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Perturbations and critical behavior in the self-similar gravitational collapse
of a massless scalar field
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This paper studies the perturbations of the continuously self-similar critical solution of the gravitational
collapse of a massless scalar fidRloberts solution The perturbation equations are derived and solved
exactly. The perturbation spectrum is found to be not discrete, but occupying a continuous region of the
complex plane. The renormalization group calculation gives the value of the mass-scaling experient
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[. INTRODUCTION In this paper we consider an analytical continuously self-
similar solution of gravitational collapse of a massless scalar
The numerical calculation of the spherically symmetricfield constructed by Rober{®]. Originally it was intended
gravitational collapse of a massless scalar field by Choptuilas a counterexample to cosmic censorship conjecture, but it
[1] and subsequent results for different matter models an@as later rediscovered in context of the critical gravitational
symmetries(see, for example, Refd2-5]) spectacularly collapse by Brady10] and Oshiro, Nakamura, and Tomi-
demonstrate that critical phenomena occur in gravitationaimatsu[11]. Although this solution does exhibit critical be-
collapse, and that the near-critical behavior is universal irhavior, there are two problems. First, as any self-similar so-
some important aspects. lution, it is not asymptotically flat, and the mass of the black
There are two possible late-time outcomes of gravitationahole grows infinitely. This can be prevented if we cut the
collapse, distinguished by whether or not a black hole isself-similar solution away from the black hole and glue it to
formed in the course of evolution. Which end state is realsome other solution to make the spacetime asymptotically
ized depends on initial conditions, specified by a control paflat and of finite mass, which was in fact done in Rég]. A
rameter p that characterizes the gravitational interactionsecond, and bigger, problem is that growing non-self-similar
strength in the ensuing evolution. Fp p* (subcritical so- modes will dominate the mass-scaling exponent if they exist,
lution) the gravitational field is too weak to form a black but they are not accounted for by the self-similar solution.
hole, while forp>p* (supercritical solutiona black hole is This paper addresses the second problem by doing linear
produced. The critical solution, corresponding to a controperturbation analysis of the Roberts solution. We calculate
parameter valug* just at the threshold of black hole for- the mass-scaling expone@tand analyze the stability of the
mation, acts as an intermediate attractor for nearby initiatritical solution. The remarkable feature of this model is that
conditions, and has an additional symmetry: discrete or conit allows exact analytical treatment.
tinuous self-similarity, also referred to as echoing. For super-
critical evolution there is usually no mass gap, and the mass Il. SELF-SIMILAR SOLUTION

of the resultant black hole is described by the mass-scaling ] ] ) o
relation We begin by presenting a continuously self-similar

spherically symmetric solution of the gravitational collapse
Mgu(p)<|p—p*|?, (1) of a massless scalar fie(Roberts solutioh It is most easily
derived in null coordinates. Therefore we write the metric as
where 8 is mass-scaling exponent.

General gravitational collapse is a very difficult problem, dS’=—2e**dudv + R*dQ?, 2
even if restricted to the case of spherical symmetry. As a i i
result, most studies of critical behavior resort to numericalhereZ andR are functions of bottu andv. The coordi-
calculations at some stage, with few fully analytical solutionsN@t€su, v can be reparametrized agu), v(v), so coordi-
known. Finding critical solutions is made easier by the facthateé choice freedom is given by two functions of one vari-
that they have additional symmetry; requiring the solution tc@Ple each; it can be fixed by settifg=0 at two null
be continuously self-similar can simplify the problem hypersurfaces =const andu=const. With this choice of
enough to make it solvable for simpler matter models. Botimetric the Einstein scalar field equations become
the stability of the critical solution and the exact mass-

2 23 __
scaling exponent can then be determined by linear perturba- (R%),w+e==0, (3a)
tion analysis, as suggested by Evans and Colef8amnd SR R 23
i i _ e
carried out in Refs[6—8]. 25 - F’;jz v ¥+2<D,UCD,U=O, (3b)
*Electronic address: andrei@phys.ualberta.ca R,,—2% ,R,+R(® ,)?=0, (30
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Ruu—23% [R,+R(® )?=0, (3d  The mass contained inside the apparent horizon is the mass
’ Y ' of the black hole

