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Perturbations and critical behavior in the self-similar gravitational collapse
of a massless scalar field

Andrei V. Frolov*
Physics Department, University of Alberta, Edmonton, Alberta, Canada, T6G 2J1

~Received 13 May 1997!

This paper studies the perturbations of the continuously self-similar critical solution of the gravitational
collapse of a massless scalar field~Roberts solution!. The perturbation equations are derived and solved
exactly. The perturbation spectrum is found to be not discrete, but occupying a continuous region of the
complex plane. The renormalization group calculation gives the value of the mass-scaling exponentb51.
@S0556-2821~97!02422-3#
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I. INTRODUCTION

The numerical calculation of the spherically symmet
gravitational collapse of a massless scalar field by Chop
@1# and subsequent results for different matter models
symmetries~see, for example, Refs.@2–5#! spectacularly
demonstrate that critical phenomena occur in gravitatio
collapse, and that the near-critical behavior is universa
some important aspects.

There are two possible late-time outcomes of gravitatio
collapse, distinguished by whether or not a black hole
formed in the course of evolution. Which end state is re
ized depends on initial conditions, specified by a control
rameter p that characterizes the gravitational interacti
strength in the ensuing evolution. Forp,p* ~subcritical so-
lution! the gravitational field is too weak to form a blac
hole, while forp.p* ~supercritical solution! a black hole is
produced. The critical solution, corresponding to a con
parameter valuep* just at the threshold of black hole for
mation, acts as an intermediate attractor for nearby in
conditions, and has an additional symmetry: discrete or c
tinuous self-similarity, also referred to as echoing. For sup
critical evolution there is usually no mass gap, and the m
of the resultant black hole is described by the mass-sca
relation

MBH~p!}up2p* ub, ~1!

whereb is mass-scaling exponent.
General gravitational collapse is a very difficult proble

even if restricted to the case of spherical symmetry. A
result, most studies of critical behavior resort to numeri
calculations at some stage, with few fully analytical solutio
known. Finding critical solutions is made easier by the f
that they have additional symmetry; requiring the solution
be continuously self-similar can simplify the proble
enough to make it solvable for simpler matter models. B
the stability of the critical solution and the exact mas
scaling exponent can then be determined by linear pertu
tion analysis, as suggested by Evans and Coleman@3# and
carried out in Refs.@6–8#.

*Electronic address: andrei@phys.ualberta.ca
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In this paper we consider an analytical continuously se
similar solution of gravitational collapse of a massless sca
field constructed by Roberts@9#. Originally it was intended
as a counterexample to cosmic censorship conjecture, b
was later rediscovered in context of the critical gravitation
collapse by Brady@10# and Oshiro, Nakamura, and Tom
matsu@11#. Although this solution does exhibit critical be
havior, there are two problems. First, as any self-similar
lution, it is not asymptotically flat, and the mass of the bla
hole grows infinitely. This can be prevented if we cut t
self-similar solution away from the black hole and glue it
some other solution to make the spacetime asymptotic
flat and of finite mass, which was in fact done in Ref.@12#. A
second, and bigger, problem is that growing non-self-sim
modes will dominate the mass-scaling exponent if they ex
but they are not accounted for by the self-similar solution

This paper addresses the second problem by doing lin
perturbation analysis of the Roberts solution. We calcul
the mass-scaling exponentb and analyze the stability of the
critical solution. The remarkable feature of this model is th
it allows exact analytical treatment.

II. SELF-SIMILAR SOLUTION

We begin by presenting a continuously self-simil
spherically symmetric solution of the gravitational collap
of a massless scalar field~Roberts solution!. It is most easily
derived in null coordinates. Therefore we write the metric

dS2522e2Sdudv1R2dV2, ~2!

whereS and R are functions of bothu and v. The coordi-
natesu, v can be reparametrized asu(ū), v( v̄), so coordi-
nate choice freedom is given by two functions of one va
able each; it can be fixed by settingS50 at two null
hypersurfacesv5const andu5const. With this choice of
metric the Einstein scalar field equations become

~R2! ,uv1e2S50, ~3a!

2S ,uv2
2R,uR,v

R2 2
e2S

R2 12F ,uF ,v50, ~3b!

