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Self-similar collapse of a scalar field in higher dimensions
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Abstract. This paper constructs the continuously self-similar solution of the spherically
symmetric gravitational collapse of a scalar field inn dimensions. The qualitative behaviour of
these solutions is explained, and closed-form answers are provided where possible. Equivalence of
scalar field couplings is used to show a way to generalize minimally coupled scalar field solutions
to the model with general coupling.

PACS numbers: 0470B, 0570J

1. Introduction

Choptuik’s discovery of critical phenomena in the gravitational collapse of a scalar field [1]
sparked a surge of interest in gravitational collapse just at the threshold of black hole formation.
Discovery of critical behaviour in several other matter models followed quickly [2–7]. While
perhaps the presence of critical behaviour in gravitational collapse is not in itself surprising,
some of its features are, in particular the conclusion that black holes of arbitrary small mass
can be formed in the process. Moreover, the critical solution often displays additional peculiar
symmetry—so-called self-similarity—and serves as an intermediate attractor for near-critical
solutions.

The study of critical phenomena also throws new light on the cosmic censorship conjecture.
The formation of a strong curvature singularity in critical collapse from regular initial data
offers a new counterexample to the cosmic censorship conjecture.

Much work has been done, and general features of critical behaviour are now understood.
However, there is a distinct and uncomfortable lack of analytical solutions. Due to the obvious
difficulties in obtaining solutions of Einstein equations in closed form, most of the work
seems to be done numerically. One of the few known closed-form solutions related to critical
phenomena is Roberts’ solution, originally constructed as a counterexample to the cosmic
censorship conjecture [8], and later rediscovered in the context of critical gravitational collapse
[9, 10]. It is a continuously self-similar solution of the spherically symmetric gravitational
collapse of a minimally coupled massless scalar field in four-dimensional spacetime. For a
review of the role self-similarity plays in general relativity see [11].

This paper searches for continuously self-similar, spherically symmetric scalar field
solutions inn dimensions. They might be relevant in the context of superstring theory, which
is often said to be the next ‘theory of everything’, as well as for understanding how critical
behaviour depends on the dimensionality of the spacetime. Roberts’ solution would be a
particular case of the solutions discussed here. These solutions provide reasonably simple toy
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models of critical collapse, although they are not attractors [12]. Some qualitative properties
of the self-similar critical collapse of a scalar field in higher dimensions have been discussed
in [13]. Here we aim to find explicit closed-form solutions.

The second part of this paper deals with the extension of minimally coupled scalar field
solutions to a wider class of couplings. It is shown how different couplings of the scalar field
are equivalent, and several particular models are examined in detail. The procedure discussed
here can be applied to any solution of Einstein-scalar field equations.

2. Reduced action and field equations

Evolution of the minimally coupled scalar field inn dimensions is described by the action

S = 1

16π

∫ √−g dnx
[
R − 2(∇φ)2] (1)

plus surface terms. Field equations are obtained by varying this action with respect to field
variablesgµν andφ. However, if one is only interested in spherically symmetric solutions
(as we are), it is much simpler to work with reduced action and field equations, where this
symmetry of the spacetime is factored out.

Spherically symmetric spacetime is described by the metric

ds2 = dγ 2 + r2 dω2, (2)

where dγ 2 is the metric on a 2-manifold and dω2 is the metric of a(n−2)-dimensional sphere.
Essentially, the spherical symmetry reduces the number of dimensions to two, with spacetime
fully described by the 2-metric dγ 2 and 2-scalarr. It can be shown that the reduced action
describing field dynamics in spherical symmetry is

Ssph∝
∫
rn−2√−γ d2x

[
R[γ ] + (n− 2)(n− 3)r−2

(
(∇r)2 + 1

)− 2(∇φ)2], (3)

where curvature and differential operators are calculated using the two-dimensional metric
γAB ; capital Latin indices run through{1, 2} and a stroke| denotes the covariant derivative
with respect to the 2-metricγAB . By varying the reduced action with respect to field variables
γAB , r andφ, we obtain Einstein-scalar field equations in spherical symmetry. After some
algebraic manipulation they can be written as

RAB − (n− 2)r−1r|AB = 2φ,Aφ,B, (4a)

(n− 3)
[
(∇r)2 − 1

]
+ r � r = 0, (4b)

�φ + (n− 2)r−1γ ABφ,Ar,B = 0. (4c)

As usual with the scalar field, the�φ equation is redundant.

