coupled scalar fields on a
flat two-dimensional manifold. Substituting the spheri-
cally symmetric metric (1) into the scalar field action (10)
and integrating over the n-dimensional spherical sub-
space, one obtains the reduced action

S /
Z �
n�n� 1�

r2
��rr�2 � e�2�� �

2n
r
�rr � r�� � �r��2

� 2e�2�V���
�
rnd2x; (11)

which describes the dynamics of a spherically symmetric
gravitating scalar field. Here and later the differential
operators (gradient r and D’Alembertian �) are taken
with respect to the flat two-dimensional metric (2).
Variation of the reduced action with respect to field
variables �, �, and r gives equations of motion

r�r
n� 1

� �rr�2 � e�2��1�
2r2V

n�n� 1�
�; (12a)

���
n
r
�rr � r�� � e�2�V 0; (12b)

���
n
2

�r
r

�
1

2
�r��2 �

2

n
e�2�V; (12c)
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while constraint equations

T raceless
�
r;ab � 2r�;a�;b� �

r
n
�;a�;b

�
� 0 (13)

are recovered by variation with respect to the (flat) two-
metric �ab. The traceless part of a symmetric two-tensor
has two independent components, which means there are
two constraints. They can be taken either as fuug and fvvg
or fxtg and fxxg � fttg components of (13).

The evolution code uses a semiconstrained algorithm.
Rather than solve dynamical Eq. (12c) directly, ingoing
(uu) null constraint equation

r;uu � 2r;u�;u �
r
n
�2;u � 0 (14)

is integrated to obtain one of the metric coefficients. The
integration is particularly easy to do if one defines a new
field variable

g � �2�� ln��r;u�; (15)

in terms of which the constraint (14) is written simply as

g;u �
r
n
�2;u
r;u

: (16)

The field variable g actually has a meaning beyond a mere
computational convenience. It is the same g which enters
coefficients of the Eddington-Finkelstein metric (7).

Equation (12a) warrants further discussion. It involves
a delicate cancellation of terms in both small r and large r
regimes, which makes it susceptible to discretization
errors. The loss of precision can be catastrophic, leading
to numerical instability developing at either r � 0 or
large r and subsequent code failure. After trying various
discretization schemes, we settled on discretizing a form
of Eq. (12a) which eliminates nonlinear gradient term in
favor of a box operator for small r

��rn�
n�n� 1�

� �rn�2r;ueg
�
1�

2r2V
n�n� 1�

�
; (17)

while for large r, the Eq. (12a) rewritten in terms of
inverse radius # � 1=r is discretized instead

#�#� �n� 1��r#�2 � �#;ueg
�
�n� 1�#2 �

2

n
V
�
:

(18)

This largely circumvents the stability problems men-
tioned, while still being possible to discretize efficiently.

The Cauchy problem for evolution equations (12) re-
quires specification of six functions of one variable at the
initial spacelike surface: the values of three fields r; �;�
and their time derivatives _r; _�; _�. These six functions are
not independent in general relativity; they must satisfy
two constraint equations (13). We restrict our attention to
time-symmetric initial data. In covariant form, the re-
quirement of time symmetry is written as
-3
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K ab � 0; n � r� � 0; (19)

where Kab is an extrinsic curvature and n is the normal
to the initial data surface. In our gauge, the initial surface
is t � 0, so the condition of time symmetry is simply that
the time derivatives _r; _�; _� vanish. This requirement sat-
isfies the ftxg constraint identically, which leaves three
functions subject to one constraint for specification of the
initial data. Of the two freely specifiable functions, one is
physical—the initial scalar field profile, and the other is a
gauge choice fixing residual gauge freedom (9).

Once the scalar field profile is specified on the initial
time slice, the rest of the variables are obtained by
integrating

r;x �
�
1�

2m

rn�1

�
eg; (20a)

m;r �mr
�2;r
n

�
rn

n

�
V �

�2;r
2

�
; (20b)

g;r �
r
n
�2;r: (20c)

Eq. (20a) follows from definitions (5) and (15).
Equation (20b) is the remaining constraint equation re-
written in terms of the physically interesting mass func-
tion m. Our gauge choice is implicitly given by Eq. (20c);
it corresponds to the requirement _g � 0 on the initial time
slice. The integration is performed numerically using
fourth order Runge-Kutta algorithm with constant step
size.

Since in asymptotically AdS spacetimes the light rays
take finite time to reach spatial infinity and reflect back,
the issue of boundary conditions at infinity is a physical
one, and cannot be avoided. Various boundary conditions
for scalar field� at infinity have been suggested, specifics
of which we will discuss later. Additional complication
for numerical evolution is that it is unfeasible to include
infinity on the grid, so the spacetime has to be cut-off,
which we do at a constant (large) radius rc, and impose
boundary conditions for the scalar field there. The re-
maining boundary condition at the cut-off is the one for
the metric coefficient

g;t �
#;xt
#;x

�
2

n
#�;t�;x

#;x
; (21)

which follows from the ftxg constraint Eq. (13). In the
center of the spacetime, one has the usual regularity
condition for the scalar field

rr � r� � 0: (22)

