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Continuous self-similarity breaking in critical collapse
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This paper studies near-critical evolution of the spherically symmetric scalar field configurations close to the
continuously self-similar solution. Using analytic perturbative methods, it is shown that a generic growing
perturbation departs from the Roberts solution in a universal way. We argue that in the course of its evolution,
initial continuous self-similarity of the background is broken into discrete self-similarity with an echoing
periodD5A2p54.44, reproducing the symmetries of the critical Choptuik solution.

PACS number~s!: 04.70.Bw, 05.70.Jk
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I. INTRODUCTION

Critical phenomena in gravitational collapse have bee
relatively recent and interesting development in the es
lished field of general relativity. Following the numeric
work of Choptuik on the spherically symmetric collapse
the minimally coupled massless scalar field@1#, critical be-
havior was discovered in most common matter models
countered in general relativity, including pure gravity@2#,
null fluid @3# and, more generally, perfect fluid@4,5#, as well
as more exotic models.

The essence of critical phenomena in general relativit
the fact that just at the threshold of black hole formation
dynamics of the field evolution becomes relatively simp
and, in some important aspects, universal, despite the c
plicated and highly nonlinear form of the equations of m
tion. In analogy with second order transitions in conden
matter physics, the mass of the black hole produced in n
critical gravitational collapse scales as a power law1

MBH~p!}up2p* ub, ~1!

with the parameterp describing initial data, and the mas
scaling exponentb is dependent only on the matter mode
but not on the initial data family. The critical solution, sep
rating solutions with black hole formed in the collapse fro
the ones without a black hole, also depends on the ma
model only, and serves as an intermediate attractor in
phase space of solutions. It often has an additional symm
called self-similarity, in either continuous or discrete flavo

Discovery of critical phenomena in gravitational collap
was the first real success of numerical relativity in which
physical effect was observed in simulations without be
first predicted by theoretical physicists. For the theoretici
the challenge and attraction of studying critical phenom
lies in the possibility of exploring a new class of exact so
tions of Einstein’s equations, having simple properties a
high symmetry, but previously undiscussed. Another int
esting thing about critical solutions is that they are very r

*Email address: andrei@phys.ualberta.ca
1Usually, but there are models with mass gap in black hole p

duction, most notably Yang-Mills field, whose behavior is mo
analogous to a first order phase transition.
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evant to the cosmic censorship conjecture, the long-unso
problem of general relativity. With their ability to produc
arbitrarily small black holes and, in the critical limit, curva
ture singularity without an event horizon, in the course
quite generic gravitational collapse, they may serve as
acceptable counterexample to the cosmic censorship con
ture ~see@7# and references therein!.

Universality of the near-critical behavior has been e
plained by perturbation analysis and renormalization gro
ideas@3–6#, and is rooted in the fact that critical solution
generally have only one unstable perturbation mode. In
course of evolution of the near-critical initial field configu
ration, all the perturbations modes contained in it decay,
getting details of the initial data and bringing the soluti
closer to critical, except the single growing mode which w
eventually drive the solution to black hole formation or d
persal. In this sense, the critical solution acts as an inter
diate attractor in the phase space of all field configuratio
Because there is only single growing mode, the codimens
of the attractor is one. The eigenvalue of the growing mo
determines how rapidly the solutions will eventually dep
from critical, and it can be used to calculate the mass-sca
exponentb.

As we have mentioned, the critical solution often has a
ditional symmetry besides the usual spherical symme
called continuous or discrete self-similarity. This symme
essentially amounts to the solution being independent of~in
case of continuous self-similarity! or periodic in~in case of
discrete self-similarity! one of the coordinates, a scale. Th
role of this symmetry in critical collapse is not understood
all. Some attempts at finding critical solutions made a c
tinuously self-similar ansatz and hit a jackpot@3#, whereas
others studied discretely self-similar solutions from pheno
enological point of view@8#. Yet the simple question of why
a particular matter model should have this or that version
self-similarity incorporated in the critical solution still re
mains a mystery.

This paper attempts to shed some light on the subjec
investigating the dynamics of formation of discretely se
similar structure in the gravitational collapse of a minima
coupled massless scalar field. As a base point of our inv
tigation, we consider a certain continuously self-similar s
lution, known as the Roberts solution, as a toy-model of
critical solution in the gravitational collapse of a scalar fie
This solution was constructed as a counterexample to

-
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FIG. 1. Global structure of the Roberts solu
tion: The scalar field influx is turned on atv50;
spacetime is flat before that. The field evolutio
occurs in the shaded region of the diagram, a
there is a null singularity in the center of th
spacetime.
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cosmic censorship conjecture@9# and was later rediscovere
in the context of critical gravitational collapse@10,11#. While
not a proper attractor@12#, this simple solution resembles i
some of its properties more complicated critical solutio
known only numerically. The aim of the present work is
show how, at least in the linear approximation, the discre
self-similar structure arises dynamically in the scalar fi
collapse. The advantage of our approach is that, due to
simple form of the Roberts solution, calculations can be c
ried out analytically and so provide additional independ
insights different from numerical treatments.

Using linear perturbation analysis and Green’s funct
techniques, we study evolution of the spherically symme
scalar field configurations close to the continuously s
similar solution. Approximating late-time evolution via th
method of stationary phase, we find that a generic grow
perturbation departs from the Roberts solution in a unive
way. In the course of the evolution, initial continuous se
similarity of the background is broken into discrete se
similarity by the growing perturbation mode, reproducing t
symmetries of the Choptuik solution. We are able to cal
late the echoing period of the formed discretely self-sim
structure analytically, and its value is close to the result
numerical simulations.

II. THE ROBERTS SOLUTION

The starting point of our investigation is the Roberts s
lution, which will serve as a background for linear perturb
tion analysis. It is a solution describing gravitational collap
of a minimally coupled massless scalar field, described
the Einstein-scalar field equations

Rmn52f ,mf ,n , ~2!

hf50, ~3!

which is spherically symmetric and also continuously se
similar. The latter symmetry means that there exists a ve
field j such that
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£jgmn52gmn , £jf50, ~4!

where £ denotes the Lie derivative. Under these assumpt
the field equations can be solved analytically, which is m
easily done in null coordinates@10,11,13#. Self-similar solu-
tions form a one-parameter family. As the parameter is v
ied, spacetimes both with and without a black hole occ
The solution just at the threshold of black hole formation2 is
given by the metric

ds2522du dv1r 2dV2, ~5!

where

r 5Au22uv, f5
1

2
lnF12

v
uG . ~6!