3. n-dimensional generalization of Roberts’ solution

We are interested in generalization of Roberts’ solution ton dimensions. To find it, we write
the metric in double-null coordinates

dγ 2 = −2e−2σ(z) du dv, r = −uρ(z), φ = φ(z). (5)

The dependence of metric coefficients andφ on z = −v/u only reflects the fact that we are
looking for a continuously self-similar solution, withz being a scale-invariant variable. We
turn on the influx of the scalar field at the advanced timev = 0, so that the spacetime is
Minkowskian to the past of this surface, and the initial conditions are specified by continuity.
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Signs are chosen so thatz > 0,ρ > 0 in the sector of interest (u < 0,v > 0). With this choice
of metric, Einstein-scalar equations (4) become

(n− 2)
[
ρ ′′z + 2σ ′ρ − 2σ ′ρ ′z

] = −2ρzφ′2, (6a)

2ρ(σ ′′z + σ ′) + (n− 2)ρ ′′z = −2ρzφ′2, (6b)

(n− 2)
[
ρ ′′ − 2σ ′ρ ′

] = −2ρφ′2, (6c)

(n− 3)
[
ρ ′2z− ρ ′ρ + 1

2e2σ
]

+ ρ ′′ρz = 0, (6d)

φ′′ρz + (n− 2)φ′ρ ′z− 1
2(n− 4)φ′ρ = 0. (6e)

A prime denotes the derivative with respect toz. Combining equations (6a) and (6c), we obtain
thatσ = constant. By appropriate rescaling of coordinates, we can putσ = 0. Then

(n− 2)ρ ′′ = −2ρφ′2, (7a)

(n− 3)
[
ρ ′2z− ρ ′ρ + 1

2

]
+ ρ ′′ρz = 0, (7b)

φ′′

φ′
+ (n− 2)

ρ ′

ρ
− 1

2
(n− 4)z−1 = 0. (7c)

For further derivation we will assume thatn > 3, as the casen = 3 is trivial. Equation (7c)
can be immediately integrated,

φ′ρn−2z−(n−4)/2 = c0. (8)

Substituting this result back into equation (7a), we obtain the equation forρ only

ρ ′′ρ2n−5 = − 2c2
0

n− 2
zn−4. (9)

It is easy to show that equation (9) is equivalent to equation (7b). No surprises here, since the
system (4) was redundant. Combining both equations we obtain the first integral of motion[

ρ ′2z− ρ ′ρ + 1
2

](ρ2

z

)n−3

= 2c2
0

(n− 2)(n− 3)
, (10)

which contains only first derivatives ofρ, and for this reason is simpler to solve than either
one of equations (7b) and (9). Equation (10) is a generalized homogeneous equation, and can
be solved by substitution

x = 1
2 ln z, ρ = √zy(x), ρ ′ = 1

2z
−1/2(ẏ + y), (11)

where a dot denotes the derivative with respect to the new variablex. With this substitution,
equations (10) and (8) become

ẏ2 = y2 − 2 + c1y
−2(n−3), (12)

φ̇ = 2c0y
−(n−2), (13)

where we have redefined the constant

c1 = 8c2
0

(n− 2)(n− 3)
> 0. (14)
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Figure 1. Subcritical field evolution.

Figure 2. Supercritical field evolution.

The above equation (12) fory formally describes the motion of a particle with zero energy in
the potential

V (y) = 2− y2 − c1y
−2(n−3), (15)

so we can describe the qualitative behaviour ofy without actually solving equation (12).
Initial conditions are specified by continuous matching of the solution to Minkowskian

spacetime on surfacev = 0. Since on that surfacer 6= 0, the value ofy = r/√−uv starts
from infinity atx = −∞, and rolls towards zero. What happens next depends on the shape of
the potential. If there is region withV (y) > 0, as in figure 1,y will reach a turning point and
will go back to infinity asx = ∞. If V (y) < 0 everywhere, as in figure 2, there is nothing
to stopy from reaching zero, at which point a singularity is formed. Finally, ifV (y) has a
second-order zero, as in figure 3,y will take forever to reach it.

Of course, variables separate, and equation (12) can be integrated

x = ±
∫

dy√
y2 − 2 + c1y−2(n−3)

+ c2. (16)
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Figure 3. Critical field evolution.

The plus or minus sign in front of the integral depends on the sign of the derivative ofy. Initial
conditions imply that initiallyy comes from infinity towards zero, i.e. its derivative is negative,
and so we must pick the branch of the solution which started out with a minus sign. Constant
c2 corresponds to a coordinate freedom in the choice of the origin ofx, while constantc1 is a
real parameter of the solution.