The numerical evolution scheme is illustrated in Fig. 2.
The field variables are discretized on a square spacetime
grid of spacing $. Discretization of the evolution equa-
tions is done using the leapfrog scheme, which is second
order accurate and nondissipative. In particular, the gra-
dient and box differential operators are discretized as
104023
rxX �
Xrt � Xlt
2$

; rtX �
Xup � Xdn
2$

; (23a)

�X �
1

$2
�Xrt � Xlt � Xup � Xdn�: (23b)

Neumann boundary conditions (22) require asymmetric
discretization of the derivatives for second order accuracy

X0�0� �
1

2$
�4X1 � 3X0 � X2�: (24)

The code was implemented in Fortran, and is efficient
enough to run on personal workstation class computers.
Since only three subsequent time steps are stored, the
code is not memory-limited even for very large grids. All
the numerical results presented in this paper were ob-
tained in simulations with the grid size of 65539 points.
IV. COSMIC CENSORSHIP IN STRING THEORY

Hertog, Horowitz, and Maeda argued that cosmic cen-
sorship is generically violated in string theory [2]. In
their counterexample, they considered N � 8 gauged
supergravity in five dimensions, which is thought to be
a consistent truncation of ten dimensional type IIB su-
pergravity on S5. They picked a single scalar component
which does not act as a source for any of the other fields,
thereby reducing the problem to the one of Einstein
gravity in five dimensions minimally coupled to a scalar
field � with negative potential

V��� � �2e2�=
��
3

p

� 4e��=
��
3

p

: (25)

The potential is unbounded from below, with a maximum
value of V�0� � �6 which corresponds to the asymptoti-
cally AdS spacetime with curvature scale ‘ � 1. They
constructed time-symmetric initial data which has nega-
tive reduced mass �0 of the initial configuration, namely

� �

8<
:

A
R20

r � R0
A
r2

r > R0
: (26)

They further argued that a black hole cannot form in the
collapse of this initial configuration (as Schwarzschild-
AdS black holes have positive mass), whereas it is pos-
sible to show that singularity does form in the collapse of
the homogeneous part of the field, and hence concluded
-4
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that singularity must be naked and cosmic censorship
conjecture is violated.

We use the numerical code described in the previous
section to solve Einstein and scalar field equations for the
spherically symmetric collapse of the profile (26), and
determine the global structure of the resulting spacetime.
We find that black holes do form in the collapse of initial
data (26), contrary to the argument of Hertog et al. [2].

We place the spacetime cut-off at rc � 25, which is
large enough so that less than 1% of the initial profile
mass �0�1� lies beyond the cut-off in all cases. At the
cut-off, we impose either Dirichlet or Neumann boundary
conditions for the scalar field

�jr�rc � const; �Dirichlet BC� (27a)

@r�r
2��jr�rc � 0; �Neumann BC�: (27b)

Neumann boundary conditions (27b) correspond to the
’standard’ boundary conditions on the fall-off of the
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FIG. 3 (color online). Global structure of the spacetime resulting
values of parameters A � 16, R0 � 4. Thick black lines on m�x
singularity.
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scalar field � � (�t�=r2 in AdS-CFT correspondence,
but are written in this form for computational conve-
nience. We also try alternative suggestion [2] for the
initial field profile,

� �

8<
:
A lnR0R20

; r � R0

A lnrr2 ; r > R0
; (28)

which has a slower fall-off rate and much larger negative
masses than (26).

Typical spacetime obtained in numerical simulations is
shown in Fig. 3. It corresponds to evolution of initial field
profile (26) with values of parameters A � 16, R0 � 4
(�0 � 1:0) subject to Dirichlet boundary conditions
(27a). The four panels show density plots of metric co-
efficients r�x; t� (top left) andm�x; t� (bottom left), as well
as the scalar field ��x; t� (top right) and its gradient
g���;��;� (bottom right). Contours on r�x; t� plot show
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TABLE I. Summary of the numerical results from evolution
of the truncated 1=r2 (left) and ln�r�=r2 (right) initial field
profiles given by Eqs. (26) and (28) for various values of
parameters. Black hole sizes and masses are approximate.

Truncated 1=r2 field profile (26)

Initial conditions Dirichlet BC Neumann BC
�0 A R0 �0 rBH �BH rBH �BH �cut
0.5 2.0 2.0 �0:50 0.86 0.64 0.92 0.78 0.76
1.0 4.0 2.0 �2:42 1.28 2.16 1.40 2.90 2.81
1.5 6.0 2.0 �5:74 1.60 4.56 1.75 6.22 5.88
0.5 4.5 3.0 �3:45 1.33 2.45 1.46 3.34 3.23
1.0 9.0 3.0 �15:58 1.88 8.01 2.08 11.5 11.2
1.5 13.5 3.0 �35:65 2.32 17.2 2.57 25.1 23.5
0.5 8.0 4.0 �11:89 1.78 6.60 1.97 9.47 9.39
1.0 16.0 4.0 �52:78 2.47 21.7 2.74 31.9 31.9
1.5 24.0 4.0 �119:51 3.05 47.9 3.38 71.0 68.0

