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Critical collapse beyond spherical symmetry: General perturbations of the Roberts solution

Andrei V. Frolov*
Physics Department, University of Alberta, Edmonton, Alberta, Canada T6G 2J1

~Received 2 November 1998; published 13 April 1999!

This paper studies the non-spherical perturbations of the continuously self-similar critical solution of the
gravitational collapse of a massless scalar field~the Roberts solution!. The exact analysis of the perturbation
equations reveals that there are no growing non-spherical perturbation modes.@S0556-2821~99!00110-1#

PACS number~s!: 04.70.Bw, 05.70.Jk
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I. INTRODUCTION

Choptuik’s discovery of critical phenomena in the gra
tational collapse of a scalar field@1# sparked a surge of in
terest in gravitational collapse just at the threshold of bla
hole formation. The discovery of critical behavior in seve
other matter models quickly followed@2–7#. Despite the fact
that the evolution equations are very complex and hig
non-linear, the dynamics of the near-critical field evolution
relatively simple and, in some important aspects, univer
The critical solution, which depends on the matter mo
only, serves as an intermediate attractor in the phase spa
solutions, and often has an additional peculiar symme
called self-similarity. The mass of the black hole produced
supercritical evolution scales as a power law

MBH~p!}up2p* ub, ~1!

with the parameterp describing initial data, and the mas
scaling exponentb is dependent only on the matter mode
but not on the initial data family. An interesting consequen
of mass scaling which has direct bearing on the cosmic c
sorship conjecture is the fact that arbitrarily small bla
holes can be produced in near-critical collapse, with the c
cal solution exhibiting a curvature singularity and no eve
horizon.

The explanation of the universality of the critical behav
lies in perturbation analysis and renormalization group id
@3–5,8#. It turns out that critical solutions generally hav
only one unstable perturbation mode, making them the m
important solutions for understanding the dynamics of fi
evolution, after the stable ones~flat space and Schwarzschi
or Kerr-Newman black hole!. As the near-critical field con-
figuration evolves, all its perturbation modes decay, los
information about the initial data and bringing the soluti
closer to critical, except the one growing mode which w
eventually drive the solution to black hole formation or d
persal, depending on its content in the initial data. Thus
critical solution acts as an intermediate attractor~of codimen-
sion one! in the phase space of field configurations. Findi
the eigenvalue of the growing perturbation mode allows o
to calculate important parameters of the critical evolutio
the mass-scaling exponent in particular.

*Email address: andrei@phys.ualberta.ca
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An important question is how generic the critical behav
is with respect to initial data, or, in phase space langua
how big is the basin of attraction of the critical solution. S
far most of the work on critical gravitational collapse, n
merical or analytic, has been restricted to the case of sph
cal symmetry, simply because of the enormous difficulties
treating fully general non-symmetric solutions of Einste
equations. A natural concern is whether the critical pheno
ena observed so far are limited to spherical symmetry,
whether the evolution of non-spherical data will lead to t
same results. The numerical study of Abrahams and Ev
on axisymmetric gravitational wave collapse@2# and recent
numerical perturbation calculations by Gundlach@9,10# give
numerical evidence for the claim that critical phenomena
not restricted to spherical symmetry, and that the critical
lutions are indeed attractors in the full phase space. In
paper we search for analytical evidence to support that cla

One of the few known closed form solutions related
critical phenomena is the Roberts solution, originally co
structed as a counterexample to the cosmic censorship
jecture@11#, and later rediscovered in the context of critic
gravitational collapse@12,13#. It is a continuously self-
similar solution of a spherically symmetric gravitational co
lapse of a minimally coupled massless scalar field. While
is not a proper critical solution, as it has more than o
growing mode@14#, it is still a good~and simple! toy model
of the critical collapse of the scalar field.

This paper considers fully general perturbations of
Roberts solution in a gauge-invariant formalism. Because
the symmetries of the background, the linear perturbat
equations decouple and the variables separate, so an
analytical treatment is possible. We find that there are
growing perturbation modes apart from spherically symm
ric ones described earlier@14#. So all the non-sphericity of
the initial data decays in the collapse of the scalar field, a
only the spherically symmetric part will play a role in th
critical behavior.

To our knowledge, this is the first paper to obtain analy
cal results on non-spherical critical collapse.