Unfortunately, the integral cannot be evaluated in a closed form for arbitraryn. But if
the integral is evaluated, and we can invert it to obtainy as a function ofx, the solution for
r is obtained by using definitions (11) and (5). The solution forφ is obtained by integrating
relations (13) or (8).

4. Critical behaviour

The one-parameter family of self-similar scalar field solutions inn dimensions constructed
above exhibits critical behaviour as the parameterc1 is tuned, much as Roberts’ family does
in four dimensions. In this section we investigate black hole formation in the collapse.

In spherical symmetry, the existence and position of the apparent horizon are given by
vanishing of(∇r)2 = 0, which translates toρ ′ = 0, or ẏ + y = 0 in our notation. Therefore,
at the apparent horizon we have

ẏ2 − y2 = c1y
−2(n−3) − 2= 0, (17)

and the black hole is formed if the value ofy reaches

y2
AH =

(
1
2c1
)1/(n−3)

. (18)

As we have discussed above, depending on the value ofc1, values of the fieldy either reach
turning point and return to infinity, or go all the way to zero. The critical solution separates
the two cases, and is characterized by the potentialV (y) having a second-order zero, i.e.
V (y∗) = V ′(y∗) = 0 at some pointy∗. Differentiating expression (15) for potentialV (y), we
see that it has a second-order zero at

y2
∗ = 2

n− 3

n− 2
, (19)

if and only if the value of the constantc1 is

c∗1 =
1

n− 3

[
2
n− 3

n− 2

]n−2

. (20)
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If the value of the parameterc1 is less than critical,c1 < c∗1, the value ofy turns around at
the turning point, and never reaches the point of apparent horizon formation, which is located
in the forbidden zone, as illustrated in figure 1. This case is subcritical evolution of the field.
If c1 > c∗1, the value ofy reaches a point where an apparent horizon is formed, and proceeds
to go to zero, at which point there is a singularity inside the black hole. This supercritical
evolution is illustrated in figure 2.

The mass of the black hole formed in the supercritical collapse is

M = 1
2rAH = − 1

2u
√
zAHyAH . (21)

It grows infinitely if we wait long enough, and will absorb all the field influx coming from
past infinity. This happens because the solution is self-similar, and creates a problem for
discussing mass scaling in the near-critical collapse. Cut and glue schemes [14] avoiding
infinite black hole mass are a temporary means to lift this problem. However, the real answer
to determining whether the critical solution is an intermediate attractor and calculating the
mass-scaling exponent is to make a perturbative analysis of the critical solution. Similarity to
Roberts’ solution suggests that the results for four-dimensional spacetime [12] can be applied
to higher dimensions as well.

5. Particular cases

In this section we consider several particular cases for which the general solution (16) is
simplified. Particularly important is then = 4 case, which is the already familiar Roberts’
solution.

5.1. n = 3

As we have already mentioned, forn = 3 the only self-similar scalar field solution of the
form (5) is trivial. To see this, note that equation (7b) implies thatρ ′′ = 0 if n = 3, and so
ρ = αz + β andr = αv − βu. From equation (7a) it then follows thatφ = constant. The
spacetime is flat.

5.2. n = 4

Integration (16) can be carried out explicitly

x = −
∫

dy√
y2 − 2 + c1y−2

+ c2

= − 1
2 ln

∣∣y2 − 1 +
√
y4 − 2y2 + c1

∣∣ + c2, (22)

and the result inverted

y2 = 1
2e−2(x−c2) + 1 + 1

2(1− c1) e2(x−c2), (23)

to give the solution in the closed form

ρ =
√

e2c2

2
+ z +

1− c1

2e2c2
z2. (24)

By appropriately rescaling coordinates, we can put e2c2 = 2. After redefining the parameter
of the solutionp = (c1− 1)/4, the solution takes on the following simple form:

ρ =
√

1 + z− pz2, r =
√
u2 − uv − pv2. (25)
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The scalar fieldφ is reconstructed from equation (8)

φ′ = c0ρ
−2 = 1

2

√
1 + 4p

1 + z− pz2
, (26)

to give

φ = arctanh
2pz− 1√

1 + 4p
+ constant

= 1
2 ln

[
− 2pz− 1 +

√
1 + 4p

2pz− 1−√1 + 4p

]
+ constant. (27)

The critical parameter value isp∗ = 0, and forp > 0 the black hole is formed. The critical
solution is

r =
√
u2 − uv, φ = 1

2 ln

[
1− v

u

]
. (28)

