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Continuous self-similarity breaking in critical collapse
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This paper studies near-critical evolution of the spherically symmetric scalar field configurations close to the
continuously self-similar solution. Using analytic perturbative methods, it is shown that a generic growing
perturbation departs from the Roberts solution in a universal way. We argue that in the course of its evolution,
initial continuous self-similarity of the background is broken into discrete self-similarity with an echoing
period A = \27=4.44, reproducing the symmetries of the critical Choptuik solution.

PACS numbeis): 04.70.Bw, 05.70.Jk

I. INTRODUCTION evant to the cosmic censorship conjecture, the long-unsolved
problem of general relativity. With their ability to produce
Critical phenomena in gravitational collapse have been arbitrarily small black holes and, in the critical limit, curva-
relatively recent and interesting development in the estabture singularity without an event horizon, in the course of
lished field of general relativity. Following the numerical quite generic gravitational collapse, they may serve as an
work of Choptuik on the spherically symmetric collapse of acceptable counterexample to the cosmic censorship conjec-
the minimally coupled massless scalar figld, critical be-  ture (see[7] and references thergin
havior was discovered in most common matter models en- Universality of the near-critical behavior has been ex-
countered in general relativity, including pure gravi®l,  plained by perturbation analysis and renormalization group
null fluid [3] and, more generally, perfect flujd,5], as well  ideas[3-6], and is rooted in the fact that critical solutions
as more exotic models. generally have only one unstable perturbation mode. In the
The essence of critical phenomena in general relativity isourse of evolution of the near-critical initial field configu-
the fact that just at the threshold of black hole formation theration, all the perturbations modes contained in it decay, for-
dynamics of the field evolution becomes relatively simplegetting details of the initial data and bringing the solution
and, in some important aspects, universal, despite the congtoser to critical, except the single growing mode which will
plicated and highly nonlinear form of the equations of mo-eventually drive the solution to black hole formation or dis-
tion. In analogy with second order transitions in condensegersal. In this sense, the critical solution acts as an interme-
matter physics, the mass of the black hole produced in neattiate attractor in the phase space of all field configurations.

critical gravitational collapse scales as a power'law Because there is only single growing mode, the codimension
ny of the attractor is one. The eigenvalue of the growing mode
Men(p)=[p—p*|”, (D determines how rapidly the solutions will eventually depart

) S from critical, and it can be used to calculate the mass-scaling
with the parametep describing initial data, and the mass- exponentg.

scaling exponenB is dependent only on the matter model, As we have mentioned, the critical solution often has ad-
but not on the initial data family. The critical solution, sepa- jitional symmetry besides the usual spherical symmetry
rating solutions with black hole formed in the collapse from cajjeq continuous or discrete self-similarity. This symmetry
the ones without a black hole, also depends on the matt@ssentially amounts to the solution being independerinof
model only, and serves as an intermediate attractor in thease of continuous self-similaritpr periodic in(in case of
phase space of solutions. It often has an additional symmetyiscrete self-similarity one of the coordinates, a scale. The
called self-similarity, in either continuous or discrete flavors.,gje of this symmetry in critical collapse is not understood at
Discovery of critical phenomena in gravitational collapse || some attempts at finding critical solutions made a con-
was the first real success of numerical relativity in which &inuously self-similar ansatz and hit a jackd@l, whereas
physical effect was observed in simulations without beingyihers studied discretely self-similar solutions from phenom-
first predicted by theoretlt_:al phyS|C|st_s. For_ t_he theoret'c'a”enological point of view8]. Yet the simple question of why
the challenge and attraction of studying critical phenomeng particular matter model should have this or that version of
lies in the possibility of exploring a new class of exact solu-sejt_similarity incorporated in the critical solution still re-
tions of Einstein’s equations, having simple properties angnains a mystery.
hlg_h symmetry, but _p_rewously_ und!scussed. Another inter-  This paper attempts to shed some light on the subject by
esting thing about critical solutions is that they are very rel'investigating the dynamics of formation of discretely self-
similar structure in the gravitational collapse of a minimally
N . coupled massless scalar field. As a base point of our inves-
Email address: andrei@phys.ualberta.ca tigation, we consider a certain continuously self-similar so-
lusually, but there are models with mass gap in black hole prolution, known as the Roberts solution, as a toy-model of the
duction, most notably Yang-Mills field, whose behavior is more critical solution in the gravitational collapse of a scalar field.
analogous to a first order phase transition. This solution was constructed as a counterexample to the
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/cowst FIG. 1. Global structure of the Roberts solu-
;2 & tion: The scalar field influx is turned on at=0;
2 e)// spacetime is flat before that. The field evolution
¥ occurs in the shaded region of the diagram, and
//Q there is a null singularity in the center of the
& spacetime.
cosmic censorship conjectui@] and was later rediscovered £:0,,=29,,, E:=0, (4)

in the context of critical gravitational collap§&0,11]. While
not a proper attractdrl2], this simple solution resembles in where £ denotes the Lie derivative. Under these assumptions
some of its properties more complicated critical solutionsthe field equations can be solved analytically, which is most
known only numerically. The aim of the present work is to easily done in null coordinatd40,11,13. Self-similar solu-
show how, at least in the linear approximation, the discretelyions form a one-parameter family. As the parameter is var-
self-similar structure arises dynamically in the scalar fieldied, spacetimes both with and without a black hole occur.
collapse. The advantage of our approach is that, due to thEhe solution just at the threshold of black hole formatian
simple form of the Roberts solution, calculations can be cargiven by the metric
ried out analytically and so provide additional independent
insights different from numerical treatments. ds’=—2du dv +r2dQ?, ()

Using linear perturbation analysis and Green’s function
techniques, we study evolution of the spherically symmetri¢vhere
scalar field configurations close to the continuously self-
similar solution. Approximating late-time evolution via the r=vil—u _ E

. . . ) v, ¢ In

method of stationary phase, we find that a generic growing 2
perturbation departs from the Roberts solution in a universal
way. In the course of the evolution, initial continuous self- The global structure of the corresponding spacetime is
similarity of the background is broken into discrete self- shown in Fig. 1. The influx of the scalar field is turned on at
similarity by the growing perturbation mode, reproducing thethe advanced time =0, so that the Roberts spacetime is
symmetries of the Choptuik solution. We are able to calcusmoothly matched to Minkowskian flat spacetime to the past
late the echoing period of the formed discretely self-similarof this surface. The junction conditions, required for conti-
structure analytically, and its value is close to the result ofuity of the solution there, serve as boundary conditions for