The global structure of the corresponding spacetime
shown in Fig. 1. The influx of the scalar field is turned on
the advanced timev50, so that the Roberts spacetime
smoothly matched to Minkowskian flat spacetime to the p
of this surface. The junction conditions, required for con
nuity of the solution there, serve as boundary conditions
the field equations~2! and ~3!. More detailed discussion o
this important point is provided in Appendix A.

The evolution of perturbations of the Roberts solution
most easily followed in a coordinate system exploiting sca
invariance of the background, so that the self-similarity b
comes apparent. Therefore, we introduce new coordina
which we will call scaling coordinates, by

2In the early works@10,11# term critical has been used to desig
nate this solution. This is somewhat confusing because, str
speaking, this solution is not an intermediate attractor of codim
sion one, and so is not critical in the usual sense. Perhaps the
thresholdgives better description of its nature. In any case, sin
we are not concerned with the other solutions from the self-sim
family in this paper, we will refer to the solution~5!, ~6! by the
name ‘‘the Roberts solution.’’
6-2
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x5
1

2
lnF12

v
uG , s52 ln~2u!, ~7!

with the inverse transformation

u52e2s, v5e2s~e2x21!. ~8!

The signs are chosen to make the arguments of the logar
positive in the region of interest (v.0, u,0), where the
field evolution occurs. In these coordinates the metric~5!
becomes

gmndxmdxn52e2(x2s)@~12e22x!ds222dsdx#1r 2dV2,
~9!

and the Roberts solution~6! is simply

r 5ex2s, f5x. ~10!

Observe that the scalar fieldf does not depend on the sca
variables at all, and the only dependence of the metric c
efficients on the scale is through the conformal factore22s.
This is a direct expression of the geometric requirement~4!
in scaling coordinates; the homothetic Killing vectorj is
simply 2]/]s.

III. GAUGE-INVARIANT PERTURBATIONS
OF THE ROBERTS SOLUTION

Since we are ultimately concerned with the dynamics
the breaking of the fields away from the Roberts solution,
effect due to the growing perturbation modes, we will on
consider spherically symmetric perturbations here. N
spherically symmetric perturbations decay@14# and so do not
play a role in the critical behavior. In this section, we outli
how spherically symmetric perturbations of the Roberts
lution ~5! are described in gauge-invariant formalism. A ge
eral spherically-symmetric metric perturbation is

dgmndxmdxn5kuudu212kuvdudv1kvvdv21r 2KdV2,
~11!

while general perturbation of the scalar field is

df5w. ~12!

Under a~spherically-symmetric! gauge transformation gen
erated by the vector

jm5~A,B,0,0!, ~13!

the metric and scalar field perturbations transform as

Dgmn5£jgmn , Df5£jf. ~14!

The explicit expressions for the change in the perturba
amplitudes under the gauge transformation generated by
vectorj are

Dkuu522B,u ,

Dkuv52A,u2B,v ,
08400
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Dkvv522A,v , ~15!

r 2DK5~2u2v !A2uB,

2r 2Dw5vA2uB.

Out of four metric and one matter perturbation amplitud
one can build the total of three gauge-invariant quantiti
one describing matter perturbations

f 5
K

2
2w1

1

2uE kvvdv, ~16!

and the other two describing metric perturbations

r5~r 2K ! ,uv1kvv2kuv2ukuu,v/21~2u2v !kvv,u/2,
~17!

s5kuv2
1

2E kvv,u dv2
1

2E kuu,v du. ~18!

The linearized Einstein-scalar field equations

dRmn54f (,mdf ,n) , d~hf!50 ~19!

can then be rewritten completely in terms of these gau
invariant quantities. It is possible to show that the field eq
tions reduce to one master differential equation for the sc
field perturbation,

2u~u2v ! f ,uv1~2u2v ! f ,v2u f ,u22 f 50, ~20!

and two trivial equations relating metric perturbations to t
scalar field perturbation

s ,u52 f ,u12 f /u, r50. ~21!

Once the gauge-invariant quantities are identified, one is
to switch between various gauges. We conclude this sec
by discussing two particularly convenient choices.

Field gauge(K5kvv50). The scalar field perturbation
coincides with the gauge-invariant quantityf in this gauge,
and expressions for other gauge-invariant quantities simp
considerably:

f 52w,

r52kuv2ukuu,v/2, ~22!

s5kuv2
1

2E kuu,vdu.

The linearized Einstein-scalar field equations are at their s
plest in this gauge, and the derivation of the master equa
for f above is almost transparent. The metric and scalar fi
perturbation amplitudes are trivial to obtain:

w52 f ,

kuv52 f , ~23!

kuu,v524 f /u.
6-3
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FIG. 2. Wave propagation on the Rober
background: Initial conditions can be equiva
lently specified on the surfaces50 extending to
the center of the flat part of spacetime (r 50), or
on the (x50)ø(s50) wedge. By linearity, the
wave packet can be decomposed into thr
modes: outgoing, ‘‘constant,’’ and incoming.
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Null gauge (kuu5kvv50). This gauge was used in th
original analysis of spherically-symmetric perturbations
the Roberts solution@12#. The motivation behind this gaug
choice is that coordinatesu and v remain null in the per-
turbed spacetime. The expressions for gauge-invariant q
tities are quite simple here as well:

f 5K/22w,

r5~r 2K ! ,uv2kuv , ~24!

s5kuv .

For details on how to reconstruct perturbation amplitud
from gauge-invariant quantities see@12#.

IV. WAVE PROPAGATION ON THE ROBERTS
BACKGROUND

So, we wish to study scalar field wave propagation on
Roberts background. Typically, one would specify init
data for the wave packet either on some spacelike Cau
surface or on initial null surface, and trace the later evolut
using the field equations. Our choice for initial surface isu
5const (s50), which forms a complete null surface if ex
tended to the center of the flat spacetime part, as illustra
in Fig. 2. The part of a pulse propagating through flat ba
ground evolves trivially, and can be equivalently replaced
specifying field values onv50 hypersurface. Thus, in ou
problem, the initial conditions for the linearized Einstei
scalar field equations are given on thes50 surface, while
the boundary conditions are determined by junction con
tions across the null shellv50, as outlined in Appendix A,
and the requirement that the perturbations be bounde
future infinity.

As was shown earlier, the Einstein-scalar field equati
for the spherically symmetric perturbations of the Robe
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solution can be reduced to the master differential equatio

Df ~x,s!50 ~25!

for the single gauge-invariant quantityf (x,s) describing per-
turbation of the scalar field. The explicit form of differentia
operatorD in scaling coordinates, given by Eq.~20!, is

Df 5~12e22x!
]2f

]x2
12

]2f

]x]s
12

] f

]s
24 f . ~26!

