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Critical collapse beyond spherical symmetry: General perturbations of the Roberts solution
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This paper studies the non-spherical perturbations of the continuously self-similar critical solution of the
gravitational collapse of a massless scalar fighé Roberts solution The exact analysis of the perturbation
equations reveals that there are no growing non-spherical perturbation ri®a856-282(199)00110-]

PACS numbd(s): 04.70.Bw, 05.70.Jk

[. INTRODUCTION An important question is how generic the critical behavior
is with respect to initial data, or, in phase space language,

Choptuik’s discovery of critical phenomena in the gravi- how big is the basin of attraction of the critical solution. So
tational collapse of a scalar fie[d] sparked a surge of in- far most of the work on critical gravitational collapse, nu-
terest in gravitational collapse just at the threshold of blacknerical or analytic, has been restricted to the case of spheri-
hole formation. The discovery of critical behavior in severalcal symmetry, simply because of the enormous difficulties in
other matter models quickly followd@—7]. Despite the fact treating fully general non-symmetric solutions of Einstein
that the evolution equations are very complex and highlyequations. A natural concern is whether the critical phenom-
non-linear, the dynamics of the near-critical field evolution isena observed so far are limited to spherical symmetry, and
relatively simple and, in some important aspects, universakhether the evolution of non-spherical data will lead to the
The critical solution, which depends on the matter modelsame results. The numerical study of Abrahams and Evans
only, serves as an intermediate attractor in the phase space@i axisymmetric gravitational wave collapg#] and recent
solutions, and often has an additional peculiar symmetrynumerical perturbation calculations by Gundldétil0] give
called self-similarity. The mass of the black hole produced innumerical evidence for the claim that critical phenomena are
supercritical evolution scales as a power law not restricted to spherical symmetry, and that the critical so-

lutions are indeed attractors in the full phase space. In this
M %8 paper we search for analytical evidence to support that claim.
su(P)[p—p* |, (1) One of the few known closed form solutions related to
critical phenomena is the Roberts solution, originally con-
with the parametep describing initial data, and the mass- structed as a counterexample to the cosmic censorship con-
scaling exponeng is dependent only on the matter model, jecture[11], and later rediscovered in the context of critical
but not on the initial data family. An interesting consequencegravitational collapse{12,13. It is a continuously self-
of mass scaling which has direct bearing on the cosmic cergimilar solution of a spherically symmetric gravitational col-
sorship conjecture is the fact that arbitrarily small blacklapse of a minimally coupled massless scalar field. While it
holes can be produced in near-critical collapse, with the critidS not a proper critical solution, as it has more than one
cal solution exhibiting a curvature singularity and no eventgrowing mode{14], it is still a good(and simpl¢ toy model
horizon. of the critical collapse of the scalar field.

The explanation of the universality of the critical behavior ~ This paper considers fully general perturbations of the
lies in perturbation analysis and renormalization group ideafoberts solution in a gauge-invariant formalism. Because of
[3-5,8. It turns out that critical solutions generally have the symmetries of the background, the linear perturbation
only one unstable perturbation mode, making them the mogtquations decouple and the variables separate, so an exact
important solutions for understanding the dynamics of fieldanalytical treatment is possible. We find that there are no
evolution, after the stable onéfiat space and Schwarzschild growing perturbation modes apart from spherically symmet-
or Kerr-Newman black hole As the near-critical field con- ric ones described earli¢d4]. So all the non-sphericity of
figuration evolves, all its perturbation modes decay, losinghe initial data decays in the collapse of the scalar field, and
information about the initial data and bringing the solutiononly the spherically symmetric part will play a role in the
closer to critical, except the one growing mode which will critical behavior.
eventually drive the solution to black hole formation or dis-  To our knowledge, this is the first paper to obtain analyti-
persal, depending on its content in the initial data. Thus th&al results on non-spherical critical collapse.
critical solution acts as an intermediate attra¢tdrcodimen-
sion oneg in the phase space of field configurations. Finding
the eigenvalue of the growing perturbation mode allows one
to calculate important parameters of the critical evolution, The spacetime we will use as a background in our calcu-
the mass-scaling exponent in particular. lations is a continuously self-similar spherically symmetric

solution of the gravitational collapse of a massless scalar
field (the Roberts solution The Einstein-scalar field equa-
*Email address: andrei@phys.ualberta.ca tions

II. THE ROBERTS SOLUTION
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The signs are chosen to make the arguments of the logarithm

A /9 A\ positive in the region of interestw0, u<0), where the
AP & > field evolution occurs. In these coordinates the metsic
/ becomes
-, ds?=2e2*"9[(1—e ?)ds?—2dsd¥+r>dQ?, (9)
7

D ¢ ? and the critical solutior{6) is simply
S ¥ r=e* s =X (10

~ =%  ¢=xX

Observe that the scalar fiettl does not depend on the scale

variables at all, and the only dependence of the metric co-

efficients on the scale is through the conformal fa@tofs.