D+ Ro®u + Ru®o =0 3
,uv R R - V. ( e)

1
MBHZERAHv 9
The first four equation§3a—(3d) are the Einstein equations
for the metric(2), and Eq.(3e) is the scalar wave equation
[0® = 0. Equationg3c) and(3d) are constraints. Note that in
the case of a massless scalar field the wave equation follows
from the Einstein equations, so one of the equati@a, Ill. LINEAR PERTURBATIONS

(3b), and(3e) is redundant. . . .
We turn on the influx of the scalar field at the advanced We now apply the perturbation formaligié—8]. It is con-

time v=0, so that the spacetime is Minkowskian to the pastvenlent to analyze perturbations to the self-similar solution

of this surface. The initial conditions for syste(B) are N hew coordina‘t‘es n_atlﬂral to the problem.“For t_his purpose

specified there by the continuity of the solution. We use coVe |,r'1troduce a “spatial” coordinate and a “scaling vari-

ordinate freedom to s&t|,_,=0. able” s,
An assumption that the collapse is continuously self-

similar, i.e., that there exists a vector fiel such that

£.9,,=29,,, allows the Einstein-scalar equatio(® to be

solved analytically. The critical solution is given by

whereR, is the radius of apparent horizon given by Ed.

, Ss=—In(—u), (10

[
1——
u

_1|
X—En

with the inverse transformation

20:0,
Ry= JuZ—uv u=—-es, v=e Se*-1). (11)

1 v The signs are chosen to make the arguments of the logarithm
‘Do:§|n =50 (4)  positive in the region of interesv >0, u<0), where the

field evolution occurs.

and is a member of a one-parameter family of self-similar N these coordinates the met(@) becomes
solutions
dSFP=2e2CT*x"9[(1—e ) ds?—2dsdx]+ R*dQ?,
3 =0, (12

R=+u?—uv—pv?, and the critical solutior{4) is simply

2pv+u(l—+1+4p)

2pv+u(l+y1+4p)
We now consider small perturbations of critical solution
Above ¢(p) is constant component of a scalar field, chosen13). We fix the gauge by requiring that perturbations pre-
so that®|,_,=0, and the solution converges to the critical serve the form of the metri2). After imposing this gauge
solution asp goes to zero: there still exists coordinate choice freedom, which we use to
set3|,—o=0. We will deal with remaining coordinate free-

EOZO, RozeX7S, cI)():X. (13)

1
(Dzzln +(p). (5)

1 |[Vi1+4p—-1 1 5 dom inv later.
¢(p)=—3In Jirap+1 =—5Inp+p+0O(p7). (6 Quite generally, the perturbation modes can be written as
For valuesp>0 of control parameter, a black hole is S =3+ po(x)es,
formed; forp<<0 the field disperses, and the spacetime is flat
again in regioru>0. (Our choice of sign op is opposite to R=Ry+ pr(x)e* seks,

the one in[10]. Also note that the constant field term is
omitted there.

The existence and position of the apparent horizon is
given by conditionA(u,v)=0, where

O=Py+pp(x)ess, (14)

which amounts to doing Laplace transformation on general
A(u,v)=u§Z=R,U. (7)  perturbations dependent on bathands. It is understood
that there can be many perturbation modes, with distinct
Due to the spherical symmetry of the problem it is possibler, and ¢ for each(possibly complexk in the perturbation
to introduce a local magsl(u,v) by spectrum. To recover a general perturbation we must take the
sum of these modes. Modes with Re0 (called relevant
mode$ grow and eventually lead to black hole formation,

2M
= uv
1 207RuR,- ®) while modes with R&<0 decay and are irrelevant.