. (6)

v
1——
u

numerical simulations. the field equation$2) and (3). More detailed discussion of
this important point is provided in Appendix A.
Il. THE ROBERTS SOLUTION The evolution of perturbations of the Roberts solution is

most easily followed in a coordinate system exploiting scale-
The starting point of our investigation is the Roberts so-invariance of the background, so that the self-similarity be-
lution, which will serve as a background for linear perturba-comes apparent. Therefore, we introduce new coordinates,
tion analysis. It is a solution describing gravitational collapsewhich we will call scaling coordinates, by
of a minimally coupled massless scalar field, described by
the Einstein-scalar field equations

2In the early workg10,11] term critical has been used to desig-

RMV:2¢'M¢~V’ (2) nate this solution. This is somewhat confusing because, strictly
speaking, this solution is not an intermediate attractor of codimen-
Leé=0, () sion one, and so is not critical in the usual sense. Perhaps the term

thresholdgives better description of its nature. In any case, since
which is spherically symmetric and also continuously self-we are not concerned with the other solutions from the self-similar
similar. The latter symmetry means that there exists a vectdamily in this paper, we will refer to the solutiof5), (6) by the
field &€ such that name “the Roberts solution.”
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v Ak,,=—2A,, (15
al s=—In(—u), (7) '

r’AK=(2u—v)A—uB,

x==In1—

2

with the inverse transformation
2r’Ap=vA—uB.
u=—eS ov=e e-1). (8) . , ,
Out of four metric and one matter perturbation amplitudes
The signs are chosen to make the arguments of the logarithene can build the total of three gauge-invariant quantities,
positive in the region of interestv(0, u<0), where the one describing matter perturbations
field evolution occurs. In these coordinates the metfic

K 1
becomes f==—0+ ﬁf K,,dv, (16)

g,,dxtdx"=2e?0"9[(1—- e ?)ds’— 2dsdx +r?dQ?,
(9)  and the other two describing metric perturbations

and the Roberts solutiof®) is simply p=(rZK),UUJrkw—kuU—ukuu,U/2+(2u—v)kw'u/2,
(17
r=e*7s, ¢=x. (10
1 1
Observe that the scalar fielfl does not depend on the scale o=Ky,— Ef Kyp,udv— ff Kuu,o dU. (18)

variables at all, and the only dependence of the metric co-

efficients on the scale is through the conformal factof®. The linearized Einstein-scalar field equations

This is a direct expression of the geometric requirentént

in scaling coordinates; the homothetic Killing vectéris OoR,,=4¢ .00 ,, o(¢p)=0 (19

simply —d/ds. . .
Py can then be rewritten completely in terms of these gauge-

invariant quantities. It is possible to show that the field equa-
tions reduce to one master differential equation for the scalar
field perturbation,

Since we are ultimately concerned with the dynamics of
the breaking of the fields away from the Roberts solution, the
effect due to the growing perturbation modes, we will only
consider spherically symmetric perturbations here. Non
spherically symmetric perturbations ded¢ay| and so do not
play a role in the critical behavior. In this section, we outline o =2f ,+2flu, p=0. (21
how spherically symmetric perturbations of the Roberts so- ' ’
lution (5) are described in gauge-invariant formalism. A gen-Once the gauge-invariant quantities are identified, one is free

Ill. GAUGE-INVARIANT PERTURBATIONS
OF THE ROBERTS SOLUTION

2u(u—v)f ,,+(2u—v)f ,—uf ,—2f=0, (20

and two trivial equations relating metric perturbations to the
scalar field perturbation

eral spherically-symmetric metric perturbation is to switch between various gauges. We conclude this section
) ) , by discussing two particularly convenient choices.
69, dx*dx" =k, du”+ 2k, dudv +k,,dv+r°KdQ?, Field gauge(K=k,,=0). The scalar field perturbation

(1D coincides with the gauge-invariant quantityn this gauge,
and expressions for other gauge-invariant quantities simplify

while general perturbation of the scalar field is considerably:

Sp=o. (12

f=-0¢,
Under a(spherically-symmetricgauge transformation gen- v
erated by the vector p=—Kuy—Ukyy,/2, (22
= 1
&=(A,B,0,0), (13 =Ky~ EJ KyuodU.

the metric and scalar field perturbations transform as
The linearized Einstein-scalar field equations are at their sim-
AQ,,=£0,,, AP=E:0. (14 plest in this gauge, and the derivation of the master equation
for f above is almost transparent. The metric and scalar field
The explicit expressions for the change in the perturbatiorperturbation amplitudes are trivial to obtain:
amplitudes under the gauge transformation generated by the

vector¢ are o=—f,
Akyy=—2B , Ky, =2f, (23
Aky,=—A,—B,, Kyu,, = —4f/u.
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FIG. 2. Wave propagation on the Roberts
S background: Initial conditions can be equiva-
g lently specified on the surface=0 extending to

the center of the flat part of spacetinre=0), or

on the k=0)U(s=0) wedge. By linearity, the
wave packet can be decomposed into three
modes: outgoing, “constant,” and incoming.

Null gauge (k,,=k,,=0). This gauge was used in the solution can be reduced to the master differential equation
original analysis of spherically-symmetric perturbations of
the Roberts solutiofl12]. The motivation behind this gauge Df(x,8)=0 (25
choice is that coordinates andv remain null in the per-
turbed spacetime. The expressions for gauge-invariant quafer the single gauge-invariant quantityx,s) describing per-
tities are quite simple here as well: turbation of the scalar field. The explicit form of differential
operatorD in scaling coordinates, given by E®O), is
f=K/2— ¢,
2 2
p=(r’K) up—Kup , (29) sz(l—eZX)g—sz+2jx—;S+2z—i—4f. (26)
=Ky, -
Because of the scale-invariance of the background, the coef-
For details on how to reconstruct perturbation amplitudesicients of the differential operatd? do not depend on scale,

from gauge-invariant quantities sgE2). and so the problem can be reduced to one dimension by
applying a formal Laplace transform with respect to the scale
IV. WAVE PROPAGATION ON THE ROBERTS variables to all quantities and operators. In particular, for
BACKGROUND Laplace transform of we have

So, we wish to study scalar field wave propagation on the o
Roberts background. Typically, one would specify initial F(x,k)zf f(x,s)e”kds, (27
data for the wave packet either on some spacelike Cauchy 0
surface or on initial null surface, and trace the later evolution . ) ) .
using the field equations. Our choice for initial surfacaiis With the inverse transformation being
=const 6=0), which forms a complete null surface if ex- _
tended to the center of the flat spacetime part, as illustrated f(x,5)= i fﬁle(x k)eksdk. (28)
in Fig. 2. The part of a pulse propagating through flat back- ' 2l ) —ie '
ground evolves trivially, and can be equivalently replaced by
specifying field values om =0 hypersurface. Thus, in our The Laplace transform can be done provided thean be
problem, the initial conditions for the linearized Einstein- bounded by an exponential function ®fthat is, there exist
scalar field equations are given on tee 0 surface, while constantsM, x, such that|f(x,s)|<Me*°°), which is a
the boundary conditions are determined by junction condiphysically reasonable condition. The contour of integration
tions across the null shell=0, as outlined in Appendix A, in the complexk-plane for the inverse transfor28) must
and the requirement that the perturbations be bounded &k taken somewhere to the right &f, (k>&ky=0). The
future infinity. properties of functions of complex variables will guarantee
As was shown earlier, the Einstein-scalar field equationsghat the result of integration is independent of the particular
for the spherically symmetric perturbations of the Robertscontour choice.
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When applying the Laplace transform to the differentialvalue should be bounded at future infinity. It is practical to

operator, split the wave packet to three components, as shown in Fig.
y 2, and consider outgoing, “constant” and incoming packets
L |- KF—f(s=0), (29) separately.