This is a direct expression of the geometric requireniént
FIG. 1. Global structure of the Roberts solution: The scalar fieldin scaling coordinates; the homothetic Killing vectéris

influx is turned on atv=0; spacetime is flat before that. Field simply — d/4s.

evolution occurs in the shaded region of the diagram, and there is a

null singularity in the center of the spacetime. IIl. GAUGE-INVARIANT PERTURBATIONS

R =2 2 To avoid complicated gauge issues of fully general per-
uv ¢,,u,¢,vr ( ) . . . . .
turbations, we will use the gauge-invariant formalism devel-
oped by Gerlach and Sengugts6,17. This formalism de-
scribes perturbations around a general spherically symmetric

. . . . back d
can be solved analytically in spherical symmetry by impos- ackgroun

ing continuous self-similarity on the solution, i.e. by assum- 9,,,dx4dx" = gapd XAdXB+ 12y, dxdx? (11)
. . ' nv AB Yab '
ing that there exists a vector fiefisuch that

O¢=0 (€©))

which in our case we take to be the Roberts solutibn
£:,,=29,,, £:4=0, (4)  Here and later capital Latin indices take valy€sl}, and
lower-case Latin indices run over angular coordinatps
where £ denotes Lie derivative. Self-similar solutions form aandr are defined on a spacetime two-manifold, whylg, is
one-parameter family, which is most easily derived in nullthe metric of the unit two-sphere.
coordinated12,13,15. The critical solution is given by the Because the background spacetime is spherically symmet-

metric ric, perturbations around it can be decomposed in spherical
harmonics. Scalar spherical harmonig,(6,¢) have even
ds’=—2du dv+r?2dQ?, (5)  parity under spatial inversion, while vector spherical har-
monics S, a(e,cp)zeameb have odd parity. We will only
where concern ourselves with even-parity perturbations here, since

odd-parity perturbations cannot couple to scalar field pertur-

bations. We will focus on non-spherical perturbation modes
: (6)  (1=1), as the spherically symmetric cage=Q) was studied

earlier[14]. For clarity, angular indices m and the summa-

The global structure of the critical spacetime is shown in Figtion over all harmonics will be suppressed from now on. The
1. The influx of the scalar field is turned on at the advance(:iﬂOSt general even-parity metric perturbation is
timev =0, so that the spacetime is Minkowskian to the past 59,,,dx4dx"=hgY dxdxE+h,Y (dxAdx? + dxPdx?)
of this surface. The initial conditions for the field equations '
(2) and(3) are specified there by the continuity of the solu- +[KY yapt GY.qp]dx2dX°, (12
tion.
It is instructive to rewrite Roberts solution in new coordi- and the scalar field perturbation is
nates so that the self-similarity becomes apparent. For this

v
u

1
r=yu’—uv, ¢= 5In

1—

purpose we introduce scaling coordinates o¢p=FY. (13
1 v As you can see, metric perturbations are described by a two-
x==In1——|, s=-In(—u), (7)  tensorh,g, atwo-vectorh,, and two two-scalark andG;
2 u the scalar field perturbation is described by a two-schlar
However, these perturbation amplitudes do not have direct
with the inverse transformation physical meaning, as they change under teeen-parity
gauge transformation induced by the infinitesimal vector
u=—eS, v=e Se>*-1). (8) field
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£,0x4=EAY dX+ £Y Hdx®, (14  2(u*—uv)K ,,—uU ,—2uK ,+(2u—v)(2K ,+V ,)—2K