Because of the scale-invariance of the background, the c
ficients of the differential operatorD do not depend on scale
and so the problem can be reduced to one dimension
applying a formal Laplace transform with respect to the sc
variable s to all quantities and operators. In particular, f
Laplace transform off we have

F~x,k!5E
0

`

f ~x,s!e2ksds, ~27!

with the inverse transformation being

f ~x,s!5
1

2p i Ek2 i`

k1 i`

F~x,k!eksdk. ~28!

The Laplace transform can be done provided thatf can be
bounded by an exponential function ofs ~that is, there exist
constantsM, k0 such that u f (x,s)u<Mek0s), which is a
physically reasonable condition. The contour of integrat
in the complexk-plane for the inverse transform~28! must
be taken somewhere to the right ofk0 (k.k0>0). The
properties of functions of complex variables will guarant
that the result of integration is independent of the particu
contour choice.
6-4



ia

s
la

l-
l
.
e

e
t

er

-

c
e

ic

a
al

is

a

n

to
Fig.
ets

or
ards
e

f
of

t
w-

om

e

-

CONTINUOUS SELF-SIMILARITY BREAKING IN . . . PHYSICAL REVIEW D61 084006
When applying the Laplace transform to the different
operator,

LsF] f

]sG5kF2 f ~s50!, ~29!

so the initial conditions of the original problem will enter a
source terms on the right hand side. Therefore the Lap
transform of the Eq.~25! is

DkF~x,k!5h~x!, ~30!

whereDk5LsD is now an ordinary differential operator, a
gebraic in k, and h contains information about the initia
shape of the wave packet ats50. Boundary condition on Eq
~30! are inherited from the original problem by Laplac
transformation.

The explicit forms of the operatorDk and the relationship
of f to the perturbation amplitudes are the simplest wh
expressed in slightly different spatial coordinate, related
the old one by

y5e2x512
v
u

. ~31!

The differential operatorDk is hypergeometric in nature

Dk5y~12y!
d2

dy2
1@12~k11!y#

d

dy
2~k/221!, ~32!

with coefficients

c51, a1b5k, ab5k/221,
~33!

a,b51/2~k7Ak222k14!.

The right hand sideh depends on the initial conditions as

h~y!52y ḟ~y,s50!2 1
2 f ~y,s50!. ~34!

Here and later dot denotes derivative with respect toy

(˙5d/dy). Once the solution forF ~and hence its inverse
Laplace transformf ) is found, one can reconstruct the oth
two gauge invariant quantitiess andr describing the metric
perturbations using Eqs.~21!, and, in principle, write expres
sions for perturbations in any desired gauge choice.

Thus, the study of wave propagation on the Roberts ba
ground is reduced to solving the inhomogeneous hyperg
metric equation~30!. The following analysis relies heavily
on certain properties of the hypergeometric equation, wh
are collected in Appendix B for convenience.

So far, we have not talked about specifics of the bound
conditions placed on Eq.~25!. That depends on the physic
problem being considered. If the flat spacetime partv,0
were unperturbed, the null shell junction conditions, d
cussed in Appendix A, would require thatf 50 on the sur-
face v50. If some part of the pulse propagates in the fl
sector v,0, f should be continuous across the surfacev
50. Essentially, we can specify value off on the wedge (v
50)ø(s50) arbitrarily, keeping in mind that perturbatio
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value should be bounded at future infinity. It is practical
split the wave packet to three components, as shown in
2, and consider outgoing, ‘‘constant’’ and incoming pack
separately.

A. Outgoing wave packet

The outgoing wave packet is characterized by

f ~x50,s!5 f O~s!, f ~x,s50!50 ~35!

and is propagating outwards to future infinity, except f
backscatter on the background curvature which goes tow
the singularity ats51`. The boundary conditions and th
initial term for Eq.~30! are

F~y51,k!5FO~k!, h~y!50. ~36!

The general solution of the homogeneous form of Eq.~30! is

F~y,k!5A~k!Z1~y,k!1B~k!Z2~y,k!, ~37!

whereZ1 and Z2 are two linearly independent solutions o
the homogeneous hypergeometric equation, in notation
Appendix B. To satisfy boundary conditions aty51, param-
etersA andB must be

A~k!5FO~k!, B~k!50. ~38!

Therefore, the outgoing wave packet solution is given by

f ~y,s!5
1

2p i Ek2 i`

k1 i`

FO~k!F~a,b;k;12y!eksdk, ~39!

whereF is the hypergeometric function.
If f O(s) does not grow exponentially ass→1` by itself,

i.e., the imageFO(k) does not have poles in Rek.0 half-
plane, than neither doesf (y,s). The outgoing wave packe
just propagates harmlessly out to future infinity, never gro
ing enough to cause significant deviation of the solution fr
the Roberts background.

B. ‘‘Constant’’ wave packet

Even more trivial is the case of the ‘‘constant’’ wav
packet, characterized by

f ~x50,s!5C5 f ~x,s50!. ~40!

The boundary conditions and the initial term for Eq.~30! are

F~y51,k!5C/k, h~y!52C/2. ~41!

The general solution of Eq.~30! with these boundary condi
tions is

F~y,k!5A~k!Z1~y,k!1B~k!Z2~y,k!1
C

k22
, ~42!

and the boundary conditions aty51 require that

A~k!52
2C

k~k22!
, B~k!50. ~43!
6-5
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So the constant wave packet solution is given by

f ~y,s!5
C

2p i Ek2 i`

k1 i`F12
2

k
F~a,b;k;12y!G eks

k22
dk,

~44!

and it does not grow ass→1` either.

C. Incoming wave packet

By far, the most physically interesting case is the inco
ing wave packet characterized by

f ~x50,s!50, f ~x,s50!5 f I~x!. ~45!

It propagates directly towards the singularity and is resp
sible for near-critical behavior and breaking of the soluti
away from the Roberts background, as we shall demonst
The boundary conditions and the initial term for Eq.~30! are

F~x50,k!50, h~y!52y f İ~y!2 f I~y!/2. ~46!

To solve the inhomogeneous hypergeometric equation~30!,

y~12y!F̈1@12~k11!y#Ḟ2~k/221!F5h, ~47!

with the boundary conditions

F~y51,k!50, F~y5`,k!bounded, ~48!

we must construct a Green’s function out of the fundame
system of solutions of the homogeneous equation

Z1~y!5F~a,b;k;12y!,

Z2~y!5~12y!12kF~12a,12b;22k;12y!, ~49!

where parametersa and b of hypergeometric equation de
pend onk as given by Eq.~33!. The Wronskian of the above
system is

W~y!5~k21!y21~12y!2k, ~50!

and the Green’s function is constructed as

G~y,h!5AZ1~y!1BZ2~y!6
1

2p0~h!W~h!

