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Chaotic scattering and capture of strings by a black hole
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Abstract. We consider scattering and capture of circular cosmic strings by a Schwarzschild
black hole. Although it isa priori a very simple axially symmetric two-body problem, it shows
all the features of chaotic scattering. In particular, it contains a fractal set of unstable periodic
solutions; a so-called strange repellor. We study the different types of trajectories and obtain the
fractal dimension of the basin boundary separating the space of initial conditions according to the
different asymptotic outcomes. We also consider the fractal dimension as a function of energy, and
discuss the transition from order to chaos.

PACS numbers: 0470, 0425D, 0545A, 0545D

Chaos in general relativity and cosmology is by now a well established subject. Some studies,
pioneered by the work of Hawking [1] and Page [2], have been concerned with the behaviour
of solutions of the Einstein equations themselves; the most famous example now being the
mixmaster universe (see, for instance, [3], and references given therein). In other studies, the
subject of interest has been the behaviour of test-particle trajectories in black-hole spacetimes
(see, for instance, [4, 5]). In the latter case, since point-particle motion is completely integrable
in the generic Kerr–Newman background [6], it was necessary to consider quite complicated
multi-black-hole spacetimes (typically of the Majumdar–Papapetrou type [7, 8]) to obtain
chaotic point-particle dynamics. Taking into account that these systems represent (at least)
three-body problems, and comparing with Newtonian dynamics, it was certainly no surprise
that chaotic dynamics appeared. (It should be mentioned, however, that in the two-black-hole
case, chaos is really a relativistic effect [4].) The main interest in these systems therefore
was also to use and further develop coordinate-invariant descriptions and measures of chaotic
behaviour [9, 10], suitable for general relativity where space and time are not absolute.

In the present paper, we study a conceptually simpler and more symmetric system
in general relativity that nevertheless, and maybe somewhat surprisingly, leads to chaotic
behaviour. We consider the two-body problem of a circular test string in the background of a
Schwarzschild black hole. The circular string is taken to be coaxial with the black hole and is
allowed to oscillate in its plane and to propagate in the direction perpendicular to its plane, as
illustrated in figure 1. The combined system is therefore axially symmetric.

The physical picture we have in mind is that of a cosmic string near an astrophysical black
hole. For a grand unified theory (GUT) string with string tension of the order ofGµ ≈ 10−6

[11], the test-string approximation should be valid even for a string initially up to (say) 104

times longer than the black-hole horizon radius. Moreover, for a GUT string we can use the
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Figure 1. Schematic illustration of a string loop approaching a black hole.

leading-order thickness approximation, where the cosmic string is described by the Nambu–
Goto action [11]

S = −µ
∫

dτ dσ
√
− det[Gab], (1)

whereGab = gµνXµ,aXν,b is the induced metric on the string worldsheet. In this case, the string
equations of motion and constraints (in conformal gauge) take the standard form

Ẍµ −X′′µ + 0µρσ (Ẋ
ρẊσ −X′ρX′σ ) = 0, (2)

gµνẊ
µX′ν = gµν(ẊµẊν +X′µX′ν) = 0, (3)

where a dot and a prime denote derivatives with respect to the string worldsheet coordinatesτ

andσ , respectively. Using Schwarzschild coordinates for the background metric

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2 d�2, (4)

and parametrizing the circular string by ansatz

t = t (τ ), r = r(τ ), θ = θ(τ ), φ = σ, (5)

one finds that the string equations of motion (2) and constraints (3) lead to the following system
of ordinary differential equations:

ṫ = E
(

1− 2M

r

)−1

, (6)

r̈ = (r − 3M)θ̇2 − (r −M) sin2 θ, (7)

θ̈ = −2

r
ṙ θ̇ − sinθ cosθ, (8)

supplemented by the constraint

ṙ2 + (r2 − 2Mr)(θ̇2 + sin2 θ) = E2. (9)

The integration constantE, appearing here, will play the role of an external control parameter
(‘order parameter’) for the system. It is equal to the total conserved energy of the string
divided by 2πµ. In the absence of first integrals other than (9), we are thus dealing with a
three-dimensional phase space. Notice also that the worldsheet timeτ is not equal to the proper
time. The worldsheet timeτ is, however, finite for a string falling into the black hole.
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Equations (6)–(9) are equivalent to the following Hamiltonian system:

H = 1

2

(
1− 2M

r

)
P 2
r +

1

2r2
P 2
θ −

E2

2

(
1− 2M

r

)−1

+
1

2
r2 sin2 θ, (10)

with the constraintH = 0. This is very similar to the Hamiltonian describing zero angular
momentum photons in the Schwarzschild background [12], except for the last term in the
potential which is due to the string tension. This is precisely the term that leads to non-
integrability and, as we shall see, chaos.