One can construct two gauge-invariant quantities from the ~ +1(I+1)K+2V=0, (209

metric perturbations

(u?—uv)(U ,+K ,)+20F=0, (20f)
kag=hag—2p ,
ABT TABT SF(AIB) (U—v)(V  +K ,)—2F=0. (209
— A
k=K—=20"pa, (15 Equation (203 comes from the scalar wave equation, and
. . Egs.(20b—(209) are theuu, uv, vv, 66, ud, andv § com-
and one from the scalar field perturbation ponents of the Einstein equations, correspondingly. As usual
f_Et A (16) with a scalar field, the systef@09—(20g) has one redundant
=F+¢7pa, equation, so Eq(20¢ is satisfied automatically by virtue of
where other equations. Equatior(20f) and (20g) are constraints,
and the remaining four equations are dynamic equations for
r 2 four perturbation amplituded, V, K, andF.
UA:'_A, pa=ha— §G,A- (17) Boundary conditions for the systertR0g—(20g are

specified atv=0 and the spatial infinity. Continuity of
) ) N ] o matching with flat spacetime at the hypersurfaceO re-
Only gauge-invariant quantities have physical meaning in theyires the vanishing of the perturbations there. We also re-
perturbation problem. All physics of the problem, including quire well-behavedness of the perturbationgatandZ ™,

the equations of motion and boundary conditions, should bgg, that the perturbation expansion holds. Thus, the boundary
written in terms of these gauge-invariant quantities. Oncggngitions are

gauge-invariant quantities have been identified, one is free to

convert between gauge-invariant perturbation amplitudes and U=V=K=F=0 at v=0,
their values in whatever gauge choice one desires.
We will work in longitudinal gauge lfa=G=0), which U,V,K,F arebounded ai=—o and v=+o°.
is particularly convenient since perturbation amplitudes in it (21)

are just equal to the corresponding gauge-invariant quanti- . . .
ties. The above condition fixes the gauge uniquely for non_Ezquatmns.(ZOa)—(ZOg) togelther W'gll boundary conditions
spherical modeqThere is some gauge freedom left over for( 1) constitute our eigenvalue problem.

the I=0 mode, but remember that we are only concerned

with higherl modes) Expressions for the components of the V- DECOUPLING OF PERTURBATION EQUATIONS

linear perturbation equations It is possible to decouple the dynamic equati¢28a—
(208 by combining them with the constraini0f) and

OR,Ly =400 ), (18) (209, and their first derivatives. After somewhat cumber-

some algebraic manipulations, which we will not show here,
6(L¢)=0 (19 the system of linear perturbation equatid@®a—(20g can

L I be rewritten as
for a fully general perturbation in longitudinal gauge are col-

lected in Appendix A. By inspection of thép component of

2vF
2 _
the equations, it is clear that the equations of motion requiré?(U"~Uv)F ,u—UF y+(2u—v)F ,+ T—+I(I+1)F=0,

that h,,=0 for I=1. With the change of notatioh,,=U (229

and h,,=V, the remaining equations of motion for non-

spherical modes are 2(U2—Uv)U‘Uu+UU]u+3(2U—U)U‘U+|(|+1)U=O,
(22b

4(u*~uv)F ,,—uU ,—uK +vK ,+vV ,—2uF
2(u?—uv)V ,y—3uV —(2u—v)V ,+1(1+1)V=0,

+2(2u—v)F ,+21(I+1)F=0, (209 (229
—2(u?=uv)K gy +ul +(2u—v)(U ,— 2K ) —4vF , 2(u?=uv)K yy= UK y+(2u—0v)K , = 2K+1(I+ 1)K
= 4uF
+1(I+1)U=0, (20b) =—2v-—, (220
—(u?=u)(U ,,+ 2K ,,+V ) +ul ,+uK
2vF

—(2u—v)(K ,+V ) +2uF ,—2vF ,=0, (200 U, +uK+ ——=0, (220
—2(u?—uv)K ,,+2uK ,—uV ,—(2u—v)V ,+4uF, oF

+1(1+1)V=0, (20d) VutKy,=5— =0 (221)
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This decoupled system of partial differential equations can 1

be further simplified by exploiting continuous self-similarity (1~ e P)F"+kF'+kF—2(1-e ®)F+I(1+1)F=0,
of the background to separate spatial and scale variables. (259
With this intent, we rewrite Eqg223—(22f) in terms of the
scaling coordinate§?): 1
E(1—e—2X)u"+(K—2)U'—Ku+|(| +1)U=0,