3@Z1~y!Z2~h!2Z2~y!Z1~h!#

5AZ1~y!1BZ2~y!6
~12h!k21

2~k21!

3@Z1~y!Z2~h!2Z2~y!Z1~h!#, ~51!

where the coefficientsA andB are to be determined by ap
plying the boundary conditions, and the plus-minus sign
taken depending on the arguments of the Green’s functi

65H 1, 1<y<h

2, h<y,`.
~52!
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The Green’s functionG satisfiesDkG(y,h)5d(y2h), and
hence can be used to construct the solution of inhomo
neous equation

F~y,k!5E
1

`

G~y,h!h~h!dh. ~53!

As the initial value problem~47! is not self-adjoint, the
Green’s function~51! need not be symmetric in its argu
mentsy andh. Note that the Green’s function is calculate
for particulark-mode, and so depends onk, but we omitted
the third argument inG(y,h;k) for brevity.

We now proceed to apply boundary conditions to t
Green’s function~51!, starting with the boundary condition
at y51. The fundamental solutionZ1 goes to one there
while the behavior ofZ2 is fundamentally different depend
ing on the sign of Re(12k). If Rek,1, the real part of
power of (12y) in Eq. ~49! is positive, andZ2 goes to zero
when y51. If Rek.1, the real part of power of (12y) is
negative, and henceZ2 diverges wheny51. Substituting this
into Green’s function, we get

G~y51,h!5A1
~12h!k21

2~k21!
Z2~h!

1FB2
~12h!k21

2~k21!
Z1~h!G H 0, Rek,1

`, Rek.1J .

~54!

The boundary conditions~48! require thatG(y51,h)50,
which uniquely fixes the coefficients

A52
~12h!k21

2~k21!
Z2~h!, B5

~12h!k21

2~k21!
Z1~h!,

~55!

provided Rek.1, which is precisely the region of the com
plex k-plane the contour of the inverse Laplace transform
tion should be in.~If Rek,1, coefficientB can be arbitrary.!
With these coefficients, the Green’s function~51! becomes

G~y,h!

5H 0, y<h,

~12h!k21

k21
@Z1~h!Z2~y!2Z2~h!Z1~y!#, h<y.

~56!

The causality of wave propagation is apparent here: the w
at y is only influenced by the data from the pasth<y.

We see that the boundary conditions aty51 already fix
Green’s function~56!, but we still have to satisfy the bound
ary conditions at infinity. One can show that they are sa
fied automatically if~and only if! Rea>0. Curves Rek51
and Rea50 split the complexk plane into several regions
as shown in Fig. 3. The Green’s function~56! as written
above is defined in regionA, but could be analytically con-
tinued to the whole complex space. The obstructions Gree
function encounters on the boundaries betweenA andB and
6-6
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CONTINUOUS SELF-SIMILARITY BREAKING IN . . . PHYSICAL REVIEW D61 084006
A andF are not poles, indeed, they are not even singular
regular (y,h). They are rather caused by the fact that t
Green’s function~56! fails to be applicable once you cros
these boundaries; in the regionB boundary conditions at in
finity fail to be satisfied, and in the regionF free modes
~solutions of homogeneous equation, that is! exist that satisfy
all boundary conditions, making the Green’s function n
unique. The existence of free modes in regionF is at the
heart of the matter, as they grow and will determine w
will happen to the wave packet at the later times.~It is also
possible to construct Green’s function in regionC, but since
it has no bearing on our analysis, we will not do it here.!

Once Green’s function has been determined, it is sim
to construct later-time evolution of the wave packet from
initial data using Eq.~53!:

F~y,k!5E
1

y~12h!k21

k21
@Z1~h!Z2~y!2Z2~h!Z1~y!#

3h~h!dh. ~57!

To get back from the complexk-plane dependence to th
physical time evolution, one performs inverse Laplace tra
formation

f ~y,s!5
1

2p i Ek2 i`

k1 i`

F~y,k!eksdk. ~58!

We emphasize again that a particular choice of the contou
integration is not important, as long as it is to the right of t
obstructions on the complex plane, in our case regionF. In
practice, one chooses the contour so that the integral~58! is
easier to evaluate. For some approximation to work, the c
tour should touch the obstruction, which means pushin
leftwards to the very edge of regionF at Rek51.

V. LATE-TIME BEHAVIOR
OF INCOMING WAVE PACKET

While expressions forf written down in the previous sec
tion formally solve the problem of wave propagation on t

FIG. 3. Complex perturbation spectrum. Values ofk to the left
of the solid line are prohibited by the boundary conditions at infi
ity, to the right of the broken line by the initial conditions aty51.

Values in the region of intersection~the shaded regionsF and F̄)
are allowed, and constitute the perturbation spectrum.
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Roberts background, they are too complicated to be of p
tical use. In this section, we use the method of the station
phase to obtain late-time~larges) asymptotic forf (y,s) and
analyze several physically important regimes of the wa
packet evolution.

The method of the stationary phase deals with the
proximate evaluation of Fourier-type integrals

f ~l!5E
a

b

F~k!exp@ ilS~k!#dk ~59!

for large positive parameterl. It is based on a simple ide
that where exp@ilS(k)# is oscillating extremely rapidly and
F(k) is smooth, the oscillations will cancel out, and the on
contributions to the integral will be from stationary points
phaseS(k), singular points ofF(k) andS(k), and possibly
end points.

Inverse Laplace transform integrals~28! are precisely of
the above type, with phaseS(k)5k and large parameterl
being the scale coordinates. So the stationary phase metho
tells us that the asymptotics→` of the solutionf (y,s) is
given by singular points ofF(y,k) as a function ofk, i.e.,
singular points ofG(y,h;k). Therefore the study of analytic
properties of Green’s function~56! plays a key role in un-
derstanding the late-time evolution of the wave packet. T
possible sources of nonanalyticity in Green’s function a
listed as follows: branch pointsk516 iA3 of a,b51/2(k
6Ak222k14); poles atk521n in Z2 and k52n in Z1
coming from the hypergeometric function; the pole atk51
from the prefactor; power-law singularity of the type (
2y)k21.

Problem with branches of the coefficientsa,b is absent in
the Green’s functionG because they only enter it through th
first and second arguments of the hypergeometric funct
and the hypergeometric series are written in terms ofab
5k/221 anda1b5k only. Various poles at integer value
of k are all canceled out because of the antisymmetric w
hypergeometric functions enterG. In fact, the only source of
nonanalyticity inG is power-law singularity, and then onl
at y,h→1. Despite the appearance,G(y,h;k) is an entire
analytic function ofk provided thaty,h are regular points.