The Hamiltonian system (10) has previously been considered and solved in the equatorial
plane (θ = π/2) [13], and some trajectories in the general case were computed numerically
in [14]. In this paper, we make a more complete analysis of the dynamics associated with
the Hamiltonian (10). In particular, we shall demonstrate the presence of chaos in this simple
system.

Due to the non-integrable nature of the dynamical system (6)–(9), the analysis of the
string evolution was done numerically. The string trajectories for various initial conditions
were obtained by integrating equations (7) and (8) using the fifth-order embedded Runge–
Kutta method with adaptive step size control [15]. The constraint (9) was used to check
independently for numerical precision.

It is easy to see that there are three possible asymptotic outcomes of the string dynamics.
The string can either fly by the black hole and escape to(r, θ) = (∞, π), or the string can
backscatter and escape to(r, θ) = (∞, 0), or the string can be captured by the black hole
r 6 2M. Some examples of string trajectories illustrating these outcomes are shown in
figure 2, where we plot the string radiusR = r sinθ (vertically) as a function ofZ = r cosθ
(horizontally, the string comes in from the left). In the three examples shown, the string is
initially collapsed at a position a few horizon radii outside of the black hole. It then expands
and propagates to the right—towards the black hole. In figure 2(a), the string passes the black
hole but then returns and is captured,r 6 2M. In figure 2(b), the string passes the black hole

Figure 2. Possible asymptotic outcomes of the string evolution: (a) capture, (b) escape and (c)
escape with backscatter. Axes are(r cosθ, r sinθ), and the thick circle represents the event horizon
of the black hole.



3720 A V Frolov and A L Larsen

Figure 3. Unstable periodic orbits.

and escapes to the right,(r, θ) = (∞, π). In figure 2(c), the string passes the black hole, then
returns and finally escapes to the left,(r, θ) = (∞, 0).

Besides the solutions with these three asymptotic outcomes, there is an infinite set of
unstable periodic orbits, which separate the solutions with different asymptotic outcomes in
the phase space of all solutions. Typical examples of periodic orbits are shown in figure 3.
Besides the ones shown, there are also periodic orbits when the string starts a little further
away from the black hole and oscillates a number of times before reaching it. There are no
stable periodic orbits in our system.

To gain a better understanding of the string dynamics, we now consider a two-dimensional
slice of the four-dimensional space of initial conditions in more detail. It is most convenient
to fix the constant ‘energy’E and then to impose one more relation between initial values
of (r, θ, ṙ, θ̇ ) at τ = 0. Following the procedure of the basin-boundary method for chaotic
scattering [9], we then colour this two-dimensional slice of initial conditions according to
the three different asymptotic outcomes mentioned above. Due to numerical reasons, the
determination of the two asymptotic outcomes corresponding to escape is done not at infinity
but at some large, but finite, value ofr. While in general the string can pass this cut-off radius
in one direction but change its mind later, for sufficiently larger, this procedure will only
lead to a wrong colour for very few points, as follows from the asymptotic behaviour of the
potential in the Hamiltonian (10) (this should be contrasted with the case of the mixmaster
universe [16], where all the trajectories eventually bounce back).