— . . . A. Outgoing wave packet
so the initial conditions of the original problem will enter as

source terms on the right hand side. Therefore the Laplace The outgoing wave packet is characterized by
transform of the Eq(25) is f(x=08)=fo(s), f(x,.s=0)=0 (35)
DiF(x.k)=h(x), (30 and is propagating outwards to future infinity, except for

whereD,= LD is now an ordinary differential operator, al- backscatter on the background curvature which goes towards

gebraic ink, and h contains information about the initial the singularity as= +<. The boundary conditions and the

shape of the wave packetst 0. Boundary condition on Eq. initial term for Eq.(30) are

(30) are inherited from the original problem by Laplace -~ _ _

transformation. Fly=1K=Fo(k), h(y)=0. (36
The explicit forms .of the opgrathk and the rglationship The general solution of the homogeneous form of B4) is

of f to the perturbation amplitudes are the simplest when

expressed in slightly different spatial coordinate, related to F(y,k)=A(k)Z4(y,k)+B(k)Z5(y,k), (37

the old one hy
whereZ, andZ, are two linearly independent solutions of

- v the homogeneous hypergeometric equation, in notation of
y=e“=1--. (3D Appendix B. To satisfy boundary conditionsyat 1, param-
etersA and B must be
The differential operatoD, is hypergeometric in nature

A(k)=Fg(k), B(k)=0. (38
2
Dk:y(l_y)%ﬂl_ﬁﬁ 1)y]%—(k/2— 1), (32)  Therefore, the outgoing wave packet solution is given by
y
1 K+ic
with coefficients f(y,s)= mﬁﬂw Fo(k)F(a,b;k;1—y)e*dk, (39)
c=1, at+b=k, ab=k/2—-1, @3 where F is the hypergeometric function.
_ 33 If fo(s) does not grow exponentially @s- + o« by itself,
a,b=1/2(k+ Vk*—2k+4). i.e., the imageF (k) does not have poles in Re>0 half-

plane, than neither doegy,s). The outgoing wave packet

just propagates harmlessly out to future infinity, never grow-

(34) ing enough to cause significant deviation of the solution from
the Roberts background.

The right hand sidé depends on the initial conditions as

h(y)=—yf(y,s=0)—3 f(y,s=0).

Here and later dot denotes derivative with respectyto

(' =d/dy). Once the solution foF (and hence its inverse

Laplace transfornf) is found, one can reconstruct the other  Even more trivial is the case of the “constant” wave

two gauge invariant quantities andp describing the metric  packet, characterized by

perturbations using Eq$21), and, in principle, write expres-

sions for perturbations in any desired gauge choice. f(x=05)=C=f(x,5=0). (40
Thus, the study of wave propagation on the Roberts back]-_

ground is reduced to solving the inhomogeneous hypergeo-

B. “Constant” wave packet

he boundary conditions and the initial term for E§Q0) are

metric equation(30). The following analysis relies heavily F(y=1k)=C/k, h(y)=—C/2. (41)
on certain properties of the hypergeometric equation, which ’ ’
are collected in Appendix B for convenience. The general solution of Eq30) with these boundary condi-

So far, we have not talked about specifics of the boundaryions is
conditions placed on Ed25). That depends on the physical
problem being considered. If the flat spacetime peawt0
were unperturbed, the null shell junction conditions, dis-
cussed in Appendix A, would require that0 on the sur-
facev=0. If some part of the pulse propagates in the flatand the boundary conditions gt 1 require that
sectorv <0, f should be continuous across the surface
=0. Essentially, we can specify value obn the wedge
=0)U(s=0) arbitrarily, keeping in mind that perturbation

C
F(y,K)=AK)Z1(y, k) +BKZo(y, K +]—, (42

A(k) = B(k)=0. (43

 k(k—2)"
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So the constant wave packet solution is given by The Green’s functiorG satisfiesD,G(y, )= 6(y— 7), and
hence can be used to construct the solution of inhomoge-

ks .
€ neous equation

2
1- E]—"(a,b,k,l—y) mdk,

C K+ioe
f(y,s)= TmJHx
(44) F(y,k)=f1 G(y,n)h(n)dn. (53

and it does not grow as— + either.
As the initial value problem(47) is not self-adjoint, the
Green’s function(51) need not be symmetric in its argu-
) ) ) ) ) mentsy and 7. Note that the Green’s function is calculated
. By far, the most phyS|ca}IIy interesting case is the incom-, particulark-mode, and so depends &nbut we omitted
ing wave packet characterized by the third argument irG(y, »;k) for brevity.
_ _ A — We now proceed to apply boundary conditions to the
f(x=08)=0, f(xs=0)=1(). “9 Green'’s function(51), starting with the boundary conditions
It propagates directly towards the singularity and is respon@t Y=1. The fundamental solutiod, goes to one there,
sible for near-critical behavior and breaking of the solutionWhile the behavior oZ; is fundamentally different depend-
away from the Roberts background, as we shall demonstraté!g on the sign of Re(1 k). If Rek<1, the real part of
The boundary conditions and the initial term for E80) are ~ Power of (1—y) in Eq. (49) is positive, andZ, goes to zero
wheny=1. If Rek>1, the real part of power of (%y) is
F(x=0k)=0, h(y)=—yf,(y)—f,(y)/2. (46) hegative, and hencs, diverges whery=1. Substituting this
into Green’s function, we get

C. Incoming wave packet

To solve the inhomogeneous hypergeometric equaBon (1—p)k1
-n
G(y=17m)=A+ sz( 7)

(1—p)kt 0, Rek<1
~ Sm— Zi(n) -
2(k—=1) , Rek>1
(54)
aJI'he boundary condition$48) require thatG(y=1,7)=0,
which uniquely fixes the coefficients
Z,(y)=Fa,b;k;1-y), (1_7])k—1 (1_7])k—1