R
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Let us discuss how the mass-scaling exporteistrelated Here we made use of the fact thRt=e*"° to the zeroth
to the perturbation spectrum. The functidn defined by Eq. order inp. Therefore the dependence of the black hole mass
(7), takes the form on p, taken to be the control parameter, is

A(X,5,p) = Ag(X) — pa(x)e*®, (15 "

Mgn* Rap<p 17

whereA, is the self-similar background term. Recall that

vanishes at the apparent horizon. Even though there is nphijs is precisely the mass-scaling relatidn with exponent
apparent horizon in the critical solution, i.ég(x)>0, the  g=1/x. For a more detailed discussion of this approach and
exponentially growing perturbation will eventually make its validity see Ref[7].

zero, leading to black hole formation. The mode with the perturbing the Einstein-scalar equatiof® by a mode
largest eigenvalues=maxRek], will clearly dominate, giv-  (14), we obtain a system of linear partial differential equa-

ing the position of the apparent horizé,(XaH) by tions. After a change of variablesi ) to (x,s), thes de-
x pendence separates, and we are left with the following sys-
e tem of linear ordinary differential equations fot r, and ¢
Ao(Xan) =Pa(XaH) 5 - 16 '
o Xan) =PalXan) (Ran) (18 in the independent variabbe

(1-e " 2)r"+2(k—e”?)r'+4(k—1)r+40=0, (189
(1—e ) o"+2(k+e o' —4o+2(1—e )¢’ +2kp+2e ' +2(2—K)r=0, (18b)
—20'+2¢'=0, (1890

(eZ—2+e 2)r"—4k(1—e®)r’'—4k(1—-ke)r+2(e?—e X o

+4k(1+e*)o+2(e>*—2+e )¢’ —4k(1—e®) =0, (180
(1—e ) ¢"+2kep' +2kp+2(1—e” Z)r' +2kr=0. (180
|
Here a prime denotes the derivative with respect.to Since on a =0 hypersurfacess, SR, and 8> must vanish

Boundary conditions for the syste(f8) are specified at identically, {(0)=¢'(0)=0, so a Taylor expansion df(v)
x=0 andx=. We require that perturbations grow slower around zero starts from the’ term. Therefore these gauge
than background at large (i.e., thato andr are bounded, modes correspond to negative eigenvalkgsnd are irrel-
and ¢ grows slower thax) for the perturbation expansion to evant.
be valid. Because the solution must be continuous at the

hypersurfacey =0, we haver (0)= ¢(0)=0. Since we used IV. SOLUTION OF PERTURBATION EQUATIONS

coordinate freedom in to setX to zero on that surface, we _ _ ) _
equations(18) which can be obtained from the self-similar

a(0)=r(0)=¢(0)=0, solution (5) by expanding aroung=0:
o(X),r(x),é(x) grow slowly asx—oo, (19 =0,
Equations(18) together with boundary conditior(49) con- v? _ .
stitute our eigenvalue problem. R=Vu"~uv 1_ 2 W2—uv =€ (1~ 2p sinff x),
The infinitesimal coordinate transformatiorv—v
—2{(v) corresponding to the remaining coordinate freedom p —2up

in v will give rise to unphysical gauge modes b= 2I 1— —
X ={'(v)={'[e (e~ 1)],

6R= (g(—/)u)m e *{[e %(e*~1)],

E—h =x+psinhx. (21)

Clearly, the self-similar mode has eigenvalke O, hence
any relevant mode will dominate the calculation of the mass-
scaling exponent.
The perturbation equationél8) inherit their structure
(o) from general Einstein-scalar equatia$, Egs.(18a), (18b),
A R Ve vl and (18¢ are dynamical equations, while Eg&8c and
ob= (u—v) ° fle(e™ -1l (20 (18d) are constraints. Equatiofi8b) is redundant,
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(180)=[(18a)’

—2(18a)—(1—e ?)(18&)’
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—2(e"®+k—1)(18c)+2(18e)]/2, (22

so it will be discarded. The simple integrable form of Ef8c) allows elimination of one of the unknowns, sayfrom the

other equations by

o=1'12+¢+C.

(23

Thus we are left with two second-order ordinary differential equati@i3E's) for r and ¢:

(1—e 2)r"+2(k+1—e 2)r'+4(k—1)r+4¢+4C=0,
(1-e 2)¢"+ 2K’ +2kp+2(1—e )1’ +2kr=0

(243
(24b)

with boundary condition§19), and one constraint.8d), which we equivalently rewrite as first-order ODE with the use of Eq.

(18a:

(k—2)(1—e 2)r'+2(k’®—ke 2*=2k+2)r+2(1—e )¢’ +4(k—1)p+2C(k+ke >*—2)=0.