Truncated ln�r�=r2 field profile (28)
Initial conditions Dirichlet BC
�0 A R0 �0 rBH �BH
0.5 2.885 2.0 �25:1 0.88 0.69
1.0 5.771 2.0 �103:5 1.34 2.51
1.5 8.656 2.0 �238:1 1.57 4.27
0.5 4.096 3.0 �50:2 1.28 2.16
1.0 8.192 3.0 �208:4 1.75 6.22
1.5 12.288 3.0 �479:6 2.02 10.4
0.5 5.771 4.0 �98:6 1.71 5.74
1.0 11.542 4.0 �410:9 2.24 15.1
1.5 17.312 4.0 �945:3 2.56 24.8
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isolines of constant radius. The upper thick line onm�x; t�
plot is the singularity (where spacetime evolution termi-
nates), while the lower thick line is the apparent horizon
(found by condition f � 0). Because of our coordinate
choice (1), the plots in Fig. 3 essentially are Carter-
Penrose conformal diagrams, and show the global struc-
ture of the spacetime. It is clear that the black hole has
formed in the collapse.

To see if the black hole settles into an almost static
configuration or continues to evolve, we plot the size of
the apparent horizon rBH as a function of advanced time v
in the left panel of Fig. 4. After the stage of growth
corresponding to collapse of the homogeneous part of
the initial scalar field profile, and sharp steplike increase
in size when the outgoing portion of the wavepacket
reflects from infinity and falls in (these features in the
scalar field profile are most clearly seen in gradient plot in
the bottom right of Fig. 3), the black hole settles to almost
constant size. The apparent horizon (shown in bottom left
panel of Fig. 3) approaches null direction towards the end
of the evolution as well, which is consistent with the black
hole settling into a static configuration after the
formation.

The formation of the black hole does not contradict the
negative initial reduced mass � of the profile. For
Dirichlet boundary conditions (27a), the reduced mass
at the cut-off is conserved, but the black hole has scalar
hair which hides the positive black hole mass and makes
the total mass at the cut-off negative. No-hair theorems
[11,12] do not apply in this case as the cut-off is at a finite
distance, while the proof of the no-hair theorems involves
exclusion of the growing mode at infinity. For Neumann
boundary conditions (27b), black holes do not have scalar
hair, but the reduced mass at the cut-off is not conserved,
104023
and grows positive to accommodate the formation of the
black hole, as shown in right panel of Fig. 4.
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In search of violation of cosmic censorship conjecture,
we have performed many high-resolution numerical
simulations for different initial profiles (26) and (28),
different boundary conditions (27a) and (27b) and various
values of the parameters �0 and R0, but all in vain. In no
cases formation of naked singularity was seen. The global
structure of the spacetime remains similar to that of
Fig. 3, with black holes of various sizes formed in the
collapse. Our numerical results are summarized in
Table I, which shows sizes and masses of the black holes
produced. In addition, the spacetime mass at the cut-off
after black hole formation is shown for runs with
Neumann boundary conditions. The quoted values should
be considered approximate, as the number of useful grid
points shrinks near the end of the evolution and precision
suffers somewhat (especially for smaller black holes). It is
worth noting that the black holes formed in the runs with
Neumann boundary conditions indeed have (almost) no-
hair, as the masses evaluated at the horizon and at the cut-
off are almost the same.

As Fig. 5 shows, the size of a black hole formed in the
collapse of the truncated 1=r2 field profile (26) scales like
rBH � (R0�

1=2
0 � (A1=2 as a function of profile parame-

ters, with coefficient ( � 0:627 for Dirichlet and ( �
0:693 for Neumann boundary conditions. This agrees well
with the lower-bound estimate based on an analysis of the
collapse of the homogeneous part of the profile [4].
Although the latter underestimates the value of numerical
coefficient (yielding ( � 0:58), it is only by about 10–
20%.
V. CONCLUSION

We have developed a double-null characteristic code
implementing N-dimensional spherically symmetric evo-
104023
lution of a minimally coupled scalar field with potential
in asymptotically AdS spacetimes, and used it to study
the possibility of cosmic censorship violation in string
theory. No instances of formation of naked singularity
were seen in high-resolution numerical simulations of the
evolution of two families of negative mass initial scalar
field profiles for various values of parameters and differ-
ent boundary conditions at the cut-off.

Our results indicate that black holes form and reach
steady-state configuration in the collapse, despite the
negative initial mass of initial data. Either the spacetime
mass becomes positive (for Neumann boundary condi-
tions, where mass � is not conserved), or the black hole
covers itself with negative mass hair (for Dirichlet bound-
ary conditions, where no-hair theorems do not apply
because of the finite cut-off), as was pointed out in [4,5].

The possibility of naked singularity formation cannot
be ruled out completely by results of numerical simula-
tions, as they only sample a finite number of initial
configurations, but in view of the above it seems unlikely.
Although no evolutions leading to big crunch were ob-
served from initial configurations considered in this pa-
per, that possibility should be explored further in the
future work.

To summarize, the cosmic censorship conjecture was
found to hold in all the examples we have studied.
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