1
5(1-e P)F ot F ot Fs—2(1-e ®)F+1(1+ DF =0, (25b
(233 1
E(1—e—2X)v"+(K+ 2)V'+3xkV+I(1+1)V=0,
1
5(1=€ 2IU o+ U ;5= 2U ,—U o+ (1+1)U=0, (250
(23b) 1 -
s(1-e K"+ kK'+(k—2)K+1(1+ 1)K
1
5 (1= )V 4tV s+ 2V, +3V o+ (1 +1)V=0, =—2V—4e 2F, (250)
(239

U'—(1-e?)K’+2xe”K—4(1-e*)F=0, (250

1 / /
E(l_e_ZX)K,xx‘*'K,xs+K,s_2K+|(|+1)K K'—(1—e®)V'+2xke**V+4F =0. (25f)

The prime denotes a derivative with respect to spatial vari-
ablex. These equations can be converted into standard alge-
braic form by the change of variable

=—2V—4e 2F, (230
U,—(1—e®)K +2e¥K —4(1-e*)F=0, (239
1
— a2 —
K —(1-e2)V ,+26>V +4F=0. (230 y=e% x=zlny, (26

We decompose the perturbation amplitudes into modes thaio that the systert253—(25f) becomes
grow exponentially with the scake(which amounts to doing

Laplace transform on them Y(1—y)®+[3— (x+3)y]P—[3x/2+1(1+1)/2]® =0,
(279

F(xs)=2 Fi(x)e", y(1—y)U+[1— (k—1)y]U—[ - x/2+1(1+1)/2]U=0,
(27b

U(x,8)=2, U (x)e*, y(1—y)V+[1—(k+3)y]V—[3x/2+1(1+1)/2]V=0,
« (270

Vixs)=S V.(x)ess, y(1—-y)K+[1-(k+1)y]K—[ /2= 1+1(1+1)/2]K
) =2D+V, (279
K(x,5)= > K, (x)e"s. (24) U+(y— 1)K+ xkK+2yd—2d =0, (270
K+(y—1)V+xkV+20=0. (27

The summation runs over the perturbation mode eigenvalues

«, which could, in general, be complex. Modes with Re g ot denotes a derivative with respecyt@nd we rede-
>0 grow and are relevant for critical behavior, while modesg,.q the scalar field perturbation amplitude s y® to

with Rex<0 decay and are irrelevant. The growing pertur-caq¢ the equations into standard table form. The boundary
bation mode amplitudes vanish st —, so the boundary conditions(21) are

condition atZ ™~ is satisfied automatically. For clarity, the

perturbation mode subscript and the explicit summation U=V=K=d=0 at y=1,
over all modes will be suppressed from now on, so hence-
forth F, U, V, andK will meanF,, U,., V., andK, for the U,V,K,y® are bounded at= -+ . (28

mode with eigenvalue.

The decompositio24) converts the system of partial dif- Imposed on the decoupled system of ordinary differential
ferential equation$23a—(23f) into a system of ordinary dif- equationg273—(27f), these boundary conditions give an ei-
ferential equations, which is much easier to analyze: genvalue problem for the perturbation spectrum
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V. PERTURBATION SPECTRUM As we said before, imposing the boundary conditi28

In the previous section we formulated an eigenvalue prob9n solutions of equation&273—(27f) leads to a perturbation

lem for the spectrum of non-spherical perturbations of th spectrum. We will now investigate what restrictions the
P b P eboundary conditions place on the hypergeometric equation

critical Roberts solution. We now proceed to solve it. Ob- s s . .
serve that Eqs(27a—(27d) governing the dynamics of the c_oefflments. The vanishing of perturbation _amplltudesy gt
=1 rules outX; as a component of the solution and requires

perturbations are hypergeometric equations of the form that Re€—a—b)>0 to makeX, go to zero. The solution

X, has non-zero content of bo¥y and X, by virtue of Eq.