Equations(24a@ and (24b) can be decoupled with introduc-

tion of the auxiliary functiore=r — ¢, reducing to

(1—e 22"+ 2kz' +2(k—2)z=—4C, (258
(1—e 2"+ 2(k+1—e 2)r'+4kr=4(z—C).
(25b
We convert this into algebraic form using a change of vari-
able
1
y=e¥ x= Eln y. (26)
Finally, Egs.(25) and constrain{24c) become
1 a2 1-(k+1 dz k/l2—1)z=C
y( —y)d—szr[ —(k+1)y] @—( —1)z=C,
(279

2
y(1— y): —+[2— (k+2)y]——kr—C—z, (27b

2y(1—- y)——2y(k 1)z—ky(1- y)——k(l—ky)r

+C[k+(k—2)y]=0, (279
and boundary condition€l9) are specified ay=1 andy
=00 by

dr
z(1)=r(1)=0, ®(1)+C:O,

z(y),r(y) grow slowly asy—o. (28
“Grow slowly” means thatr (y) must be bounded, aray)
grows at most logarithmically, witikdr/dy+r —z bounded,
asy—o. The last condition follows fronar being bounded
at infinity.

Equation (270 is indeed a constraint, sinad(27c)/dy
=(27a) —k(27b), and is automatically satisfied for aflif

(240

(k=1)[kr(1)—2z(1)+2C]=0 (29
is satisfied initially aty= 1. Imposing initial condition$28),
the constrainf29) yields

C(k—1)=0, (30)
i.e.,C=0 unlessk=1.

The perturbation problem is now reduced to the study of
decoupled ordinary differential equatioig7a and (27b)
and constraint30) with boundary condition$28). We pro-
ceed solving it. Observe that Eq&73 and(27b) are hyper-
geometric equations. Their properties are well known and
described in a number of books on differential equations
(see, for exampld,13]), so the systeni27) can be analyti-
cally solved and the perturbation spectrum exactly deter-
mined.

We start with Eq.(279. It is a homogeneousgexcept
whenk= 1) hypergeometric equation

2
z
2 +[c—(a+b+1)y] ——abz—O

y(1=y) 5 (3D
with coefficients
c=1, a+b=k, ab=k/i2-1,
a=1/2k—k?=2k+4), b=1/2k+ M)GZ)

It has singular points at=0,1¢0, and its general solution is
a linear combination of any two different solutions from the
set

z,=F(a,b;k;1-vy),
z,=(1-y)* *F(1-a,1-b;2—k;1-y),
z;=(—y) ®F(a,a;a+1-Dbyy 1),

z,=(-y) °F(b,b;b+1-a;y ), (33
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where F(a,b;c;y) is the hypergeometric function; Im &
F(a,b;c;0)=1. Any three of the function§33) are linearly

dependent with constant coefficients, for example, 1

3

r'2-krb-a) _,

_ —im(1—b) -+

2= T(i-af © z 2
r(2-kr@a-b) _ a

e MR F —in(1-a) Re k

F(1=b)2 e Z. (34 ;
Functionsz, ,z, andzz,z, have the asymptotic behavior g7
z1=1, z,=(1-y)* % neary=1, o7
23=(—y)"% z=(-y)™® neary==. (35 37T

Imposing boundary condition®8) on solutions of Egs.
(273 and (270 leads to perturbation spectrum. It turns out  FIG. 1. Complex perturbation spectrum. Valueskdb the left
that it is completely defined by the boundary value problemof the solid line are prohibited by the boundary conditions at infin-
for z. As we will show, the boundary conditions forare ity, to the right of the broken line by the initial conditions wat
satisfied automatically if they are satisfied forWhen im- ~ =1. Values in the region of intersectigthe shaded regioK) are
posing boundary conditions, we use asymptot8% to ana- allowed, and constitute the perturbation spectrum.
lyze the perturbation spectrum.