II. THE ROBERTS SOLUTION

The spacetime we will use as a background in our cal
lations is a continuously self-similar spherically symmet
solution of the gravitational collapse of a massless sc
field ~the Roberts solution!. The Einstein-scalar field equa
tions
©1999 The American Physical Society11-1
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ANDREI V. FROLOV PHYSICAL REVIEW D 59 104011
Rmn52f ,mf ,n , ~2!

hf50 ~3!

can be solved analytically in spherical symmetry by imp
ing continuous self-similarity on the solution, i.e. by assu
ing that there exists a vector fieldj such that

£jgmn52gmn , £jf50, ~4!

where £ denotes Lie derivative. Self-similar solutions form
one-parameter family, which is most easily derived in n
coordinates@12,13,15#. The critical solution is given by the
metric

ds2522du dv1r 2 dV2, ~5!

where

r 5Au22uv, f5
1

2
lnF12

v
uG . ~6!

The global structure of the critical spacetime is shown in F
1. The influx of the scalar field is turned on at the advanc
time v50, so that the spacetime is Minkowskian to the p
of this surface. The initial conditions for the field equatio
~2! and ~3! are specified there by the continuity of the so
tion.

It is instructive to rewrite Roberts solution in new coord
nates so that the self-similarity becomes apparent. For
purpose we introduce scaling coordinates

x5
1

2
lnF12

v
uG , s52 ln~2u!, ~7!

with the inverse transformation

u52e2s, v5e2s~e2x21!. ~8!

FIG. 1. Global structure of the Roberts solution: The scalar fi
influx is turned on atv50; spacetime is flat before that. Fiel
evolution occurs in the shaded region of the diagram, and there
null singularity in the center of the spacetime.
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-
-

a
l

.
d
t

is

The signs are chosen to make the arguments of the logar
positive in the region of interest (v.0, u,0), where the
field evolution occurs. In these coordinates the metric~5!
becomes

ds252e2~x2s!@~12e22x!ds222dsdx#1r 2 dV2, ~9!

and the critical solution~6! is simply

r 5ex2s, f5x. ~10!

Observe that the scalar fieldf does not depend on the sca
variables at all, and the only dependence of the metric c
efficients on the scale is through the conformal factore22s.
This is a direct expression of the geometric requirement~4!
in scaling coordinates; the homothetic Killing vectorj is
simply 2]/]s.

III. GAUGE-INVARIANT PERTURBATIONS

To avoid complicated gauge issues of fully general p
turbations, we will use the gauge-invariant formalism dev
oped by Gerlach and Sengupta@16,17#. This formalism de-
scribes perturbations around a general spherically symm
background

gmndxmdxn5gABdxAdxB1r 2gabdxadxb, ~11!

which in our case we take to be the Roberts solution~5!.
Here and later capital Latin indices take values$0,1%, and
lower-case Latin indices run over angular coordinates.gAB
andr are defined on a spacetime two-manifold, whilegab is
the metric of the unit two-sphere.

Because the background spacetime is spherically symm
ric, perturbations around it can be decomposed in spher
harmonics. Scalar spherical harmonicsYlm(u,w) have even
parity under spatial inversion, while vector spherical h
monicsSlm a(u,w)[ea

bYlm,b have odd parity. We will only
concern ourselves with even-parity perturbations here, s
odd-parity perturbations cannot couple to scalar field per
bations. We will focus on non-spherical perturbation mod
( l>1), as the spherically symmetric case (l 50) was studied
earlier@14#. For clarity, angular indicesl ,m and the summa-
tion over all harmonics will be suppressed from now on. T
most general even-parity metric perturbation is

dgmndxmdxn5hABYdxAdxB1hAY,b~dxAdxb1dxbdxA!

1r 2@KYgab1GY:ab#dxadxb, ~12!

and the scalar field perturbation is

df5FY. ~13!

As you can see, metric perturbations are described by a t
tensorhAB , a two-vectorhA , and two two-scalarsK andG;
the scalar field perturbation is described by a two-scalarF.
However, these perturbation amplitudes do not have di
physical meaning, as they change under the~even-parity!
gauge transformation induced by the infinitesimal vec
field
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CRITICAL COLLAPSE BEYOND SPHERICAL . . . PHYSICAL REVIEW D59 104011
jmdxm5jAYdxA1jY,adxa. ~14!