(32), hence for it to be bounded at infinity, both Reand
Equation(27d) is not homogeneous, but we will deal with R€P must be positive to guarantee convergenceXgfand -
that shortly. The hypergeometric equation coefficients aret- SO, unless there is degeneracy, the boundary conditions
different for equations describing the perturbatidnsu, V, translgte to thg .foIIowmg conditions on the hypergeometric
andK; they are summarized in the table below equation coefficients:

Rec—a—hb)>0, (34a

y(1-y)X+[c—(a+b+1)y]X—abX=0. (29

¢ a+b ab

3 1 Rea,Reb>0. (34b)
Dl 3 k+2 5K+ EI(HI)

We are now ready to take on systé&vg—(27f). Take a
look at Eq.(27¢ for V. Condition (3449 for it is Rexk<—1,
i.e. there are no growiny modes. With the amplitude of
relevantV perturbation modes being zero, the constraints

1 1
Ul 1 k=2 —=x+=1(I+
K se+ I+

3 1
VI 1 k+2 5K+El(l+1) (27 and(27f) become

! ! K——U <I>—U (35
K| 1 K EK+§-I(1+1) (30) T ok

and right hand side of Eq27d) can be absorbed by the left
Hypergeometric equations have been extensively studied; fdrand side, making the equation firhomogeneousgwith ¢
complete description of their properties see, for example=2). Indeed Eqs(27d) and (278 for K and ® are just
[18]. Hypergeometric equatiof29) has three singular points derivatives of Eqs(27b) for U
aty=0,100, and its general solution is a linear combination _
of any two different solutions from the set y(1-y)U+[1—(k—1)yJU—[—«/2+1(1+1)/2]JU=0,
36

X;=Fa,b;atb+1—c;1-y), (39

which is the homogeneous hypergeometric equation with co-

X,=(1-y)* @ PFc—a,c—b;c+1-a—b;1-y), efficients

= - : Y~ 1 1
Xg=(-y)*Faat+l-cat+l-by™), c=1, atb=k—2, ab=—Zx+3l1+1). (37
Xs=(—y) PAb+1-c,b;b+1—ayy™ 1), (31)

Imposing the boundary condition g&=1 for the solution of
where F(a,b;c;y) is the hypergeometric function, which is the above equation and its derivatives, which behave like
regular aty=0 and hasF(a,b;c;0)=1. Any three of the

functions (31) are linearly dependent with constant coeffi- Uoc(1-y)3 "
cients. In particular, Koe(1—Yy)2 %} near y=1, (39)
I(c+l-a—b)l(b—a) Do(1-y)t™x
5= e im(c b)X3
I'l1-a)l'(c-a) produces restriction on the non-spherical mode eigenvalue

I'(c+1—a—b)I(a—b)
T(1-b)T'(c—b)

e*i‘rr(cfa)le. (32) Rexk< 1, (39)

which is the strongest of restrictiori84a for equations for
The functionsXy, X, are appropriate for discussing the be- y, K, and®. But then

havior of solution neay= 1, while X3, X, give the behavior
at infinity Rea+Reb=Rexk—2<-1, (40

X;=1, X,=(1-y)¢ 3P near y=1, and hence Ra and Reb cannot be both positive, and so the

boundary condition at infinity cannot be satisfied. A more
Xs=(—y)"3 X,=(-y) ® near y=«. (33 careful investigation of degenerate cases of relaiid®
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shows that the contradiction between boundary conditions atal problem. Numerical simulations might also help to estab-
y=1 and infinity still persists ifV=0. It can only be re- lish a clearer picture of near-critical scalar field evolution.
solved by the trivial solutionrJ=K=®=0. Thus we have
shown that there are no growing non-spherical perturbation ACKNOWLEDGMENTS
modes around the critical Roberts solution. ] )

In fact, an even stronger statement is true. The contradic- 1 Nis research was supported by the Natural Sciences and

tion between boundary conditionsyat 1 and infinity cannot  Engineering Research Council of Canada and by the Killam
be resolved by a non-trivial solution so long\és 0, i.e. so 17Ut

long as Rec=—1. Hence non-trivial non-spherical pertur-

bation modes of critical Roberts solution must decay faster APPENDIX A: PERTURBATIONS IN LONGITUDINAL
thane™S, GAUGE