5.3. n = 5, 6

The integral (16) can be written in terms of elliptic functions, which becomes apparent with
the change of variablēy = y−2

x = 1

2

∫
dȳ

ȳ
√

1− 2ȳ + c1ȳn−2
, (29)

and the solutiony(x) is given implicitly. However, integrals corresponding to critical solutions
simplify, and can be taken in terms of elementary functions forn = 5, 6. The simplification
happens because the potential factors, since it has second-order zero, therefore reducing the
power ofy in the radical by two. The results of integration for critical solutions are

n = 5: x = −
∫

y2dy(
y2 − 4

3

)√
y2 + 2

3

= −arcsinh
(√

3
2y
)

+
1√
6

arctanh

( √
3y + 1√
9
2y

2 + 3

)

+
1√
6

arctanh

(√
3y − 1√
9
2y

2 + 3

)
(30)

n = 6: x = −
∫

y3dy(
y2 − 3

2

)√
y4 + y2 + 3

4

= − 1
2 arcsinh

(√
2
(
y2 + 1

2

))
+

1

2
√

2
arctanh

(
1√
2

4
3y

2 + 1√
y4 + y2 + 3

4

)
.

(31)

The dependencey(x) is still given implicitly. The critical value of the parameterc∗1 is 32
27 for

n = 5 and27
16 for n = 6.

5.4. Higher dimensions

For higher dimensions, the integral (16) cannot be taken in terms of elementary functions, so
one has to be content with the solution in the integral-implicit form, or perform numerical
calculations.
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6. General scalar field coupling

In this section we discuss in detail how solutions of the minimally coupled scalar field model
can be generalized to a much wider class of couplings. The fact that essentially all couplings of
a free scalar field to its kinetic term and scalar curvature are equivalent has been used previously
[15, 16] to study scalar field models with non-minimal coupling. In particular, this idea has
been applied to extend the four-dimensional Roberts’ solution to conformal coupling [17] and
Brans–Dicke theory [18].

6.1. Equivalence of couplings

Suppose that the action describing evolution of the scalar field inn-dimensional spacetime is

S = 1

16π

∫ √−g dnx
[
F(φ)R −G(φ)(∇φ)2] (32)

plus surface terms, where the couplingsF andG are smooth functions of the fieldφ. Also
suppose that the signs of couplingsF andG correspond to the case of gravitational attraction.
We will demonstrate that this action reduces to the minimally coupled one by redefinition of
the fieldsgµν andφ. First, let us introduce a new metriĉgµν that is related to the old one by
the conformal transformation

ĝµν = �2gµν, ĝµν = �−2gµν,
√
−ĝ = �n√−g, (33)

and denote quantities and operators calculated usingĝµν by a hat. Scalar curvatures calculated
using the old and new metrics are related

R = �2R̂ + 2(n− 1)� �̂�− n(n− 1)(∇̂�)2, (34)

as are field gradients

(∇φ)2 = �2(∇̂φ)2. (35)

Writing the action (32) in terms of the metriĉgµν , we obtain

S = 1

16π

∫
�−n

√
−ĝ dnx

[
F {�2R̂ + 2(n− 1)� �̂�− n(n− 1)(∇̂�)2} −G�2(∇̂φ)2].

(36)

By choosing the conformal factor to be

�n−2 = F, (37)

the factor in front of the curvaturêR can be set to one. Substitution of the definition of� into
the above action, and integration by parts of�̂ operator yields

S = 1

16π

∫ √
−ĝ dnx

[
R̂ −

(
G

F
+
n− 1

n− 2

F ′2

F 2

)
(∇̂φ)2

]
. (38)

The kinetic term in action (38) can be brought into a minimal form by the introduction of a
new scalar field̂φ, related to the old one by

2(∇̂φ̂)2 =
(
G

F
+
n− 1

n− 2

F ′2

F 2

)
(∇̂φ)2. (39)

Thus, we have shown that with field redefinitions

φ̂ = 1√
2

∫ (
G

F
+
n− 1

n− 2

F ′2

F 2

)1/2

dφ, ĝµν = F 2/(n−2)gµν, (40)
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the generally coupled scalar field action (32) becomes minimally coupled

S = 1

16π

∫ √
−ĝ dnx

[
R̂ − 2(∇̂φ̂)2]. (41)

This equivalence allows one to construct solutions of the model with general coupling (32)
from the solutions of the minimally coupled scalar field by means of the inverse of relation
(40), provided said inverse is well defined. However, there may be some restrictions on the
range ofφ so that field redefinitions give realφ̂ and positive-definite metriĉgµν . This means
that not all the branches of the solution in general coupling may be covered by translating the
minimally coupled solution. Technically speaking, the correspondence between solutions of
minimally coupled theory and generally coupled theory is one-to-one where defined, but not
onto.