One can construct two gauge-invariant quantities from
metric perturbations

kAB5hAB22p~AuB! ,

k5K22vApA , ~15!

and one from the scalar field perturbation

f 5F1f ,ApA , ~16!

where

vA5
r ,A

r
, pA5hA2

r 2

2
G,A . ~17!

Only gauge-invariant quantities have physical meaning in
perturbation problem. All physics of the problem, includin
the equations of motion and boundary conditions, should
written in terms of these gauge-invariant quantities. On
gauge-invariant quantities have been identified, one is fre
convert between gauge-invariant perturbation amplitudes
their values in whatever gauge choice one desires.

We will work in longitudinal gauge (hA5G50), which
is particularly convenient since perturbation amplitudes in
are just equal to the corresponding gauge-invariant qua
ties. The above condition fixes the gauge uniquely for n
spherical modes.~There is some gauge freedom left over f
the l 50 mode, but remember that we are only concern
with higher l modes.! Expressions for the components of th
linear perturbation equations

dRmn54f~ ,mdf ,n) , ~18!

d~hf!50 ~19!

for a fully general perturbation in longitudinal gauge are c
lected in Appendix A. By inspection of theuw component of
the equations, it is clear that the equations of motion req
that huv50 for l>1. With the change of notationhuu5U
and hvv5V, the remaining equations of motion for non
spherical modes are

4~u22uv !F ,vu2uU,v2uK,u1vK ,v1vV,u22uF,u

12~2u2v !F ,v12l ~ l 11!F50, ~20a!

22~u22uv !K ,uu1uU,u1~2u2v !~U ,v22K ,u!24vF ,u

1 l ~ l 11!U50, ~20b!

2~u22uv !~U ,vv12K ,vu1V,uu!1uU,v1uK,u

2~2u2v !~K ,v1V,u!12uF,u22vF ,v50, ~20c!

22~u22uv !K ,vv12uK,v2uV,u2~2u2v !V,v14uF,v

1 l ~ l 11!V50, ~20d!
10401
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2~u22uv !K ,vu2uU,v22uK,u1~2u2v !~2K ,v1V,u!22K

1 l ~ l 11!K12V50, ~20e!

~u22uv !~U ,v1K ,u!12vF50, ~20f!

~u2v !~V,u1K ,v!22F50. ~20g!

Equation ~20a! comes from the scalar wave equation, a
Eqs.~20b!–~20g! are theuu, uv, vv, uu, uu, andvu com-
ponents of the Einstein equations, correspondingly. As us
with a scalar field, the system~20a!–~20g! has one redundan
equation, so Eq.~20c! is satisfied automatically by virtue o
other equations. Equations~20f! and ~20g! are constraints,
and the remaining four equations are dynamic equations
four perturbation amplitudesU, V, K, andF.

Boundary conditions for the system~20a!–~20g! are
specified atv50 and the spatial infinity. Continuity o
matching with flat spacetime at the hypersurfacev50 re-
quires the vanishing of the perturbations there. We also
quire well-behavedness of the perturbations atI2 andI1,
so that the perturbation expansion holds. Thus, the boun
conditions are

U5V5K5F50 at v50,

U,V,K,F are bounded atu52` and v51`.
~21!

Equations~20a!–~20g! together with boundary condition
~21! constitute our eigenvalue problem.

IV. DECOUPLING OF PERTURBATION EQUATIONS

It is possible to decouple the dynamic equations~20a!–
~20e! by combining them with the constraints~20f! and
~20g!, and their first derivatives. After somewhat cumbe
some algebraic manipulations, which we will not show he
the system of linear perturbation equations~20a!–~20g! can
be rewritten as

2~u22uv !F ,vu2uF,u1~2u2v !F ,v1
2vF

u2v
1 l ~ l 11!F50,

~22a!

2~u22uv !U ,vu1uU,u13~2u2v !U ,v1 l ~ l 11!U50,
~22b!

2~u22uv !V,vu23uV,u2~2u2v !V,v1 l ~ l 11!V50,
~22c!

2~u22uv !K ,vu2uK,u1~2u2v !K ,v22K1 l ~ l 11!K

522V2
4uF

u2v
, ~22d!

uU,v1uK,u1
2vF

u2v
50, ~22e!

V,u1K ,v2
2F

u2v
50. ~22f!
1-3
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ANDREI V. FROLOV PHYSICAL REVIEW D 59 104011
This decoupled system of partial differential equations c
be further simplified by exploiting continuous self-similari
of the background to separate spatial and scale variab
With this intent, we rewrite Eqs.~22a!–~22f! in terms of the
scaling coordinates~7!:

1

2
~12e22x!F ,xx1F ,xs1F ,s22~12e22x!F1 l ~ l 11!F50,

~23a!