The case whetkk=1 is special. In this case the solution ~ Now we turn our attention to Eq27b) for r. It is also
(33) degenerates arzh defined by Eq(33) coincides with hypergeometric, with coefficients
z, identically. In order to deal with this situation we continue
to usez,; as earlier, but denote k% a solution independent c=2, a=1, b=k. (39
of z;,. It is easy to verify that it is logarithmically divergent
aty=1. Note also that fok=1 we can have&C#0, so that  The general solution of the homogeneous equation is
Eqg. (273 is inhomogeneous, and we must add the particular
solu_tlonz=C to the g_eneral solution abo_v_e. =yl r=yi1—y)tk, (40)

First, let us examine boundary conditionsyat 1. Ob-
serve that ay=1, z, diverges as a power for Re>1, loga-
rithmically for k=1, does not have a limit for Re=1,
Im k#0, and convergefo zerg only for Rek<1. The solu-
tions that satisfy the initial conditior(1)=0 are

and the solution of inhomogeneous equation is easily con-
structed from Eq(40) by

1
z=cz,, Rek<1, =7 V1-k

y_ [y zy)dy
f z(y)dy—(1-y)* kf TT=TR|-

1 1 (1-y)

41
z=C(1-zy), k=1 (36) “
From Eq.(34) we see thaiz, (and z;) is connected to 1he limits of integration are chosen so that the boundary

23,2, by a linear relation with nonzero coefficients, so theconditions ay=1 are satisfied. Let us verify that the bound-
boundary conditions at infinity will only be satisfied if both &Y conditions forr do not place additional restrictions on
23,24 do not blow up, i.e., if R@>0, Reb>0. Reb is posi- perturlpanon spectrum. Asymptoti85) and Eq.(41) give the
tive by construction, while the region Re-0 of the com- Pehavior
plexk plane is divided from the region Re<0 by the curve

Rea=0. Written in terms the real and imaginary partskof y H1-y)* K _
it has the form r=-—5-x neary=1. (42)
Rek(2—Rek) . o
(Im k)zzm, (37 Clearly, r(1)=dr/dy(1)=0. Also, r is bounded at infinity

since z, for the constraint(27¢), requires kdr/dy()
and is shown in Fig. 1: to the left of the solid curve &e —2dZ/dy(«)=0. Therefore, Eqs38) and(41) for ke K is
<0, and to the right Ra>0. a_s_,olutlon of perturbatlor_l equ_an(%?) with bo_undary con-

ditions (28), and the regiorK is the perturbation spectrum,
which turns out to be continuous.

It should be emphasized that the calculations of perturba-
tion spectrum were made using a special choice of gauge
preserving the form of the metri¢2). However, one can

z=(1-y)' *F(1—-a,1-b;2—k;1—vy) (39 show thatz coincides with gauge-independent quantity in
our gauge, and hence the eigenvalue problem for the pertur-
is a solution of Eq(273 with boundary condition$28). bation spectrum is gauge invariant.

Combining restrictions otk placed by boundary condi-
tions aty=1 andy=« we see that to satisfy all boundary
conditions(28), k must lie in the shaded regiol of the
complex plane, and for anye K,
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V. CONCLUSION The eigenvaluek approach sup Re=1, which corre-

In this paper we used linear perturbation analysis to in—Sponds to the mass-scaling expongrt L. This is different

vestigate the critical behavior in the gravitational collapse Offrom the exponenfs=1/2 found in[10-13 using the seif-

a massless scalar field. We have perturbed the con'[inuous?irnilar solution.
e o . p : y The remarkable feature of the massless scalar field model
self-similar critical solution(Roberts solutioyy and solved

the perturbation equations exactly. The perturbation spe ds that it allows exact analytical treatment of perturbation

trum was found to be not discrete. but continuous. and oce modes as well as the critical solution. Because of its simplic-
. : ' ' Uity, the model considered in this paper can be used for fur-
pying the region of the complex plane

ther investigation of critical phenomena using perturbation
1 Rek(2—Rek) analysis. In particular, one might hope that more genere_ll, for
§< Rek<1, |Imk|> \/W, (43 example, nonspherical, perturbations can be treated in the
(2Rek) similar fashion.
which, according td7], suggests nonuniversality of critical
behavior for different ingoing wave packets. The complex

oscillatory modes might lead to decay of a continuously self- This research was supported by Natural Sciences and En-
similar solution (4) into discrete self-similar choptuon ob- gineering Research Council of Canada. | am grateful to D. N.
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