A=— sz(ﬂ), B=

y(1—-y)F+[1—(k+1)y]JF—(k/l2—1)F=h, (47)

with the boundary conditions 4B

F(y=1k)=0, F(y=c,k)bounded, (48)

we must construct a Green’s function out of the fundament
system of solutions of the homogeneous equation

z(k—_l)zl(ﬂ),

Zy(y)=(1-y)' *Al1-al1-b;2—-k;1-y), (49 (55

where parametera and b of hypergeometric equation de-

ided Re&k>1, which i isely th i f th -
pend onk as given by Eq(33). The Wronskian of the above provitie WhICH 1S precisely the tegion o1 the com

plex k-plane the contour of the inverse Laplace transforma-

system is tion should be in(If Rek< 1, coefficientd can be arbitrary.
_ _ With these coefficients, the Green’s functi becomes
W(y)=(k—1)y " H(1-y) % (50 &0
and the Green'’s function is constructed as Gl
Ol y$ 7]7
G(y,n)=A21(y)+BZz(y)i; =1 (1=—p"*
2po( ) W(7) T [ Za(Y) ~ Zo()Za(N)], =Y.
X[Z1(Y)Za( 1) = Zo(Y) Z1( )] (56)
B . (1—p)kt The causality of wave propagation is apparent here: the wave
=AZ(y)+BZ(y)* 2(k—1) aty is only influenced by the data from the pas&y.
We see that the boundary conditionsyat 1 already fix
X[Z1(Y)Zo(m) —Zo(y)Z1( 1) ], (51)  Green’s function(56), but we still have to satisfy the bound-

o ) ary conditions at infinity. One can show that they are satis-
where the coefficientd andB are to be determined by ap- fieq automatically if(and only if Rea=0. Curves R&=1

plying the boundary conditions, and the plus-minus sign i3 Rea=0 split the complex plane into several regions,
taken depending on the arguments of the Green’s function 35 spown in Fig. 3. The Green’s functidh6) as written
4+ l<v< above is defined in regioA, but could be analytically con-
I SYs7 (52) tinued to the whole complex space. The obstructions Green'’s
B -, psy<o, function encounters on the boundaries betwaemdB and
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Im & Roberts background, they are too complicated to be of prac-
tical use. In this section, we use the method of the stationary
phase to obtain late-timgarges) asymptotic forf(y,s) and
analyze several physically important regimes of the wave-
packet evolution.

The method of the stationary phase deals with the ap-
proximate evaluation of Fourier-type integrals

S

(1) diverges

Re k

B

0 1
| g0 diverses

f()\)szF(k)ex;[i)\S(k)]dk (59)

for large positive parametex. It is based on a simple idea

FIG. 3. Complex perturbation spectrum. Valueskdb the left that Where expAS(K)] is. ospillating extremely rapidly and
of the solid line are prohibited by the boundary conditions at infin-F(k) .'S SmOOth’ the _OSC'"at'OnS will cancel O_UI* and the only
ity, to the right of the broken line by the initial conditionsyat 1. contrlbutlons_to the mte_gral will be from stationary p0|_nts of
Values in the region of intersectiqithe shaded regions andE) phaseS(k), singular points of (k) and S(k), and possibly

are allowed, and constitute the perturbation spectrum. end points. . .
Inverse Laplace transform integra@8) are precisely of

A andF are not poles, indeed, they are not even singular fofn® above type, with phass(k) =k and large parametex
regular f/,7). They are rather caused by the fact that theP€ing the scale coordlnasg So the Statlonary.phase mgthod
Green’s function(56) fails to be applicable once you cross tells us that the asymptotis—< of the solutionf(y,s) is
these boundaries; in the regi@boundary conditions at in- 9iven by singular points oF(y,k) as a function o, i.e.,
finity fail to be satisfied, and in the regioR free modes Singular points ofG(y, 7;k). Therefore the study of analytic
(solutions of homogeneous equation, thakisist that satisfy ~Properties of Green's functio(66) plays a key role in un-
all boundary conditions, making the Green’s function notderstanding the late-time evolution of the wave packet. The
unique. The existence of free modes in regiris at the Possible sources of nonanalyticity in Green's function are
heart of the matter, as they grow and will determine whatisted as follows: branch pointe=1+iy3 of a,b=1/2(k
will happen to the wave packet at the later tim@sis also ~ + Vk?*—2k+4); poles atk=2+n in Z, andk=—n in Z;
possible to construct Green’s function in regiGnbut since  coming from the hypergeometric function; the polekatl1
it has no bearing on our analysis, we will not do it hgre.  from the prefactor; power-law singularity of the type (1
Once Green’s function has been determined, it is simpl&y)k‘l.
to construct later-time evolution of the wave packet from the Problem with branches of the coefficiemts is absent in

initial data using Eq(53): the Green'’s functiois because they only enter it through the
( - first and second arguments of the hypergeometric function,
_(y(A=p)" and the hypergeometric series are written in termsabf
Fly.l= Jl k—1 22y = Za(m)Za(y)] =k/2—1 anda+ b=k only. Various poles at integer values
of k are all canceled out because of the antisymmetric way
xXh(n)dn. (570 hypergeometric functions ent€. In fact, the only source of

nonanalyticity inG is power-law singularity, and then only
To get back from the complek-plane dependence to the 4 y,7— 1. Despite the appearanog(y,7:K) is an entire

physicgl time evolution, one performs inverse Laplace transénalytic function ofk provided thaty, 7 are regular points.
formation Since the smally region is important for the late-time
1 [rtie evolution of the wave packet, it is instructive to take a closer
f(y,s)==— F(y,k)esdk. (58)  look at the approximation to the Green’s functi@®) there.
271 ) ke Using the asymptotic behavior &f,, Z, nearp=1, given in

. . . , Appendix B, we obtain
We emphasize again that a particular choice of the contour of

integration is not important, as long as it is to the right of the (1— p)k1

obstructions on the complex plane, in our case re¢iom G(y,n—1)~ T[Zz(y)—(l— 1 *Z.(y)]
practice, one chooses the contour so that the intég8alis

easier to evaluate. For some approximation to work, the con- 1 [[1-p\k?

tour should touch the obstruction, which means pushing it = m[ H) fz(y)—}‘l(y)}, (60)

leftwards to the very edge of regidghat Rek=1.

where we introduce the short-hand notation
V. LATE-TIME BEHAVIOR

OF INCOMING WAVE PACKET Fi(y)=Fa,bk1-y),

While expressions fof written down in the previous sec-
tion formally solve the problem of wave propagation on the Fo(y)=F(l—a,l-b;2-k;1-y). (61

084006-7



ANDREI V. FROLOV PHYSICAL REVIEW D 61 084006

Note that even though poles in the hypergeometric functionsf the free mode should be. Second, the growing modes can-
no longer cancel in Eq60), they are purely artifacts of the not be excited by the initial profile analytic gt=1. If this
approximation, and should be ignored. were the case, thelm could be expanded in a Taylor series
Now we will use the above approximatidie0) for the  aroundy=1, each term in the series raised to integer power
Green’'s function to study the late-time evolution of the corresponding to non-negative value@fand so not grow-

packet in several important regimes. ing at larges. Third, the above argument illustrates how only
theZ, content of the initial data is relevant to the subsequent
A. Evolution near v=0 evolution of the wave packet.