1

2
~12e22x!U ,xx1U ,xs22U ,x2U ,s1 l ~ l 11!U50,

~23b!

1

2
~12e22x!V,xx1V,xs12V,x13V,s1 l ~ l 11!V50,

~23c!

1

2
~12e22x!K ,xx1K ,xs1K ,s22K1 l ~ l 11!K

522V24e22xF, ~23d!

U ,x2~12e2x!K ,x12e2xK ,s24~12e2x!F50, ~23e!

K ,x2~12e2x!V,x12e2xV,s14F50. ~23f!

We decompose the perturbation amplitudes into modes
grow exponentially with the scales ~which amounts to doing
Laplace transform on them!:

F~x,s!5(
k

Fk~x!eks,

U~x,s!5(
k

Uk~x!eks,

V~x,s!5(
k

Vk~x!eks,

K~x,s!5(
k

Kk~x!eks. ~24!

The summation runs over the perturbation mode eigenva
k, which could, in general, be complex. Modes with Rek
.0 grow and are relevant for critical behavior, while mod
with Rek,0 decay and are irrelevant. The growing pertu
bation mode amplitudes vanish ats52`, so the boundary
condition atI2 is satisfied automatically. For clarity, th
perturbation mode subscriptk and the explicit summation
over all modes will be suppressed from now on, so hen
forth F, U, V, andK will meanFk , Uk , Vk , andKk for the
mode with eigenvaluek.

The decomposition~24! converts the system of partial dif
ferential equations~23a!–~23f! into a system of ordinary dif-
ferential equations, which is much easier to analyze:
10401
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1

2
~12e22x!F91kF81kF22~12e22x!F1 l ~ l 11!F50,

~25a!

1

2
~12e22x!U91~k22!U82kU1 l ~ l 11!U50,

~25b!

1

2
~12e22x!V91~k12!V813kV1 l ~ l 11!V50,

~25c!

1

2
~12e22x!K91kK81~k22!K1 l ~ l 11!K

522V24e22xF, ~25d!

U82~12e2x!K812ke2xK24~12e2x!F50, ~25e!

K82~12e2x!V812ke2xV14F50. ~25f!

The prime denotes a derivative with respect to spatial v
ablex. These equations can be converted into standard a
braic form by the change of variable

y5e2x, x5
1

2
ln y, ~26!

so that the system~25a!–~25f! becomes

y~12y!F̈1@32~k13!y#Ḟ2@3k/21 l ~ l 11!/2#F50,
~27a!

y~12y!Ü1@12~k21!y#U̇2@2k/21 l ~ l 11!/2#U50,
~27b!

y~12y!V̈1@12~k13!y#V̇2@3k/21 l ~ l 11!/2#V50,
~27c!

y~12y!K̈1@12~k11!y#K̇2@k/2211 l ~ l 11!/2#K

52F1V, ~27d!

U̇1~y21!K̇1kK12yF22F50, ~27e!

K̇1~y21!V̇1kV12F50. ~27f!

The dot denotes a derivative with respect toy, and we rede-
fined the scalar field perturbation amplitude asF5yF to
cast the equations into standard table form. The bound
conditions~21! are

U5V5K5F50 at y51,

U,V,K,yF are bounded aty51`. ~28!

Imposed on the decoupled system of ordinary differen
equations~27a!–~27f!, these boundary conditions give an e
genvalue problem for the perturbation spectrumk.
1-4
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CRITICAL COLLAPSE BEYOND SPHERICAL . . . PHYSICAL REVIEW D59 104011
V. PERTURBATION SPECTRUM

In the previous section we formulated an eigenvalue pr
lem for the spectrum of non-spherical perturbations of
critical Roberts solution. We now proceed to solve it. O
serve that Eqs.~27a!–~27d! governing the dynamics of th
perturbations are hypergeometric equations of the form

y~12y!Ẍ1@c2~a1b11!y#Ẋ2abX50. ~29!

Equation~27d! is not homogeneous, but we will deal wit
that shortly. The hypergeometric equation coefficients
different for equations describing the perturbationsF, U, V,
andK; they are summarized in the table below

~30!