In this appendix we collect expressions for components of
VI. CONCLUSION the perturbed Einstein-scalar equations calculated in longitu-
dinal gauge i,=G=0). The perturbed metric in longitudi-
In this paper we used the gauge-invariant perturbation fornal gauge is
malism to explore the critical behavior in the gravitational
collapse of a massless scalar field. Perturbing around a con- ds?=h,,YdwP—2(1—h,,Y)dudv+h,,Ydv?
tinuously self-similar critical solutioifithe Roberts solution
we obtained an eigenvalue problem for the spectrum of per- (1+KY)r’do?, (AL)
turbations. The remarkable feature of this model of criticaly,q the perturbed scalar field is
scalar field collapse is that it allows an exact analytical treat-
ment of the perturbations as well as of the critical solution, 1 v
due to the highly symmetric background. b= 5{1— U
An exact analysis of the perturbation eigenvalue problem
reveals that there are no growing non-spherical perturbatiomhe Einstein equations for scalar field are equivalent to the
modes. However, there are growing spherical perturbatiofanishing of the tenscE,,=R,,—2¢ ,¢ ,. Its non-trivial
modes. Their spectrum is continuous and occupies a bigomponents, calculated to the first order in the perturbation
chunk of the complex plangl4]. In view of these findings, amplitude using the above metric and scalar field, are
the following picture of dynamics of scalar field evolution
near self-similarity emerges: As we evolve generic initial
data which is sufficiently close to the critical Roberts solu-
tion, non-spherical modes decay and the solution approaches

+FY. (A2)

1
Euu=75[—2(0%=u0)K g+ uhyy,

the spherically symmetric one. Asymmetry of the initial data +(2u=v)(hyyy—2hy, v —2K )

does not play a role in the collapse. The growing spherical

modes, on the other hand, (_Jlri\_/e the solution farther away —4uF ,+1(1+1)hy] Y , (A3a)
from the continuously self-similar one. In this sense, the ' u2—

critical Roberts solution is an intermediate attractor for non-
spherical initial data. 1,

An interesting question, which is not answered by pertur- Euw =~ 5[(U"=uv)(Nuy o = 2hyy puthyp uut 2K )
bative calculations, is the further fate of the scalar field evo-
lution as it gets away from the Roberts solution. In all like- —uhyy,+(2u=—v)(h,, v+K,)—uK  +2vF ,
lihood, it evolves towards the discretely self-similar
Choptuik solution, which is a local attractor of lower codi-
mension(one, as the continuous self-similarity is broken by
oscillatory growing modes. After staying near the Choptuik
solution for a while, the scalar field will eventually disperse 1
or settle into a black hole, with these final states being global E,,,,=§[ —2(u*~uv)K ,,+2uhy, ,—uhy,, ,
attractors in the phase space of field configurations. This
evolution from attractor to attractor in phase space is some- —(2u—v)h,, ,+2uK ,+4uF,
what analogues to a ball rolling down the stairs, going from
a step to a lower step, until it reaches the bottom.

The results of this paper shed some light at the compli- +1( +1)hUUJM* (A3c)
cated problem of critical collapse of generic initial data from
the analytical viewpoint, confirming the hypothesis that criti- 1
cal phenomena are not restricted to spherical symmetry. In- E,=— E[(uz_uv)(huu,v_huwu"_ K o)+ (2u—v)hy,
vestigation of the fate of a scalar field solution as it breaks
away from continuous self-similarity, as outlined above, will v
further our understanding of the dynamics of scalar field col- +2vF] 14 (A3d)

lapse, and presents an interestiagd challenginganalyti- u—up’

—2uF ,—I(I+1)hy,]=—, (A3b)

Y
u?—uv
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1
Eu<p: - E[(uz_uv)(huu,u_huu,u+K,u)+(2u_U)huv

Y‘P
+2l)F] 2 : ’ (Age)
us—uv

1 Yo
Ey0=_E[(u_v)(_huzz,v+hvv,u+K,U)_huv_ZF]U_' '
(A3f)

1 Y.
Ev(p:_E[(U—U)(_huv,v+hvv,u+Krv)_huv_ZF]U_U,
(A3g)

1
EHHIE[Z(UZ_uv)K,Uu_Uhuu,u+(zu_v)(hvv,u+2K,v)

—2uK y—2hy, +2h,, = 2K+ (1 + DK]Y +hy, Y 4,
(A3h)

PHYSICAL REVIEW [»9 104011

E o, =SIPOE,, (A3i)

Egp=hu(Y g,—COtAY ). (A3))

The scalar field equation requires the vanishinglo#,
which, calculated to first order using the above metric and
scalar field, is

1
O¢=5[—4u?=uv)F ,y+uhyy, —vh,  +uK—vK,

+2UF ,—2(2u—v)F ,—2I(1 + 1)F]

. (A%)
u=—uv
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