Let us first consider the behavior of the wave packet near So it seems that the exponential growth of the wave
) R b packet at late times must be already built into the initial data
y=1, that is, near the initial null surfaace=0. We take the

asymptotic behavior of the initial terrh to be the fairly N form .of'apower—lav.v divergence of the initial wave profile,
: just as it is encoded in the pure free magle But a power-
generic power law . .
law divergence of the perturbation near0 causes curva-
h(7)=(1— 1), (62)  tureinvariants to diverge at the junction, making the surface
v=0 a weak null singularity, which casts a shadow of doubt
which covers the usual case of functions analyticy atl on the physicality of such growing modes. The question then
(via Taylor expansiop as well as the case of functions with arises whether it is possible to somehow eliminate the of-
a power singularity ag=1, such as free modé&s,. Then the fending divergence, while still having a wave packet grow to
approximation to the Green'’s functid60) gives the solution large enough values. The answer to this question is yes, and

in the desired region, it is discussed next.
y 1 [[1—n\1
F(y,k)wj 1k 1—y Fo(y)— Fuly) B. Evolution of a wave packet initially localized atv =0
1= —

So what will happen if we cut off a diverging initial wave
1-n\ o shape(62) below some small value of—1, say\? To put it
1-y (1=y)“dn. 63 in another way, will the power-law diverging wave localized
neary=1 backscatter and affect the evolution of the wave
The above integral can be explicitly evaluated using thepacket at the largg? If not, then subtracting such localized

X

change of variable wave packet from perturbation modes discussed above will
cut off the divergence at=1, while keeping the rest of the
gzln( 1- 77) (64 Wwave packet evolution essentially unchanged.
1-y) We model such a localized wave by adding an exponen-

, tial cutoff to the generic power law initial terri62)
which leads to the answer

h(m)ec(1—p)*el= M, (68)

0 1 k—1
F(y,k)w—f m[e( “DEEN(y) = Fau(y)]
o The exponential factor is chosen because it effectively sup-

xel+al(1—yyl+aqs (65) presses for values ofy— 1>\, yet still keeps the calcula-
tions simple. We are interested in the evolution of the wave
1 [F(y)  Fuy) packet well outside the region of initial localization, but still
= —(1—y)1+“k_ Il kta Tral for small enougly so that approximatio60) holds, that is

(66) for A<y—1<1 (that can always be arranged for small
enough)). In this region of interest we have

To obtain the late-time evolution of the wave packet near

=1, we use the method of stationary phase. Observe that the vy 1 — |kt
only real singularity ofF(y,k) is the simple pole ak= F(y,k)~f ﬁ[(?) ]—‘z(y)—]-‘l(y)}
— a, with the rest being artifacts of the approximati@0). ! y
Therefore, the late-time behavior of the wave packet is ex- X (1— 7)%e= Mgy, (69)
ponential in the scals; indeed, it is given by
(1—y)tte s 1 s The above integral can be evaluated by the change of vari-
fly.s)~——Felyi—a)e =1 —Z)(y;—a)e ™. aple
(67)
-1
There are several things worth noting about the above result. t= 7= (70)

First, it gives the correct answer for the evolution of the free
mode. Sinc&,(y;p)~(1—y)* P, the initial term works out

to be h(y)~(1-p)(1—-y) P, so the above formula gives which yields the following approximation fd€(y;k) in the
f(y,s)~Z,(y;p)ePs, which is precisely what the evolution region of interest:
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= 1 [[=At\k? L
F(y,k)~f0ﬁ (ﬁ) Foly)—Fa(y) |[(—AD)“e™"Adt (71)

1
== TN Tkt ) (1= F(y) — (=M T A+ ) Ay)]. (72

So outside the region of initial localization of the wave packet, but still for smpathe Laplace transform of the field
perturbation is approximately given by

1
F(y.k)~~— m[(—k)k+“r(k+ @) Zy(y) = (=N T(1+ @) Zy(y)]. (73

The main contribution to the late-time behavior is coming from the poles of the gamma-fuhkena) in the first term.
Using the stationary phase approximation, it is possible to calculate this contribution exactly. The inverse Laplace transform
of F(y;k) can be reduced to the inverse Mellin transform of the gamma-function

1 [rri=Zy(y; —a)

fy.s)~5+ T iva AT (k+ a)eksdk (74)
:%_a“) z_—:f:::::cl“(k)[e‘(s*'” M1 kdk (76)
:—ZZ(lyi;a) Cl P NC 77

which is a known integral; indeed, M ~I'](x)=e"*.

The above result shows how we can cut off the free mode

Therefore we obtain the following late-time approximation Z,(y;k) to avoid the curvature divergence, and yet have it
of the field perturbation outside the region of initial localiza- grow sufficiently large. To quantify how large can it grow,

tion:

O(s+In\)

1+« (78

fy,s)~ Z,(y;—a)e s,

This looks very similar to the earlier resul67); the only
difference is the facto® (s+In\), where® is defined by

O(x)=exd—e *], (79

and is almost a step function, rapidly changing its value fro
0 to 1 as its argument becomes positive

1, Rex>0,

009~10, Rex<o,

(80

where the width of the transition is of order unity. This
means that the perturbation outside the region of initial lo-

calization does not feel the effect of the field yat 1<\
until a much later time, namely= —In A, when it suddenly

m

consider the free mode=Z,(y:k)e~(1—y)1 ", with
divergent scalar curvaturi@ef’, and cut it off aty —1<<\.

The largest initial curvature value is of ordRe\ ~¥, while

the initial energy of the pulse isRx\1"%, and can be made
arbitrarily small. The perturbation mode will grow exponen-
tially until the cutoff backscatters at= —In A, at which time

its amplitude will bex %, with proportionally large curva-
tures and energies. In other words, the initial large curvature
seed localized in a small region spreads over the whole space
in the course of the evolution, with the energy of the pulse
growing correspondingly. Thus, the free perturbation modes
considered here are physical and grow exponentially to very
large amplitudes, certainly enough to leave the linear regime,
and are therefore responsible for the evolution of the solution
away from the Roberts one.