Hypergeometric equations have been extensively studied
complete description of their properties see, for exam
@18#. Hypergeometric equation~29! has three singular point
at y50,1,̀ , and its general solution is a linear combinati
of any two different solutions from the set

X15F~a,b;a1b112c;12y!,

X25~12y!c2a2bF~c2a,c2b;c112a2b;12y!,

X35~2y!2aF~a,a112c;a112b;y21!,

X45~2y!2bF~b112c,b;b112a;y21!, ~31!

whereF(a,b;c;y) is the hypergeometric function, which i
regular aty50 and hasF(a,b;c;0)51. Any three of the
functions ~31! are linearly dependent with constant coef
cients. In particular,

X25
G~c112a2b!G~b2a!

G~12a!G~c2a!
e2 ip~c2b!X3

1
G~c112a2b!G~a2b!

G~12b!G~c2b!
e2 ip~c2a!X4 . ~32!

The functionsX1 , X2 are appropriate for discussing the b
havior of solution neary51, whileX3 , X4 give the behavior
at infinity

X151, X25~12y!c2a2b near y51,

X35~2y!2a, X45~2y!2b near y5`. ~33!
10401
-
e
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As we said before, imposing the boundary conditions~28!
on solutions of equations~27a!–~27f! leads to a perturbation
spectrum. We will now investigate what restrictions t
boundary conditions place on the hypergeometric equa
coefficients. The vanishing of perturbation amplitudes ay
51 rules outX1 as a component of the solution and requir
that Re(c2a2b).0 to makeX2 go to zero. The solution
X2 has non-zero content of bothX3 andX4 by virtue of Eq.
~32!, hence for it to be bounded at infinity, both Rea and
Reb must be positive to guarantee convergence ofX3 and
X4. So, unless there is degeneracy, the boundary condit
translate to the following conditions on the hypergeome
equation coefficients:

Re~c2a2b!.0, ~34a!

Rea,Reb.0. ~34b!

We are now ready to take on system~27a!–~27f!. Take a
look at Eq.~27c! for V. Condition~34a! for it is Rek,21,
i.e. there are no growingV modes. With the amplitude o
relevant V perturbation modes being zero, the constrai
~27e! and ~27f! become

K52
U̇

k
, F5

Ü

2k
, ~35!

and right hand side of Eq.~27d! can be absorbed by the le
hand side, making the equation forK homogeneous~with c
52). Indeed Eqs.~27d! and ~27a! for K and F are just
derivatives of Eqs.~27b! for U

y~12y!Ü1@12~k21!y#U̇2@2k/21 l ~ l 11!/2#U50,
~36!

which is the homogeneous hypergeometric equation with
efficients

c51, a1b5k22, ab52
1

2
k1

1

2
l ~ l 11!. ~37!

Imposing the boundary condition aty51 for the solution of
the above equation and its derivatives, which behave like

U}~12y!32k

K}~12y!22k

F}~12y!12k
J near y51, ~38!

produces restriction on the non-spherical mode eigenval

Rek,1, ~39!

which is the strongest of restrictions~34a! for equations for
U, K, andF. But then

Rea1Reb5Rek22,21, ~40!

and hence Rea and Reb cannot be both positive, and so th
boundary condition at infinity cannot be satisfied. A mo
careful investigation of degenerate cases of relation~32!
1-5
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ANDREI V. FROLOV PHYSICAL REVIEW D 59 104011
shows that the contradiction between boundary condition
y51 and infinity still persists ifV50. It can only be re-
solved by the trivial solutionU5K5F50. Thus we have
shown that there are no growing non-spherical perturba
modes around the critical Roberts solution.

In fact, an even stronger statement is true. The contra
tion between boundary conditions aty51 and infinity cannot
be resolved by a non-trivial solution so long asV50, i.e. so
long as Rek>21. Hence non-trivial non-spherical pertu
bation modes of critical Roberts solution must decay fas
thane2s.

VI. CONCLUSION

In this paper we used the gauge-invariant perturbation
malism to explore the critical behavior in the gravitation
collapse of a massless scalar field. Perturbing around a
tinuously self-similar critical solution~the Roberts solution!,
we obtained an eigenvalue problem for the spectrum of p
turbations. The remarkable feature of this model of criti
scalar field collapse is that it allows an exact analytical tre
ment of the perturbations as well as of the critical solutio
due to the highly symmetric background.