R,vv22S ,vR,v1R~F ,v!250, ~3c!
6433 © 1997 The American Physical Society
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R,uu22S ,uR,u1R~F ,u!250, ~3d!

F ,uv1
R,vF ,u

R
1

R,uF ,v

R
50. ~3e!

The first four equations~3a!–~3d! are the Einstein equation
for the metric~2!, and Eq.~3e! is the scalar wave equatio
hF50. Equations~3c! and~3d! are constraints. Note that i
the case of a massless scalar field the wave equation fol
from the Einstein equations, so one of the equations~3a!,
~3b!, and~3e! is redundant.

We turn on the influx of the scalar field at the advanc
time v50, so that the spacetime is Minkowskian to the p
of this surface. The initial conditions for system~3! are
specified there by the continuity of the solution. We use
ordinate freedom to setSuv5050.

An assumption that the collapse is continuously se
similar, i.e., that there exists a vector fieldj such that
£jgmn52gmn , allows the Einstein-scalar equations~3! to be
solved analytically. The critical solution is given by

S050,

R05Au22uv,

F05
1

2
lnF12

v
uG , ~4!

and is a member of a one-parameter family of self-sim
solutions

S50,

R5Au22uv2pv2,

F5
1

2
lnF2

2pv1u~12A114p!

2pv1u~11A114p!
G1w~p!. ~5!

Above w(p) is constant component of a scalar field, chos
so thatFuv5050, and the solution converges to the critic
solution asp goes to zero:

w~p!52
1

2
lnFA114p21

A114p11
G52

1

2
ln p1p1O~p2!. ~6!

For values p.0 of control parameter, a black hole
formed; forp,0 the field disperses, and the spacetime is
again in regionu.0. ~Our choice of sign ofp is opposite to
the one in@10#. Also note that the constant field term
omitted there.!

The existence and position of the apparent horizon
given by conditionA(u,v)50, where

A~u,v !5u;m
;m5R,v . ~7!

Due to the spherical symmetry of the problem it is possi
to introduce a local massM (u,v) by

12
2M

R
52guvR,uR,v . ~8!
ws
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The mass contained inside the apparent horizon is the m
of the black hole

MBH5
1

2
RAH , ~9!

whereRAH is the radius of apparent horizon given by Eq.~7!.

III. LINEAR PERTURBATIONS

We now apply the perturbation formalism@6–8#. It is con-
venient to analyze perturbations to the self-similar solut
in new coordinates natural to the problem. For this purp
we introduce a ‘‘spatial’’ coordinatex and a ‘‘scaling vari-
able’’ s,

x5
1

2
lnF12

v
uG , s52 ln~2u!, ~10!

with the inverse transformation

u52e2s, v5e2s~e2x21!. ~11!

The signs are chosen to make the arguments of the logar
positive in the region of interest~v.0, u,0!, where the
field evolution occurs.

In these coordinates the metric~2! becomes

dS252e2~S1x2s!@~12e22x!ds222dsdx#1R2dV2,
~12!

and the critical solution~4! is simply

S050, R05ex2s, F05x. ~13!

We now consider small perturbations of critical solutio
~13!. We fix the gauge by requiring that perturbations p
serve the form of the metric~2!. After imposing this gauge
there still exists coordinate choice freedom, which we use
setSux5050. We will deal with remaining coordinate free
dom in v later.

Quite generally, the perturbation modes can be written

S5S01ps~x!eks,

R5R01pr~x!ex2seks,

F5F01pf~x!eks, ~14!

which amounts to doing Laplace transformation on gene
perturbations dependent on bothx and s. It is understood
that there can be many perturbation modes, with distincs,
r , andf for each~possibly complex! k in the perturbation
spectrum. To recover a general perturbation we must take
sum of these modes. Modes with Rek.0 ~called relevant
modes! grow and eventually lead to black hole formatio
while modes with Rek,0 decay and are irrelevant.
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Let us discuss how the mass-scaling exponentb is related
to the perturbation spectrum. The functionA, defined by Eq.
~7!, takes the form

A~x,s,p!5A0~x!2pa~x!eks, ~15!

whereA0 is the self-similar background term. Recall thatA
vanishes at the apparent horizon. Even though there is
apparent horizon in the critical solution, i.e.,A0(x).0, the
exponentially growing perturbation will eventually makeA
zero, leading to black hole formation. The mode with t
largest eigenvalue,k5max$Rek%, will clearly dominate, giv-
ing the position of the apparent horizonRAH(xAH) by

A0~xAH!5pa~xAH!
ekxAH

~RAH!k . ~16!
er

o
th

e

om
no

Here we made use of the fact thatR5ex2s to the zeroth
order inp. Therefore the dependence of the black hole m
on p, taken to be the control parameter, is

MBH}RAH}p1/k. ~17!