Since the smallh region is important for the late-time
evolution of the wave packet, it is instructive to take a clos
look at the approximation to the Green’s function~56! there.
Using the asymptotic behavior ofZ1 , Z2 nearh51, given in
Appendix B, we obtain

G~y,h→1!'
~12h!k21

k21
@Z2~y!2~12h!12kZ1~y!#

5
1

k21 F S 12h

12y D k21

F2~y!2F1~y!G , ~60!

where we introduce the short-hand notation

F1~y!5F~a,b;k;12y!,

F2~y!5F~12a,12b;22k;12y!. ~61!

-
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ANDREI V. FROLOV PHYSICAL REVIEW D 61 084006
Note that even though poles in the hypergeometric functi
no longer cancel in Eq.~60!, they are purely artifacts of the
approximation, and should be ignored.

Now we will use the above approximation~60! for the
Green’s function to study the late-time evolution of t
packet in several important regimes.

A. Evolution near vÄ0

Let us first consider the behavior of the wave packet n
y51, that is, near the initial null surfacev50. We take the
asymptotic behavior of the initial termh to be the fairly
generic power law

h~h!}~12h!a, ~62!

which covers the usual case of functions analytic aty51
~via Taylor expansion!, as well as the case of functions wit
a power singularity aty51, such as free modesZ2. Then the
approximation to the Green’s function~60! gives the solution
in the desired region,

F~y,k!'E
1

y 1

12k F S 12h

12y D k21

F2~y!2F1~y!G
3S 12h

12y D a

~12y!adh. ~63!

The above integral can be explicitly evaluated using
change of variable

z5 lnS 12h

12y D , ~64!

which leads to the answer

F~y,k!'2E
2`

0 1

12k
@e(k21)zF2~y!2F1~y!#

3e(11a)z~12y!11adz ~65!

52~12y!11a
1

k21 FF2~y!

k1a
2

F1~y!

11a G .
~66!

To obtain the late-time evolution of the wave packet neay
51, we use the method of stationary phase. Observe tha
only real singularity ofF(y,k) is the simple pole atk5
2a, with the rest being artifacts of the approximation~60!.
Therefore, the late-time behavior of the wave packet is
ponential in the scales; indeed, it is given by

f ~y,s!'
~12y!11a

11a
F2~y;2a!e2as5

1

11a
Z2~y;2a!e2as.

~67!

There are several things worth noting about the above re
First, it gives the correct answer for the evolution of the fr
mode. SinceZ2(y;p)'(12y)12p, the initial term works out
to be h(y)'(12p)(12y)2p, so the above formula give
f (y,s)'Z2(y;p)eps, which is precisely what the evolutio
08400
s

r

e

he

-

lt.
e

of the free mode should be. Second, the growing modes
not be excited by the initial profile analytic aty51. If this
were the case, thenh could be expanded in a Taylor serie
aroundy51, each term in the series raised to integer pow
corresponding to non-negative value ofa, and so not grow-
ing at larges. Third, the above argument illustrates how on
theZ2 content of the initial data is relevant to the subsequ
evolution of the wave packet.

So it seems that the exponential growth of the wa
packet at late times must be already built into the initial d
in form of a power-law divergence of the initial wave profil
just as it is encoded in the pure free modeZ2. But a power-
law divergence of the perturbation nearv50 causes curva-
ture invariants to diverge at the junction, making the surfa
v50 a weak null singularity, which casts a shadow of dou
on the physicality of such growing modes. The question th
arises whether it is possible to somehow eliminate the
fending divergence, while still having a wave packet grow
large enough values. The answer to this question is yes,
it is discussed next.

B. Evolution of a wave packet initially localized atvÄ0

So what will happen if we cut off a diverging initial wav
shape~62! below some small value ofy21, sayl? To put it
in another way, will the power-law diverging wave localize
neary51 backscatter and affect the evolution of the wa
packet at the largey? If not, then subtracting such localize
wave packet from perturbation modes discussed above
cut off the divergence aty51, while keeping the rest of the
wave packet evolution essentially unchanged.

We model such a localized wave by adding an expon
tial cutoff to the generic power law initial term~62!

h~h!}~12h!ae(12h)/l. ~68!

The exponential factor is chosen because it effectively s
pressesh for values ofy21.l, yet still keeps the calcula
tions simple. We are interested in the evolution of the wa
packet well outside the region of initial localization, but st
for small enoughy so that approximation~60! holds, that is
for l!y21!1 ~that can always be arranged for sma
enoughl). In this region of interest we have

F~y,k!'E
1

y 1

12k F S 12h

12y D k21

F2~y!2F1~y!G
3~12h!ae(12h)/ldh. ~69!

The above integral can be evaluated by the change of v
able

t5
h21

l
, ~70!

which yields the following approximation forF(y;k) in the
region of interest:
6-8
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F~y,k!'E
0

` 1

12k F S 2lt

12yD k21

F2~y!2F1~y!G~2lt !ae2tldt ~71!

52
1

k21
@~2l!k1aG~k1a!~12y!12kF2~y!2~2l!11aG~11a!F1~y!#. ~72!

So outside the region of initial localization of the wave packet, but still for smally, the Laplace transform of the field
perturbation is approximately given by

F~y,k!'2
1

k21
@~2l!k1aG~k1a!Z2~y!2~2l!11aG~11a!Z1~y!#. ~73!

The main contribution to the late-time behavior is coming from the poles of the gamma-functionG(k1a) in the first term.
Using the stationary phase approximation, it is possible to calculate this contribution exactly. The inverse Laplace tr
of F(y;k) can be reduced to the inverse Mellin transform of the gamma-function

f ~y,s!'
1

2p i Ek2 i`

k1 i`Z2~y;2a!

11a
lk1aG~k1a!eksdk ~74!

5
Z2~y;2a!

11a

e2as

2p i Ek1a2 i`

k1a1 i`

lkG~k!eksdk ~75!

5
Z2~y;2a!

11a

e2as

2p i Ek1a2 i`

k1a1 i`

G~k!@e2(s1 ln l)#2kdk ~76!

5
Z2~y;2a!

11a
e2as@M 21G#~e2(s1 ln l)!, ~77!
on
a-

om

is
lo

ed
a

de
it
,

n-

ure
ace

lse
des
ery
me,
tion

ve
x-

n-
em,
which is a known integral; indeed,@M 21G#(x)5e2x.
Therefore we obtain the following late-time approximati
of the field perturbation outside the region of initial localiz
tion:

f ~y,s!'
Q~s1 ln l!

11a
Z2~y;2a!e2as. ~78!