In figure 4 we show examples of this colouring procedure applied to the phase space of
string solutions. Figures 4(a) and (b) show two different two-dimensional slices of the space
of initial conditions. Figures 4(c) and (d) show magnifications of the regions of figures 4(b)
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Figure 4. Basin boundaries, plotted forE = 14.0M: (a) sliceθ = 0, with r ∈ [2.0M, 29.2M]
on the horizontal axis and−ṙ ∈ [0, E] on the vertical axis; (b) slice d

dτ (r cosθ) = 0, with
r ∈ [2.0M, 27.5M] on the horizontal axis andθ ∈ [0, π/2] on the vertical axis; (c) and (d) show
fractal detail of figures (b) and (c), respectively.

and (c) indicated in the previous figures. The boundaries between different colours in these
figures correspond to the unstable periodic orbits. The magnifications of these so-called basin
boundaries reveal a fractal structure (see figures 4(b)–(d)). This provides the coordinate-
invariant indication that the dynamics is in fact chaotic [9].

To obtain a quantitative measure we can also determine the fractal dimension. Consider
for instance figure 4(b), which corresponds to the two-dimensional slice in the space of initial
conditions, given by

E = 14.0M,
d

dτ
(r cosθ) = 0 at τ = 0. (11)

The box-counting dimension is defined by [9]

D = lim
ε→0

lnN(ε)

ln(1/ε)
, (12)
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Figure 5. Number of fractal points as a function of resolution, calculated for the slice in figure 4(b).

whereN(ε) is the number of squares of side lengthε needed to cover the basin boundary. A
square should be counted only if it contains at least two different colours, otherwise it is not
part of the basin boundary. The result of this counting is shown as a plot of lnN(ε) versus
ln(1/ε) in figure 5. The straight line is a least-squares fit to the data points and shows that the
dependence is indeed linear over a very wide range of resolution. The fractal dimension of
figure 4(b), calculated from the highest-resolution grid of 4000× 3200 points, is

D = 1.65± 0.03. (13)

The non-integer value shows in a coordinate-invariant way [17] that the basin boundary is
indeed a fractal; a so-called strange repellor. The error in the result is due to the finite size of
the numerical grid and the slow convergence rate of definition (12), and can be estimated by
examiningD calculated at lower resolutions.

It is interesting to also examine the fractal dimension as a function of ‘energy’E. We
considered the slice (11) in the energy rangeE ∈ [0, 103M] and computed the fractal dimension
(12) of the basin boundary (corresponding to figure 4(b) and its analogue for different energies)
as a function of energyE. The result is shown in figure 6, where we plot the fractal dimension
D as a function of ln(E/M). For low energies,E . 4.37M, the dynamics is completely
regular in the sense that there is only one asymptotic outcome—namely capture. For slightly
larger energies, with values ofE between 4.37M and 5.67M, escape becomes possible but
the different asymptotic outcomes are connected by ‘regular transitions’, corresponding to
one-dimensional curves in the space of initial conditions (and thus corresponding to fractal
dimension 1). However, at energyE ' 5.67M, the picture changes dramatically from regular
to highly chaotic dynamics. In a very narrow energy range, the fractal dimension changes
abruptly from 1 to approximately 1.6, whereafter it increases slightly for higher energies. It
must be stressed that the numerical values given above for energies separating the different
‘phases’ are slice dependent. The phenomenon explained and demonstrated by figure 6 is,
however, generic.

In conclusion, we have shown in a coordinate-invariant way that the axially symmetric
system of a circular test string in the Schwarzschild black-hole background is chaotic. Chaos
sets in abruptly at a certain ‘critical’ value of the external control parameter, which is related to
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Figure 6. Fractal dimension as a function of energy calculated for the slice in figure 4(b). The
radial size of the box is scaled with energy asr ∈ [2.0M, (2.0 + (25.5/14.0) E/M)M] to keep the
choice of region consistent.

the conserved energy of the string. Below this critical energy, the dynamics is regular. Above
the critical energy, the dynamics is highly irregular and chaotic.

In all fairness, it should be mentioned that we have neglected some physical effects,
including the backreaction and gravitational radiation of the cosmic string. However, the
system considered here represents the simplest and most symmetric example of string dynamics
in black-hole spacetimes and therefore suggests quite generally that string dynamics in black-
hole spacetimes is chaotic (notice, however, that the problem ofstationarystrings in black-
hole spacetimes is completely integrable [18]). It would thus be interesting to consider other
dynamical string configurations as well, and we notice that there has recently been some interest
in the scattering and capture of open strings by a black hole; see [19, 20] and references given
therein.
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