C. Generic initial conditions

We now turn our attention to the evolution of the wave

spreads. To put it simply, the wave packet initially localizedpacket from generic initial conditions. It is reasonable to ex-
at v<<\ does not backscatter until it hits the singularity at pect that completely generic initial conditions will have non-

u=0, and then goes out in a narrow bardi<\ (see Fig.
4).

zero content of all perturbation modes present in the system,
both growing and decaying, as given by E¢7) and(58),
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Zl ‘ Z2

N\ ‘ ¥

A
e
VARV

b) k=142

FIG. 4. Field perturbation profiles on a sliae= const:(a) for a typical value ok inside regionF; (b) for a value ofk at the end point
of regionF. The horizontal coordinate on the plots isuln

s _ _ ks ~(—y) ®with Rea<0 there, and so boundary conditions at
f(y's)_J'K,im[WZ(k)ZZ(y’k)+W1(k)Zl(y’k)]e dk. infinity are not satisfied. Therefore, for the initial wave
(81  packet bounded at infinity, the content of such modes is sup-
pressed, so thafdkfW(k)(—y) ?]~1 for largey. This
However, decaying modes will disappear very quickly, soleads to slower growth ratefdk[ W(k)(—ye®) 2e(k+as]
only the growing modes are relevant to late-time evolution.~e(**®s at the later times. Hence, the piece of the contour
Assuming that the content of the free growing mage¢y; k) I' between the end poinkg can be omitted from the inte-
is given by the weight functiolW(k), the generic wave- gration without affecting the late-time evolution.

packet evolution is given by the sum of all such modes For completely generic initial conditions, we should ex-
pectW to be a smooth function d€ in the free mode region
_ L KS F, not preferring any particular value &f Therefore, using
fy.s)= er(k)Zz(y,k)e dk, (82) the stationary phase approximation, the main contribution to

the late-time behavior of the above integral comes from the
where the infinite contour of integratidn runs vertically in ~ end points of the contour of integration,

the regionsF and F of the complex plane on Fig. 3, at

Rek=1. However, we note that the part of the contour be- . " i~ ekos - - eko's
tween end pointk; =1+i2 of the regions andF does (¥,8)~ =Wk ) Za(yiko ) =g~ = Wik ) Za(yiko ) =5~
not correspond to free growing modes, &s(y— o) (83
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Ignoring the overall weight factor, we find that the late-time
evolution of the generic wave packet is given by

koS

f(y,s)ocRe[Zz(y;ko)? : (84)

We emphasize that the sindig-mode dominates the course
of evolution of the generic wave packet, and thus a certain

universality is present in the way a generic perturbation de 3 2 5 = 7 3
parts from the Roberts solution. \\y

VI. DISCUSSION

In this paper, we studied spherically symmetric perturba- ) , . _ ——
tions of the Roberts solution with the intent to understand FIG. 5. Profile for the field variabl&= 2 \{r/a) (9¢/ar)

. . th lice t=const for the dominant modef(y,
how nearby solutions depart from the Roberts one in the o 1€ Siee t=const for mhe dominant mode (v.5)

. ; . =7,(y;ko)e*%/s. Compare this plot to Fig. 2 of Choptuik’s paper
course of the field evolution, and what bearing the Roberts, _2(y o P P g P pap
solution has on the subject of critical phenomena in general,

and how it is related to Choptuik’s critical solution in par-

ticular. We analyzed the behavior of incoming and outgoin One can see that taking a stépin the scale variable is
' Y 9 9 .gequivalent to scaling both spatial and time coordinataad

wave packets, and we focused our attention on the incomin down by a factor®. Therefore, the solution being periodic

3\?i(tah a;f];h;i dpgglfrzza”é/régﬁ\s/ir&tngggnf(f)c:rrt'rrw]SI;ciL;Stlvovg \F/)v(zzsrg ih scale coordinate is equivalent to being invariant under
' escaling of space and time coordinatesndt by a certain

able to completely solve the perturbation problem in close

ST o actor
form, as well as obtain simple approximations for the late-
time evolution of the field in several important regimes.

As was shown above, the departure of the generic pertur-
bation away from the Roberts solutionusiversalin a sense
that the single mod&,(y;ko)e“eS dominates the late-time
evolution of the field. The complex growth exponent gives
rise to an interesting physical effect: the perturbation devel
oping on the scale-invariant background evolves to have
scale-dependent structure’cos(Imkys). The exponential

f(x,s+A)=f(x,s5)=f(e 2r,e 2t)=f(r,t). (88

The later is an expression of the symmetry observed in the
numerical simulations of the massless scalar field collapse
[1], and referred to as echoing, or discrete self-similarity in
Hwe literature[1,7].

Thus, our simple analytical model of the critical collapse
of the massless scalar field illustrates how the continuous

growth of the amplitude of the perturbation will eventually C T S .
be stopped by the nonlinear effects, while the periodic de§,elf—3|m|lar|ty of the Roberts solution is dynamically broken
i to discrete self-similarity by the growing perturbations, re-

endence of the perturbation on the scale will most likel . . : "
P P yproducmg the essential feature of numerical critical solu-

remain. The period of oscillation, obtained in the linear ap-\ X
proximation, is tions. The value of exponent for the endpoints of the spec-

trum of growing perturbation modeky=1+i+/2, gives the
20 period of discrete self-similarity as
A= i (85
Mo A=\2m=4.44 (89)

What does this periodic dependence of the solution on th?or linear perturbations of the Roberts solution, which is

: - - ;
scale mean phyS|ca_\IIy. To answer this question, Iet US SFithin 25% of the numerical valué =3.44 measured by
how this symmetry is expressed in the Schwarzschild coor:

dinates ¢,1) often used in numerical calculatiorsee, for Choptuik[1]. Given that the perturbative model considered

. . N here reproduces all the symmetries of the Choptuik’s solu-
example[1]. In this coordinates the metri§) is diagonal tion, and gives a good estimate for the period of echoing, it is

instructive to compare the actual field profiles to the numeri-
cal calculations. There are some technical issues connected
) . . ) with rewriting our results in the variables Choptuik uses,
where metric coefficients and explicit expressions for cooryyhich are addressed in Appendix C, but the end result of
dinates are given in Appendix C. For our purposes, it Sufficeg oy ation for field variableX = 2 \(r2/a)(de/dr) from
to note that the coordinatedetermines the ratio/t, while . the perturbation modes is presented in Fig. 5. Comparing this
®lot to Fig. 2 in original Choptuik’s papdil], we see that
they share one common feature, which is the oscillatory na-
ture of the field solution; however, the shape of the field
r=ex x—s] 87) profiles is quite different. This discrepancy is not surprising,
' ' however, since perturbation methods in critical phenomena

d= — adt?+ Bdr2+r2dQ0?, (86)

coordinates viae ™ factor

r +1 oy
— —=exn X —
t € 2°€

084006-11



ANDREI V. FROLOV PHYSICAL REVIEW D 61 084006

are usually viable for calculating critical exponents, but notsions of the material presented here. Routine calculations
the field configurations themselves. were assisted by computer algebra engiBR;Tensorllpack-