This looks very similar to the earlier result~67!; the only
difference is the factorQ(s1 ln l), whereQ is defined by

Q~x!5exp@2e2x#, ~79!

and is almost a step function, rapidly changing its value fr
0 to 1 as its argument becomes positive

Q~x!'H 1, Rex.0,

0, Rex,0,
~80!

where the width of the transition is of order unity. Th
means that the perturbation outside the region of initial
calization does not feel the effect of the field aty21,l
until a much later time, namelys52 ln l, when it suddenly
spreads. To put it simply, the wave packet initially localiz
at v,l does not backscatter until it hits the singularity
u50, and then goes out in a narrow band2u,l ~see Fig.
4!.
08400
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The above result shows how we can cut off the free mo
Z2(y;k) to avoid the curvature divergence, and yet have
grow sufficiently large. To quantify how large can it grow
consider the free modef 5Z2(y;k)eks'(12y)12keks, with
divergent scalar curvatureR} f 8, and cut it off aty21,l.
The largest initial curvature value is of orderR}l2k, while
the initial energy of the pulse islR}l12k, and can be made
arbitrarily small. The perturbation mode will grow expone
tially until the cutoff backscatters ats52 ln l, at which time
its amplitude will bel2k, with proportionally large curva-
tures and energies. In other words, the initial large curvat
seed localized in a small region spreads over the whole sp
in the course of the evolution, with the energy of the pu
growing correspondingly. Thus, the free perturbation mo
considered here are physical and grow exponentially to v
large amplitudes, certainly enough to leave the linear regi
and are therefore responsible for the evolution of the solu
away from the Roberts one.

C. Generic initial conditions

We now turn our attention to the evolution of the wa
packet from generic initial conditions. It is reasonable to e
pect that completely generic initial conditions will have no
zero content of all perturbation modes present in the syst
both growing and decaying, as given by Eqs.~57! and ~58!,
6-9
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FIG. 4. Field perturbation profiles on a sliceu5const:~a! for a typical value ofk inside regionF; ~b! for a value ofk at the end point
of regionF. The horizontal coordinate on the plots is lnv.
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f ~y,s!5E
k2 i`

k1 i`

@W2~k!Z2~y;k!1W1~k!Z1~y;k!#eksdk.

~81!

However, decaying modes will disappear very quickly,
only the growing modes are relevant to late-time evoluti
Assuming that the content of the free growing modeZ2(y;k)
is given by the weight functionW(k), the generic wave-
packet evolution is given by the sum of all such modes

f ~y,s!5E
G
W~k!Z2~y;k!eksdk, ~82!

where the infinite contour of integrationG runs vertically in
the regionsF and F̄ of the complex plane on Fig. 3, a
Rek51. However, we note that the part of the contour b
tween end pointsk0

6516 iA2 of the regionsF and F̄ does
not correspond to free growing modes, asZ2(y→`)
08400
.

-

'(2y)2a with Rea,0 there, and so boundary conditions
infinity are not satisfied. Therefore, for the initial wav
packet bounded at infinity, the content of such modes is s
pressed, so that*dk@W(k)(2y)2a#;1 for large y. This
leads to slower growth rates*dk@W(k)(2yes)2ae(k1a)s#
;e(k1a)s at the later times. Hence, the piece of the conto
G between the end pointsk0

6 can be omitted from the inte
gration without affecting the late-time evolution.

For completely generic initial conditions, we should e
pectW to be a smooth function ofk in the free mode region
F, not preferring any particular value ofk. Therefore, using
the stationary phase approximation, the main contribution
the late-time behavior of the above integral comes from
end points of the contour of integration,

f ~y,s!'2W~k0
1!Z2~y;k0

1!
ek0

1s

s
2W~k0

2!Z2~y;k0
2!

ek0
2s

s
.

~83!
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CONTINUOUS SELF-SIMILARITY BREAKING IN . . . PHYSICAL REVIEW D61 084006
Ignoring the overall weight factor, we find that the late-tim
evolution of the generic wave packet is given by

f ~y,s!}ReFZ2~y;k0!
ek0s

s G . ~84!

We emphasize that the singlek0-mode dominates the cours
of evolution of the generic wave packet, and thus a cer
universality is present in the way a generic perturbation
parts from the Roberts solution.

VI. DISCUSSION

In this paper, we studied spherically symmetric pertur
tions of the Roberts solution with the intent to understa
how nearby solutions depart from the Roberts one in
course of the field evolution, and what bearing the Robe
solution has on the subject of critical phenomena in gene
and how it is related to Choptuik’s critical solution in pa
ticular. We analyzed the behavior of incoming and outgo
wave packets, and we focused our attention on the incom
one as the physically relevant one for the question pos
With the aid of the Green’s function formulation, we we
able to completely solve the perturbation problem in clos
form, as well as obtain simple approximations for the la
time evolution of the field in several important regimes.

As was shown above, the departure of the generic per
bation away from the Roberts solution isuniversalin a sense
that the single modeZ2(y;k0)ek0s dominates the late-time
evolution of the field. The complex growth exponent giv
rise to an interesting physical effect: the perturbation dev
oping on the scale-invariant background evolves to hav
scale-dependent structureescos(Imk0s). The exponential
growth of the amplitude of the perturbation will eventua
be stopped by the nonlinear effects, while the periodic
pendence of the perturbation on the scale will most lik
remain. The period of oscillation, obtained in the linear a
proximation, is

D5
2p

Im k0
. ~85!

What does this periodic dependence of the solution on
scale mean physically? To answer this question, let us
how this symmetry is expressed in the Schwarzschild co
dinates (r ,t) often used in numerical calculations~see, for
example,@1#!. In this coordinates the metric~5! is diagonal

ds252adt21bdr21r 2dV2, ~86!

where metric coefficients and explicit expressions for co
dinates are given in Appendix C. For our purposes, it suffi
to note that the coordinatex determines the ratior /t, while
the coordinates sets an overall scale of both space and ti
coordinates viae2s factor

2
r

t
5expFx1

1

2
e2xG , r 5exp@x2s#. ~87!
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One can see that taking a stepD in the scale variables is
equivalent to scaling both spatial and time coordinatesr and
t down by a factoreD. Therefore, the solution being period
in scale coordinates is equivalent to being invariant unde
rescaling of space and time coordinatesr and t by a certain
factor

f ~x,s1D!5 f ~x,s!⇔ f ~e2Dr ,e2Dt !5 f ~r ,t !. ~88!

The later is an expression of the symmetry observed in
numerical simulations of the massless scalar field colla
@1#, and referred to as echoing, or discrete self-similarity
the literature@1,7#.