This is precisely the mass-scaling relation~1! with exponent
b51/k. For a more detailed discussion of this approach a
its validity see Ref.@7#.

Perturbing the Einstein-scalar equations~3! by a mode
~14!, we obtain a system of linear partial differential equ
tions. After a change of variables (u,v) to (x,s), the s de-
pendence separates, and we are left with the following s
tem of linear ordinary differential equations fors, r , andf
in the independent variablex:
~12e22x!r 912~k2e22x!r 814~k21!r 14s50, ~18a!

~12e22x!s912~k1e22x!s824s12~12e22x!f812kf12e22xr 812~22k!r 50, ~18b!

r 922s812f850, ~18c!

~e2x221e22x!r 924k~12e2x!r 824k~12ke2x!r 12~e2x2e22x!s8

14k~11e2x!s12~e2x221e22x!f824k~12e2x!f50, ~18d!

~12e22x!f912kf812kf12~12e22x!r 812kr50. ~18e!
e

ion
r

ss-
Here a prime denotes the derivative with respect tox.
Boundary conditions for the system~18! are specified at

x50 andx5`. We require that perturbations grow slow
than background at largex ~i.e., thats and r are bounded,
andf grows slower thanx! for the perturbation expansion t
be valid. Because the solution must be continuous at
hypersurfacev50, we haver (0)5f(0)50. Since we used
coordinate freedom inu to setS to zero on that surface, w
also haves(0)50. Thus, the boundary conditions are

s~0!5r ~0!5f~0!50,

s~x!,r ~x!,f~x! grow slowly as x→`. ~19!

Equations~18! together with boundary conditions~19! con-
stitute our eigenvalue problem.

The infinitesimal coordinate transformationv°v
22z(v) corresponding to the remaining coordinate freed
in v will give rise to unphysical gauge modes

dS5z8~v !5z8@e2s~e2x21!#,

dR5
z~v !

~12v/u!1/25e2xz@e2s~e2x21!#,

dF5
z~v !

~u2v !
52es22xz@e2s~e2x21!#. ~20!
e

Since on av50 hypersurfacedS, dR, anddF must vanish
identically, z(0)5z8(0)50, so a Taylor expansion ofz(v)
around zero starts from thev2 term. Therefore these gaug
modes correspond to negative eigenvaluesk, and are irrel-
evant.

IV. SOLUTION OF PERTURBATION EQUATIONS

Observe that there is an obvious solution of perturbat
equations~18! which can be obtained from the self-simila
solution ~5! by expanding aroundp50:

S50,

R5Au22uvS 12
p

2

v2

u22uv D5ex2s~122p sinh2 x!,

F5
1

2
lnF12

v
uG1

p

2

v222uv
u22uv

5x1p sinh 2x. ~21!

Clearly, the self-similar mode has eigenvaluek50, hence
any relevant mode will dominate the calculation of the ma
scaling exponent.

The perturbation equations~18! inherit their structure
from general Einstein-scalar equations~3!; Eqs.~18a!, ~18b!,
and ~18e! are dynamical equations, while Eqs.~18c! and
~18d! are constraints. Equation~18b! is redundant,
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~18b!5@~18a!822~18a!2~12e22x!~18c!822~e22x1k21!~18c!12~18e!#/2, ~22!

so it will be discarded. The simple integrable form of Eq.~18c! allows elimination of one of the unknowns, says, from the
other equations by

s5r 8/21f1C. ~23!

Thus we are left with two second-order ordinary differential equations~ODE’s! for r andf:

~12e22x!r 912~k112e22x!r 814~k21!r 14f14C50, ~24a!