The emerging discretely self-similar structure, and theage in particular, for which | thank the developers.
universal way in which the generic perturbation departs
away from the Roberts solution offer support for the conjec- APPENDIX A: NULL SHELL JUNCTION CONDITIONS
ture that the Roberts solution is “close” to the Choptuik one . ] } S
in the phase space of all massless scalar field configurations The influx of the scalar field in the Roberts solution is
(in a sense of being in the basin of attraction of the Iatter turned on at the advanced time=0, with the spacetime
highly unlikely, however, that the critical mode responsiblejunction condition across .thIS null surface,.and their |mpl|c§1-
for the decay of the Choptuik solution will be completely tions for boundary conditions of perturbation problem. This
absent in the initial data originating near the Roberts soludiscussion is adopted from general treatment of thin null
tion, as this usually requires fine-tuning of the parameters. Séhells by Barrabeand Israe[15]. _ o
though at first the field configuration near the Roberts solu- Consider the general spherically symmetric metric in null
tion might seem to evolve towards the Choptuik solution,coordinates
after a while the critical mode will kick in and drive the field ds?= —2e2°dudy +r2d02. (A1)
to either dispersal or black hole formation. This picture is in i ] .
line with the Choptuik solution beinmtermediateattractor, 10 fix the geometry of the soldering of spherically symmet-
and we offered “ball rolling down the stairs” analogy earlier "C Spacetimes uniquely, one must match radial functions
[14] to visualize the field evolution as it goes from initial @cross the constant advanced time hypersurface. To this end,
configuration (the Roberts solutionto local attractor(the ~ We rewrite the above metric in terms of advanced Eddington
Choptuik solution and then to global attractéblack hole or ~ coordinates on both sides
flat spacetimgin the phase space. Unfortunately, linear per- _ 2 12
turbation methods are not sufficient to provide a proof of the ds’=—e’dv(fe’dv—2dr) +r*d0?. (A2)
proposed scenario, and fail to give the answer as to whalhe metric coefficients in Eddington coordinates can be cal-
would the eventual fate of the evolution behether black culated from those in null coordinates by
hole or flat spacetime end-state will be selegtenhd how
fast would the field get there. e S 4o _2r,ur,u (A3)

To completely answer these questions, one would need to Mo’ 20 '
employ some sort of nonlinear calculation, or perform nu- )
merical simulations of the evolution. In particular, it would The surface density and pressure of the null shell are then
be interesting to evolve the perturbed Roberts spacetime ngletermined by jumps of the metric coefficients acrossithe
merically and look for the Choptuik spacetime as the pos-=const surface
sible intermedigte attractor. Nevgrtheless,. it may happen that 4mrle=[m], 8mP=[4 ], (A4)
some information about Choptuik’s solution can be gained ’
from the linear perturbation analysis of the Roberts solutionwhere the local mass function(v,r) is introduced, as usual,
The appeal of this method lies in the fact that such analysi®y
could be carried out analytically, while Choptuik’s solution
is still unknown in the closed form. Similarly, one can try to f=1— —. (A5)
study properties of other analytically-unknown critical solu- r
tions in different matter models based on “nearby” solutions oy Minkowski spacetimé =1 andy=const, so below the
with higher symmetry and S|mp_ler form. Qne _m|ght als_o_vzo hypersurface surface we have
hope to obtain acceptable analytical approximations to criti-
cal solutions, Choptuik’s in particular, by going to higher m(v<0)=0, ¢ ,(v<0)=0. (AB)
order perturbgtion theory _in the re_gion near the. singularity. For the Roberts solutior5),(6), we haveo=0, r2=u?
' To summarize, our main rgsylt is the dynamical explana- uv, so a direct calculation gives
tion of how discretely self-similar structure forms on the

eZa’

continuously self-similar background in the collapse of the uv 1 2
minimally-coupled massless scalar field, and the prediction m==7 lﬁ,r:F 242 (A7)
for the period of this structure\ =\2mw=4.44, which is reto

quite close to the numerical value=3.44, considering we Obviously,

only did a first-order perturbation analysis, and that nonlinear . .

effects can, in principle, renormalize that value. lim m=0,  lm y,=0, (A8)

v—+0 v—+0

so the Roberts solution is indeed attached smoothly to the
flat spacetime, without a delta functionlike stress-energy ten-
This research was supported by the Natural Sciences arsmbr singularity associated with a massive null shell.
Engineering Research Council of Canada and by the Killam If one wishes to attach a perturbed Roberts spacetime to
Trust. | would like to thank D. N. Page for helpful discus- the flat one, as we do, and still have no singularity at the
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junction, the null shell matching conditions above will place With parameters, b, and c being arbitrary complex num-
boundary conditions on the perturbation values at the juncPers- It has three singular points ynt=0,1. Its general
tion surface. To obtain these, we take the perturbed RobergPlution is a linear combination of any two different solu-
solution in null gauge of Ref[12], given by o= (x)eks,  tions from the set

r=e*"5(1+p(x)e*9), and calculate the null shell surface Z:=Fa,b;a+b+1-c;1-y),

density

— __y\Cc—a—b _ - P T
[m]=[-p'/2+(ki2—1)p+ale® D5 (A9) Zo=(1=y)" F A c-ac-bict1-a-bil-y),

and surface pressure Zz=(—y) *FAaa+l-cia+l-by ),
_ - (B2)
[¢,]=—K[(k—1)p+20]ekrDs, (A10) Z,=(-y) °Ab+1l-cbb+1-ayy™),
The simultaneous vanishing of these two for arbitriaigan Zs=F(a,b;c;y),
only be accomplished if

Ze=y! “Fa+1l-c,b+1-c;2—cy),

where F(a,b;c;y) is the hypergeometric function, defined
and these are precisely the boundary conditions we imposegl, the power series

on metric coefficients earlier. One also has to require conti-

p=p'=0=0, (Al11)

o0

nuity of the scalar field across junction, so the boundary o (@)n(b)n "
condition on scalar field perturbation is }—(a’b’c’y)_go (¢)y n!’ B3
$=0. (A12)  and we used shorthand notatioa){=1I'(a+n)/I'(a). The

These boundary conditions on perturbations in the null gaug ypergeometric series is regular yat0, its value there is

Smply mean vanihing of gauge-invariant perrbaton am? (S EIEI0) -, snd s absoliely comvergent By 1.
lit fi in th i hev=0 h - . .
plitudes (defined in the next appendion thev =0 hyper parameters, one can show th&ta,b;c;yg)/I'(c) is entire

surface. . . i

analytical function ofa, b, andc, provided thafyy|<1.
e boset arund dheren o
OF THE HYPERGEOMETRIC EQUATION gufar p YPErg q ’ ymp
ics given by
We showed at_Jove that the linear perturbation analysi_s of Z,=1, Z,=(1-y)* 2P neary=1,

the Roberts solution can be reduced to the study of solutions

of the hypergeometric equation with certain parameters. The Zs=(—y)"3 Z;=(—y) ® neary=w, (B4)

hypergeometric equation has been extensively studied; for a

complete description of its main properties see, for example, Zs=1, Zg=y' ° neary=0.