An exact analysis of the perturbation eigenvalue probl
reveals that there are no growing non-spherical perturba
modes. However, there are growing spherical perturba
modes. Their spectrum is continuous and occupies a
chunk of the complex plane@14#. In view of these findings,
the following picture of dynamics of scalar field evolutio
near self-similarity emerges: As we evolve generic init
data which is sufficiently close to the critical Roberts so
tion, non-spherical modes decay and the solution approa
the spherically symmetric one. Asymmetry of the initial da
does not play a role in the collapse. The growing spher
modes, on the other hand, drive the solution farther aw
from the continuously self-similar one. In this sense,
critical Roberts solution is an intermediate attractor for no
spherical initial data.

An interesting question, which is not answered by pert
bative calculations, is the further fate of the scalar field e
lution as it gets away from the Roberts solution. In all lik
lihood, it evolves towards the discretely self-simil
Choptuik solution, which is a local attractor of lower cod
mension~one!, as the continuous self-similarity is broken b
oscillatory growing modes. After staying near the Choptu
solution for a while, the scalar field will eventually disper
or settle into a black hole, with these final states being glo
attractors in the phase space of field configurations. T
evolution from attractor to attractor in phase space is so
what analogues to a ball rolling down the stairs, going fro
a step to a lower step, until it reaches the bottom.

The results of this paper shed some light at the com
cated problem of critical collapse of generic initial data fro
the analytical viewpoint, confirming the hypothesis that cr
cal phenomena are not restricted to spherical symmetry
vestigation of the fate of a scalar field solution as it brea
away from continuous self-similarity, as outlined above, w
further our understanding of the dynamics of scalar field c
lapse, and presents an interesting~and challenging! analyti-
10401
at

n

c-

r

r-
l
n-

r-
l
t-
,

n
n
ig

l
-
es

al
y

e
-

-
-

al
is
e-

i-

-
n-
s
l
l-

cal problem. Numerical simulations might also help to est
lish a clearer picture of near-critical scalar field evolution
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APPENDIX A: PERTURBATIONS IN LONGITUDINAL
GAUGE

In this appendix we collect expressions for components
the perturbed Einstein-scalar equations calculated in long
dinal gauge (hA5G50). The perturbed metric in longitudi
nal gauge is

ds25huuYdu222~12huvY!du dv1hvvYdv2

1~11KY!r 2dV2, ~A1!

and the perturbed scalar field is

f5
1

2 F12
v
uG1FY. ~A2!

The Einstein equations for scalar field are equivalent to
vanishing of the tensorEmn5Rmn22f ,mf ,n . Its non-trivial
components, calculated to the first order in the perturba
amplitude using the above metric and scalar field, are

Euu5
1

2
@22~u22uv !K ,uu1uhuu,u

1~2u2v !~huu,v22huv,u22K ,u!

24vF ,u1 l ~ l 11!huu#
Y

u22uv
, ~A3a!

Euv52
1

2
@~u22uv !~huu,vv22huv,vu1hvv,uu12K ,vu!

2uhuu,v1~2u2v !~hvv,u1K ,v!2uK,u12vF ,v

22uF,u2 l ~ l 11!huv#
Y

u22uv
, ~A3b!

Evv5
1

2
@22~u22uv !K ,vv12uhuv,v2uhvv,u

2~2u2v !hvv,v12uK,v14uF,v

1 l ~ l 11!hvv#
Y

u22uv
, ~A3c!

Euu52
1

2
@~u22uv !~huu,v2huv,u1K ,u!1~2u2v !huv

12vF#
Y,u

u22uv
, ~A3d!
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Euw52
1

2
@~u22uv !~huu,v2huv,u1K ,u!1~2u2v !huv

12vF#
Y,w

u22uv
, ~A3e!

Evu52
1

2
@~u2v !~2huv,v1hvv,u1K ,v!2huv22F#

Y,u

u2v
,

~A3f!

Evw52
1

2
@~u2v !~2huv,v1hvv,u1K ,v!2huv22F#

Y,w

u2v
,

~A3g!

Euu5
1

2
@2~u22uv !K ,vu2uhuu,v1~2u2v !~hvv,u12K ,v!

22uK,u22huv12hvv22K1 l ~ l 11!K#Y1huvY,uu ,

~A3h!
10401
Eww5sin2u Euu , ~A3i!

Euw5huv~Y,uw2cotu Y,w!. ~A3j!

The scalar field equation requires the vanishing ofhf,
which, calculated to first order using the above metric a
scalar field, is

hf5
1

2
@24~u22uv !F ,vu1uhuu,v2vhvv,u1uK,u2vK ,v

12uF,u22~2u2v !F ,v22l ~ l 11!F#
Y

u22uv
. ~A4!
or.
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