~12e22x!f912kf812kf12~12e22x!r 812kr50 ~24b!

with boundary conditions~19!, and one constraint~18d!, which we equivalently rewrite as first-order ODE with the use of E
~18a!:

~k22!~12e22x!r 812~k22ke22x22k12!r 12~12e22x!f814~k21!f12C~k1ke22x22!50. ~24c!
-

ri of

nd
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ter-

e

Equations~24a! and ~24b! can be decoupled with introduc
tion of the auxiliary functionz5r 2f, reducing to

~12e22x!z912kz812~k22!z524C, ~25a!

~12e22x!r 912~k112e22x!r 814kr54~z2C!.
~25b!

We convert this into algebraic form using a change of va
able

y5e2x, x5
1

2
ln y. ~26!

Finally, Eqs.~25! and constraint~24c! become

y~12y!
d2z

dy2 1@12~k11!y#
dz

dy
2~k/221!z5C,

~27a!

y~12y!
d2r

dy2 1@22~k12!y#
dr

dy
2kr5C2z, ~27b!

2y~12y!
dz

dy
22y~k21!z2ky~12y!

dr

dy
2k~12ky!r

1C@k1~k22!y#50, ~27c!

and boundary conditions~19! are specified aty51 and y
5` by

z~1!5r ~1!50,
dr

dy
~1!1C50,

z~y!,r ~y! grow slowly as y→`. ~28!

‘‘Grow slowly’’ means thatr (y) must be bounded, andz(y)
grows at most logarithmically, withydr/dy1r 2z bounded,
asy→`. The last condition follows froms being bounded
at infinity.

Equation ~27c! is indeed a constraint, sinced(27c)/dy
5(27a)2k(27b), and is automatically satisfied for ally if
-

~k21!@kr~1!22z~1!12C#50 ~29!

is satisfied initially aty51. Imposing initial conditions~28!,
the constraint~29! yields

C~k21!50, ~30!

i.e., C50 unlessk51.
The perturbation problem is now reduced to the study

decoupled ordinary differential equations~27a! and ~27b!
and constraint~30! with boundary conditions~28!. We pro-
ceed solving it. Observe that Eqs.~27a! and~27b! are hyper-
geometric equations. Their properties are well known a
described in a number of books on differential equatio
~see, for example,@13#!, so the system~27! can be analyti-
cally solved and the perturbation spectrum exactly de
mined.

We start with Eq.~27a!. It is a homogeneous~except
whenk51! hypergeometric equation

y~12y!
d2z

dy2 1@c2~a1b11!y#
dz

dy
2abz50 ~31!

with coefficients

c51, a1b5k, ab5k/221,

a51/2~k2Ak222k14!, b51/2~k1Ak222k14!.
~32!

It has singular points aty50,1,̀ , and its general solution is
a linear combination of any two different solutions from th
set

z15F~a,b;k;12y!,

z25~12y!12kF~12a,12b;22k;12y!,

z35~2y!2aF~a,a;a112b;y21!,

z45~2y!2bF~b,b;b112a;y21!, ~33!
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where F(a,b;c;y) is the hypergeometric function
F(a,b;c;0)51. Any three of the functions~33! are linearly
dependent with constant coefficients, for example,

z25
G~22k!G~b2a!

G~12a!2 e2 ip~12b!z3

1
G~22k!G~a2b!

G~12b!2 e2 ip~12a!z4 . ~34!

Functionsz1 ,z2 andz3 ,z4 have the asymptotic behavior

z1.1, z2.~12y!12k near y51,

z3.~2y!2a, z4.~2y!2b near y5`. ~35!

Imposing boundary conditions~28! on solutions of Eqs.
~27a! and ~27b! leads to perturbation spectrum. It turns o
that it is completely defined by the boundary value probl
for z. As we will show, the boundary conditions forr are
satisfied automatically if they are satisfied forz. When im-
posing boundary conditions, we use asymptotics~35! to ana-
lyze the perturbation spectrum.

The case whenk51 is special. In this case the solutio
~33! degenerates andz2 defined by Eq.~33! coincides with
z1 identically. In order to deal with this situation we continu
to usez1 as earlier, but denote byz2 a solution independen
of z1 . It is easy to verify that it is logarithmically divergen
at y51. Note also that fork51 we can haveCÞ0, so that
Eq. ~27a! is inhomogeneous, and we must add the particu
solutionz5C to the general solution above.