[16]. In this appendix we collect the facts about the hyper-
geometric equations that are of immediate use to us, mainl&
to establish notation. €

Any three of the functionZ, . .. ,Zg are linearly depen-
nt with constant coefficients. In particular,

The hypergeometric equation is a second order linear or- ) Ciz Cu4l[Z3
dinary differential equation, = : (BS)
Zp| |Ca3 Ca4l[Z4
y(1-y)Z+[c—(a+b+1)y]Z—abZ=0, (B1)  where the coefficient matrix is given by
|
I'(a+tb+1-c)l'(b—a) . I'(atb+1-c)l'(a-b) .
S I(b+1-c)l(b) °© T(at1l-c)l(a)
= —a— — —a— — . (B6)
Cos Cos I'(c+1—-a—-b)['(b—a) o-im(c—b) I'(c+1—a—b)I'(a—Db) Cim(c—a)
I'i1-a)l(c—a) I'A—b)I'(c—b)
|
These relationships are true for all values of the parameters APPENDIX C: SPACETIME
for which the gamma-function terms in the numerators are IN CURVATURE COORDINATES

finite, and all values ofy for which corresponding series

converge, with Iny>0. If Imy<O0, signs of arguments in For comparison of our results to Choptuik’s numerical
the exponential multipliers should be inverted. We shall notsimulations [1], we must rewrite them in the diagonal
give the rest of similar relationships here. Schwarzschild-like coordinates Choptuik uses
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ds?= — adt®+ Bdr2+r2dQ0?2. (C1) &=(A,B,0,0) (C7)

One can straightforwardly check that the coordinate changeonnecting the simple field gauge=k,,=0 with the diag-
onal gauge, fixed by condition&=0 and (21—v)%k,,
— 1,2 ;
_ -~ =u“k,,. The effects of the gauge transformation on the per-
o r=exdx—s] €2 turbation amplitudes were given above in Sec. Ill. Imposing
the conditionK =0, one finds thaB must be related té by

t=—exg —s— lezx
2

diagonalizes the Roberts metri®). By self-similarity, the

quantityt/r, as well as the metric coefficientsand 8 do not 2u—v

depend on the scalg but only on the coordinate. The B= u A. (C8
metric coefficients, written as functions xf are

A is then found by imposing the other condition fixing diag-

exf e¥] 1 onal gauge, which leads to the following equation:
a=2———, =2 . (C3
1+e* 1+e 2

_ _ o . (2u—u)2Av—u(2u—v)Au—vA=2uffdv. (C9)
If one wishes, one can rewrite them as explicit functions of ' ’

Ur, using Rewriting A in scaling coordinates,

1

5 INW(r?/t?), (C4) A(y,s)=A(y)el s, (C10

X:

. , L i transforms the above equation into the ordinary differential
in terms of Lambert’sW-function, which is defined by the equation

solution of transcendental equation
Wexp(W) = x. (CH (1+y)A+[1—k/2(1+y)]A=—f Fdy, (C1)

The expressions for metric coefficients are then . . .
which can be easily solved to give

exd W(r?/t?)] W(r?/t?) a(ki2)y

L = - y &
rrewere P wee P A== [Laee v [ Foae ez

However, thg coefficientsr and 3 cannqt be written in - 5nce the connecting gauge transformation is known, it is

closed form in terms of elementary functionstéf. trivial to obtain the perturbation amplitudes in the Schwarzs-
_As you can see from expressions for the metric aboveyy g giagonal gauge. In particular, the scalar field perturba-

diagonal Schwarzschild coordinates are not particularly wellyi,, is given by

suited for description of the Roberts spacetime. On top of the

complicated metric form, one artifact of the diagonal coordi- o(y:k)=—F(y;k)+ A(y:k). (C13

nate system is that the null singularity a&=0 gets com-

pressed into a point at=t=0. Also, slicest=const cut We end this section by observing that while the gauge trans-

across they=0 hypersurface, so one has to be careful withformation termA is a small correction to gauge-invariant

discontinuities of the solution there. quantities neay=1, it is not at all well behaved at infinity.

The perturbation amplitudes in the gauge preserving diagindeed, it blows up exponentially &<2¥! The presence of
onal form of the metric are also quite complicated. The sim-this gauge artifact in the quite sensibly-looking diagonal
plest way to get them from gauge-invariant quantities is togauge illustrates just how easily one can get into trouble if

explicitly find a gauge transformation one is not working in a gauge-invariant formalism.
[1] M. W. Choptuik, Phys. Rev. LetZ0, 9 (1993. [9] M. D. Roberts, Gen. Relativ. Gravi2l, 907 (1989.
[2] A. M. Abrahams and C. R. Evans, Phys. Rev. L&, 2980  [10] P. R. Brady, Class. Quantum Grahl, 1255(1994).
(1993. [11] Y. Oshiro, K. Nakamura, and A. Tomimatsu, Prog. Theor.
[3] C. R. Evans and J. S. Coleman, Phys. Rev. L&#. 1782 Phys.91, 1265(1994.
(1994. [12] A. V. Frolov, Phys. Rev. 56, 6433(1997.
[4] T. Koike, T. Hara, and S. Adachi, Phys. Rev. Létt, 5170 [13] A. V. Frolov, Class. Quantum Grad6, 407 (1999.
(1995. [14] A. V. Frolov, Phys. Rev. 059, 104011(1999.
[5] D. Maison, Phys. Lett. B66, 82 (1996. [15] C. Barrabs and W. Israel, Phys. Rev. &8, 1129(1991).

[6] T. Hara, T. Koike, and S. Adachi, gr-qc/9607010, 1996.
[7] C. Gundlach, Adv. Theor. Math. Phy3, 1 (1998.
[8] C. Gundlach, Phys. Rev. B5, 695(1997.

[16] H. Bateman and A. Erdg, Higher Transcendental Functions
(McGraw-Hill, New York, 1953.

084006-14