However, one has to be careful making claims about global structure and critical behaviour
of the generalized solutions based solely on the properties of the minimally coupled solution.
The scalar field solutions encountered in critical collapse often lead to singular conformal
transformations, which could, in principle, change the structure of spacetime.

6.2. Examples

To illustrate the above discussion, we consider two often used scalar field couplings as
examples. They are non-minimal coupling and dilaton gravity.

6.2.1. Conformal coupling. Non-minimally coupled scalar field inn dimensions is described
by the action

S = 1

16π

∫ √−g dnx
[
(1− 2ξφ2)R − 2(∇φ)2], (42)

whereξ is the coupling parameter. Coupling factors areF = 1− 2ξφ2, G = 2 and so the
field redefinition (40) looks like

φ̂ =
∫ √

1− 2ξφ2 + 2ξ−1
c ξ2φ2

1− 2ξφ2
dφ

= 1√
2

√
ξ−1− ξ−1

c arcsin
[√

2
√
ξ − ξ−1

c ξ2 φ
]

+
1√
2ξc

arcsinh

[ √
2ξ−1
c ξφ√

1− 2ξφ2

]
, (43)

where

ξc = 1

4

n− 2

n− 1
. (44)

Particularly interesting is the case of conformal couplingξ = ξc because field redefinition

φ̂ = 1√
2ξc

arctanh
[√

2ξcφ
]

(45)

can be inverted explicitly to give the recipe for obtaining conformally coupled solutions from
minimally coupled ones. It is

φ = 1√
2ξc

tanh
[√

2ξcφ̂
]
, (46)

gµν = ĝµν

(1− 2ξcφ2)2/(n−2)
= cosh4/(n−2)[√2ξcφ̂

]
ĝµν. (47)
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In particular, the four-dimensional Roberts’ solution becomes

φ =
√

3 tanh

[
1√
3

arctanh
2pz− 1√

1 + 4p

]
, (48)

ds2 = cosh2
[

1√
3

arctanh
2pz− 1√

1 + 4p

]{−2du dv +
(
u2 − uv − pv2

)
dω2

}
, (49)

in the conformally coupled model. This last expression was considered in [17].

6.2.2. Dilaton gravity. Another useful example is dilaton gravity described by the action

S = 1

16π

∫ √−g dnx e−2φ
[
R + 4(∇φ)2]. (50)

Substituting coupling factorsF = e−2φ ,G = −4e−2φ into relationship (40), one can see that
the scalar field redefinition is a simple scaling

φ̂ =
√

2

n− 2
φ, φ =

√
n− 2

2
φ̂, (51)

and metrics differ by exponential factor only

gµν = exp

[√
2

n− 2
2φ̂

]
ĝµν. (52)

In particular, the four-dimensional Roberts’ solution becomes

φ = arctanh
2pz− 1√

1 + 4p
, (53)

ds2 = e2φ
{−2 du dv + (u2 − uv − pv2) dω2

}
(54)

in dilaton gravity.

7. Conclusion

We have searched for and found continuously self-similar spherically symmetric solutions of
minimally coupled scalar field collapse inn-dimensional spacetime. For spacetime dimensions
higher than three they form a one-parameter family and display critical behaviour much like
the Roberts solution. A qualitative picture of field evolution is easy to visualize in analogy
with a particle travelling in a potential of upside-down U shape. Unfortunately, the solutions
in dimensions higher than four can only be obtained in implicit form. Critical solutions are,
in general, simpler than other members of the family due to the potential factoring. The
strong similarity between Roberts’ solution and its higher-dimensional generalizations allows
one to conjecture that these higher-dimensional critical solutions are not attractors either. The
absence of a non-trivial self-similar solution in three dimensions raises the question of whether
a scalar field collapsing in three dimensions exhibits critical behaviour at all. Perhaps further
numerical simulations will answer it.

We also use equivalence of scalar field couplings to generalize solutions of minimally
coupled scalar field to a much wider class of couplings. For often-used cases of conformal
coupling and dilaton gravity the results are remarkably simple. Some results of [19], applied
for a single scalar field only, become trivial in view of this coupling equivalence.

However, the question of critical behaviour of these generalized solutions is complicated
by the fact that the conformal factor� relating metrics (33) for minimally and generally coupled
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solutions may be singular. In the simplest case of non-singular conformal transformation (i.e.
when the couplingF is bounded and the lower bound is greater than zero) global properties
of the minimally coupled solution are preserved, and all important features of near-critical
collapse carry over on the generalized solution unchanged. If conformal transformation is
suspected to be singular, a more careful study of global properties of the generalized solution
(40) is necessary.
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