Thus, our simple analytical model of the critical collap
of the massless scalar field illustrates how the continu
self-similarity of the Roberts solution is dynamically broke
to discrete self-similarity by the growing perturbations, r
producing the essential feature of numerical critical so
tions. The value of exponent for the endpoints of the sp
trum of growing perturbation modes,k0511 iA2, gives the
period of discrete self-similarity as

D5A2p54.44 ~89!

for linear perturbations of the Roberts solution, which
within 25% of the numerical valueD53.44 measured by
Choptuik @1#. Given that the perturbative model consider
here reproduces all the symmetries of the Choptuik’s so
tion, and gives a good estimate for the period of echoing,
instructive to compare the actual field profiles to the nume
cal calculations. There are some technical issues conne
with rewriting our results in the variables Choptuik use
which are addressed in Appendix C, but the end result
calculation for field variableX5A2pA(r 2/a)(]f/]r ) from
the perturbation modes is presented in Fig. 5. Comparing
plot to Fig. 2 in original Choptuik’s paper@1#, we see that
they share one common feature, which is the oscillatory
ture of the field solution; however, the shape of the fie
profiles is quite different. This discrepancy is not surprisin
however, since perturbation methods in critical phenom

FIG. 5. Profile for the field variableX5A2pA(r 2/a)(]f/]r )
on the slice t5const for the dominant mode f (y,s)
5Z2(y;k0)eks/s. Compare this plot to Fig. 2 of Choptuik’s pape
@1#.
6-11
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ANDREI V. FROLOV PHYSICAL REVIEW D 61 084006
are usually viable for calculating critical exponents, but n
the field configurations themselves.

The emerging discretely self-similar structure, and
universal way in which the generic perturbation depa
away from the Roberts solution offer support for the conj
ture that the Roberts solution is ‘‘close’’ to the Choptuik o
in the phase space of all massless scalar field configura
~in a sense of being in the basin of attraction of the latte!,
and will evolve towards it when perturbed@14#. It seems
highly unlikely, however, that the critical mode responsib
for the decay of the Choptuik solution will be complete
absent in the initial data originating near the Roberts so
tion, as this usually requires fine-tuning of the parameters
though at first the field configuration near the Roberts so
tion might seem to evolve towards the Choptuik solutio
after a while the critical mode will kick in and drive the fiel
to either dispersal or black hole formation. This picture is
line with the Choptuik solution beingintermediateattractor,
and we offered ‘‘ball rolling down the stairs’’ analogy earlie
@14# to visualize the field evolution as it goes from initi
configuration~the Roberts solution! to local attractor~the
Choptuik solution! and then to global attractor~black hole or
flat spacetime! in the phase space. Unfortunately, linear p
turbation methods are not sufficient to provide a proof of
proposed scenario, and fail to give the answer as to w
would the eventual fate of the evolution be~whether black
hole or flat spacetime end-state will be selected!, and how
fast would the field get there.

To completely answer these questions, one would nee
employ some sort of nonlinear calculation, or perform n
merical simulations of the evolution. In particular, it wou
be interesting to evolve the perturbed Roberts spacetime
merically and look for the Choptuik spacetime as the p
sible intermediate attractor. Nevertheless, it may happen
some information about Choptuik’s solution can be gain
from the linear perturbation analysis of the Roberts soluti
The appeal of this method lies in the fact that such anal
could be carried out analytically, while Choptuik’s solutio
is still unknown in the closed form. Similarly, one can try
study properties of other analytically-unknown critical so
tions in different matter models based on ‘‘nearby’’ solutio
with higher symmetry and simpler form. One might al
hope to obtain acceptable analytical approximations to c
cal solutions, Choptuik’s in particular, by going to high
order perturbation theory in the region near the singulari

To summarize, our main result is the dynamical expla
tion of how discretely self-similar structure forms on th
continuously self-similar background in the collapse of t
minimally-coupled massless scalar field, and the predic
for the period of this structureD5A2p54.44, which is
quite close to the numerical valueD53.44, considering we
only did a first-order perturbation analysis, and that nonlin
effects can, in principle, renormalize that value.
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APPENDIX A: NULL SHELL JUNCTION CONDITIONS

The influx of the scalar field in the Roberts solution
turned on at the advanced timev50, with the spacetime
being flat before that. In this appendix, we consider in de
junction condition across this null surface, and their implic
tions for boundary conditions of perturbation problem. Th
discussion is adopted from general treatment of thin n
shells by Barrabe`s and Israel@15#.

Consider the general spherically symmetric metric in n
coordinates

ds2522e2sdudv1r 2dV2. ~A1!

To fix the geometry of the soldering of spherically symm
ric spacetimes uniquely, one must match radial functio
across the constant advanced time hypersurface. To this
we rewrite the above metric in terms of advanced Edding
coordinates on both sides

ds252ecdv~ f ecdv22dr !1r 2dV2. ~A2!

The metric coefficients in Eddington coordinates can be c
culated from those in null coordinates by

ec52
e2s

r ,u
, f 522

r ,ur ,v

e2s
. ~A3!

The surface density and pressure of the null shell are t
determined by jumps of the metric coefficients across thv
5const surface

4pr 2e5@m#, 8pP5@c ,r #, ~A4!

where the local mass functionm(v,r ) is introduced, as usual
by

f 512
2m

r
. ~A5!

For Minkowski spacetimef 51 andc5const, so below the
v50 hypersurface surface we have

m~v,0!50, c ,r~v,0!50. ~A6!

For the Roberts solution~5!,~6!, we haves50, r 25u2

2uv, so a direct calculation gives

m52
uv
4r

, c ,r5
1

r

v2

4r 21v2
. ~A7!

Obviously,

lim
v→10

m50, lim
v→10

c ,r50, ~A8!

so the Roberts solution is indeed attached smoothly to
flat spacetime, without a delta functionlike stress-energy t
sor singularity associated with a massive null shell.

If one wishes to attach a perturbed Roberts spacetim
the flat one, as we do, and still have no singularity at
6-12
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CONTINUOUS SELF-SIMILARITY BREAKING IN . . . PHYSICAL REVIEW D61 084006
junction, the null shell matching conditions above will pla
boundary conditions on the perturbation values at the ju
tion surface. To obtain these, we take the perturbed Rob
solution in null gauge of Ref.@12#, given by s5s(x)eks,
r 5ex2s

„11r(x)eks
…, and calculate the null shell surfac

density

@m#5@2r8/21~k/221!r1s#e(k21)s ~A9!

and surface pressure

@c ,r #52k@~k21!r12s#e(k11)s. ~A10!