First, let us examine boundary conditions aty51. Ob-
serve that aty51, z2 diverges as a power for Rek.1, loga-
rithmically for k51, does not have a limit for Rek51,
Im kÞ0, and converges~to zero! only for Rek,1. The solu-
tions that satisfy the initial conditionz(1)50 are

z5cz2 , Rek,1,

z5C~12z1!, k51. ~36!

From Eq. ~34! we see thatz2 ~and z1! is connected to
z3 ,z4 by a linear relation with nonzero coefficients, so t
boundary conditions at infinity will only be satisfied if bot
z3 ,z4 do not blow up, i.e., if Rea.0, Reb.0. Reb is posi-
tive by construction, while the region Rea.0 of the com-
plex k plane is divided from the region Rea,0 by the curve
Rea50. Written in terms the real and imaginary parts ofk,
it has the form

~ Im k!25
Re k~22Re k!

12~2 Rek!21 , ~37!

and is shown in Fig. 1: to the left of the solid curve Rea
,0, and to the right Rea.0.

Combining restrictions onk placed by boundary condi
tions aty51 andy5` we see that to satisfy all boundar
conditions ~28!, k must lie in the shaded regionK of the
complex plane, and for anykPK,

z5~12y!12kF~12a,12b;22k;12y! ~38!

is a solution of Eq.~27a! with boundary conditions~28!.
t

r

Now we turn our attention to Eq.~27b! for r . It is also
hypergeometric, with coefficients

c52, a51, b5k. ~39!

The general solution of the homogeneous equation is

r 15y21, r 25y21~12y!12k, ~40!

and the solution of inhomogeneous equation is easily c
structed from Eq.~40! by

r 52
1

y~12k! F E
1

y

z~ ỹ!dỹ2~12y!12kE
1

y z~ ỹ!dỹ

~12 ỹ!12kG .
~41!

The limits of integration are chosen so that the bound
conditions aty51 are satisfied. Let us verify that the boun
ary conditions forr do not place additional restrictions o
perturbation spectrum. Asymptotic~35! and Eq.~41! give the
behavior

r .2
y21~12y!22k

22k
near y51. ~42!

Clearly, r (1)5dr/dy(1)50. Also, r is bounded at infinity
since z, for the constraint ~27c!, requires kdr/dy(`)
22dz/dy(`)50. Therefore, Eqs.~38! and ~41! for kPK is
a solution of perturbation equations~27! with boundary con-
ditions ~28!, and the regionK is the perturbation spectrum
which turns out to be continuous.

It should be emphasized that the calculations of pertur
tion spectrum were made using a special choice of ga
preserving the form of the metric~2!. However, one can
show thatz coincides with gauge-independent quantity
our gauge, and hence the eigenvalue problem for the pe
bation spectrum is gauge invariant.

FIG. 1. Complex perturbation spectrum. Values ofk to the left
of the solid line are prohibited by the boundary conditions at infi
ity, to the right of the broken line by the initial conditions aty
51. Values in the region of intersection~the shaded regionK! are
allowed, and constitute the perturbation spectrum.
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V. CONCLUSION

In this paper we used linear perturbation analysis to
vestigate the critical behavior in the gravitational collapse
a massless scalar field. We have perturbed the continuo
self-similar critical solution~Roberts solution!, and solved
the perturbation equations exactly. The perturbation sp
trum was found to be not discrete, but continuous, and oc
pying the region of the complex plane

1

2
,Re k,1, uIm ku.ARe k~22Re k!

12~2 Rek!21 , ~43!

which, according to@7#, suggests nonuniversality of critica
behavior for different ingoing wave packets. The comp
oscillatory modes might lead to decay of a continuously s
similar solution ~4! into discrete self-similar choptuon ob
served in@1#.
-
f
sly

c-
u-

x
f-

The eigenvaluesk approach sup Rek51, which corre-
sponds to the mass-scaling exponentb51. This is different
from the exponentb51/2 found in@10–12# using the self-
similar solution.

The remarkable feature of the massless scalar field m
is that it allows exact analytical treatment of perturbati
modes as well as the critical solution. Because of its simp
ity, the model considered in this paper can be used for
ther investigation of critical phenomena using perturbat
analysis. In particular, one might hope that more general,
example, nonspherical, perturbations can be treated in
similar fashion.
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