The simultaneous vanishing of these two for arbitraryk can
only be accomplished if

r5r85s50, ~A11!

and these are precisely the boundary conditions we impo
on metric coefficients earlier. One also has to require co
nuity of the scalar field across junction, so the bound
condition on scalar field perturbation is

f50. ~A12!

These boundary conditions on perturbations in the null ga
simply mean vanishing of gauge-invariant perturbation a
plitudes ~defined in the next appendix! on thev50 hyper-
surface.

APPENDIX B: PROPERTIES
OF THE HYPERGEOMETRIC EQUATION

We showed above that the linear perturbation analysi
the Roberts solution can be reduced to the study of solut
of the hypergeometric equation with certain parameters.
hypergeometric equation has been extensively studied; f
complete description of its main properties see, for exam
@16#. In this appendix we collect the facts about the hyp
geometric equations that are of immediate use to us, ma
to establish notation.

The hypergeometric equation is a second order linear
dinary differential equation,

y~12y!Z̈1@c2~a1b11!y#Ż2abZ50, ~B1!
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with parametersa, b, and c being arbitrary complex num
bers. It has three singular points aty50,1,̀ . Its general
solution is a linear combination of any two different sol
tions from the set

Z15F~a,b;a1b112c;12y!,

Z25~12y!c2a2bF~c2a,c2b;c112a2b;12y!,

Z35~2y!2aF~a,a112c;a112b;y21!,
~B2!

Z45~2y!2bF~b112c,b;b112a;y21!,

Z55F~a,b;c;y!,

Z65y12cF~a112c,b112c;22c;y!,

where F(a,b;c;y) is the hypergeometric function, define
by the power series

F~a,b;c;y!5 (
n50

`
~a!n~b!n

~c!n

yn

n!
, ~B3!

and we used shorthand notation (a)n5G(a1n)/G(a). The
hypergeometric series is regular aty50, its value there is
F(a,b;c;0)51, and it is absolutely convergent foruyu,1.
Considering the hypergeometric series as a function of
parameters, one can show thatF(a,b;c;y0)/G(c) is entire
analytical function ofa, b, andc, provided thatuy0u,1.

The solutionsZ1 , . . . ,Z6 are based around different sin
gular points of the hypergeometric equation, with asympt
ics given by

Z151, Z25~12y!c2a2b neary51,

Z35~2y!2a, Z45~2y!2b neary5`, ~B4!

Z551, Z65y12c neary50.

Any three of the functionsZ1 , . . . ,Z6 are linearly depen-
dent with constant coefficients. In particular,

FZ1

Z2
G5Fc13 c14

c23 c24
GFZ3

Z4
G , ~B5!

where the coefficient matrix is given by
Fc13 c14

c23 c24
G5F G~a1b112c!G~b2a!

G~b112c!G~b!
e2 ipa

G~a1b112c!G~a2b!

G~a112c!G~a!
e2 ipb

G~c112a2b!G~b2a!

G~12a!G~c2a!
e2 ip(c2b)

G~c112a2b!G~a2b!

G~12b!G~c2b!
e2 ip(c2a)G . ~B6!
al
l

These relationships are true for all values of the parame
for which the gamma-function terms in the numerators
finite, and all values ofy for which corresponding serie
converge, with Imy.0. If Im y,0, signs of arguments in
the exponential multipliers should be inverted. We shall
give the rest of similar relationships here.
rs
e

t

APPENDIX C: SPACETIME
IN CURVATURE COORDINATES

For comparison of our results to Choptuik’s numeric
simulations @1#, we must rewrite them in the diagona
Schwarzschild-like coordinates Choptuik uses
6-13
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ds252adt21bdr21r 2dV2. ~C1!

One can straightforwardly check that the coordinate cha

t52expF2s2
1

2
e2xG , r 5exp@x2s# ~C2!

diagonalizes the Roberts metric~9!. By self-similarity, the
quantityt/r , as well as the metric coefficientsa andb do not
depend on the scales, but only on the coordinatex. The
metric coefficients, written as functions ofx, are

a52
exp@e2x#

11e2x
, b52

1

11e22x
. ~C3!

If one wishes, one can rewrite them as explicit functions
t/r , using

x5
1

2
lnW~r 2/t2!, ~C4!

in terms of Lambert’sW-function, which is defined by the
solution of transcendental equation

Wexp~W!5x. ~C5!

The expressions for metric coefficients are then

a52
exp@W~r 2/t2!#

11W~r 2/t2!
, b52

W~r 2/t2!

11W~r 2/t2!
. ~C6!

However, the coefficientsa and b cannot be written in
closed form in terms of elementary functions oft/r .

As you can see from expressions for the metric abo
diagonal Schwarzschild coordinates are not particularly w
suited for description of the Roberts spacetime. On top of
complicated metric form, one artifact of the diagonal coor
nate system is that the null singularity atu50 gets com-
pressed into a point atr 5t50. Also, slicest5const cut
across thev50 hypersurface, so one has to be careful w
discontinuities of the solution there.

The perturbation amplitudes in the gauge preserving d
onal form of the metric are also quite complicated. The s
plest way to get them from gauge-invariant quantities is
explicitly find a gauge transformation
08400
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e,
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jm5~A,B,0,0! ~C7!

connecting the simple field gaugeK5kvv50 with the diag-
onal gauge, fixed by conditionsK50 and (2u2v)2kvv
5u2kuu . The effects of the gauge transformation on the p
turbation amplitudes were given above in Sec. III. Impos
the conditionK50, one finds thatB must be related toA by

B5
2u2v

u
A. ~C8!

A is then found by imposing the other condition fixing dia
onal gauge, which leads to the following equation:

~2u2v !2A,v2u~2u2v !A,u2vA52uE f dv. ~C9!

Rewriting A in scaling coordinates,

A~y,s!5A~y!e(k21)s, ~C10!

transforms the above equation into the ordinary differen
equation

~11y!Ȧ1@12k/2~11y!#A52E Fdy, ~C11!

which can be easily solved to give

A~y!52
e(k/2)y

11y E1

y

dje2(k/2)jE
1

j

F~z!dz. ~C12!

Once the connecting gauge transformation is known, i
trivial to obtain the perturbation amplitudes in the Schwar
child diagonal gauge. In particular, the scalar field pertur
tion is given by

w~y;k!52F~y;k!1A~y;k!. ~C13!

We end this section by observing that while the gauge tra
formation termA is a small correction to gauge-invarian
quantities neary51, it is not at all well behaved at infinity
Indeed, it blows up exponentially ase(k/2)y! The presence of
this gauge artifact in the quite sensibly-looking diagon
gauge illustrates just how easily one can get into trouble
one is not working in a gauge-invariant formalism.
or.
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