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Braneworld dynamics with the BRANECODE

Johannes Martin,* Gary N. Felder,† Andrei V. Frolov,‡ Marco Peloso,§ and Lev A. Kofmani
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We give a full nonlinear numerical treatment of time-dependent 5D braneworld geometry, which is deter-
mined self-consistently by potentials for the scalar field in the bulk and at two orbifold branes, supplemented
by boundary conditions at the branes. We describe theBRANECODE, an algorithm which we designed to solve
the dynamical equations numerically. We apply theBRANECODE to braneworld models and find several novel
phenomena of the brane dynamics. Starting with static warped geometry with de Sitter branes, we find
numerically that this configuration is often unstable due to a tachyonic mass of the radion during inflation. If
the model admits other static configurations with lower values of de Sitter curvature, this effect causes a violent
restructuring towards them, flattening the branes, which appears as a lowering of the 4D effective cosmological
constant. Braneworld dynamics can often lead to brane collisions. We find that, in the presence of the bulk
scalar field, the 5D geometry between colliding branes approaches a universal, homogeneous, anisotropic
strong gravity Kasner-like asymptotic, irrespective of the bulk or brane potentials. The Kasner indices of the
brane directions are equal to each other but different from that of the extra dimension.
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I. INTRODUCTION

Braneworlds embedded in higher dimensions bring n
powerful concepts to cosmology@1#, as well as to fundamen
tal superstring or M theories and phenomenological high
ergy particle physics@2–5#. Branes enrich our view with new
ideas underlying the four-dimensional effective field theo
bringing, most importantly, new geometrical images beyo
it. For instance, in this context the four-dimensional cosm
logical constant is the curvature of the brane, and we sho
explain why the brane we live in is almost flat. Inflation, b
contrast, corresponds to curved branes. There are intere
ideas for realizing early Universe inflation in braneworld sc
narios where, for example, concepts such as the inflaton
tential and inflaton decay are reformulated in terms of bra
brane or brane-antibrane interactions@6#, or topics of brane
collisions.

The language and images of the braneworld theories
commonly shared by fundamental and phenomenolog
high energy physics theories, general relativity, and br
cosmology, with different degrees of trade between dynam
and simplification.

The compactification of the extra space is often a k
issue in brane models. For example, a stable radion fi
controlling the volume of the extra space, is usually nee
to recover standard four-dimensional cosmology at ‘‘la
times and to satisfy precision tests of general relativity.
addition, the compactification has to be consistent with
fact that bulk fields have not yet been excited in accelera
experiments, because they are too massive and/or too we
coupled to the visible brane. Schemes for compact inner
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mensions typically rely on the interplay between bulk a
brane dynamics.

So far, the control of dynamical, time-dependent, cosm
logically relevant solutions in the fundamental, comprehe
sive theory has been rather limited. Relatively simple,
meaningful, are the five-dimensional phenomenologi
braneworld models with two orbifold branes at the edg
where our (311)-dimensional spacetime is one of th
branes embedded in the~warped! five-dimensional space
These models often include one or more bulk scalar field~s!
f with the potentialV(f) and self-interaction potential
Ui(f) at the two branes, as well as other fieldsx localized at
the branes. This class of braneworld models covers m
interesting constructions including the Horˇava-Witten theory
@3#, the Randall-Sundrum model with a phenomenologi
stabilization of branes@7,8#, warped geometry with bulk sca
lars @9,10,32#, supergravity with domain walls@11#, and oth-
ers.

There are a number of important papers studying st
geometries with branes, including flat stabilized branes
agreement with low energy physics, curved de Sitter bran
corresponding to early Universe inflation, and small fluctu
tions around static warped geometries. Cosmological ev
tion has been studied in some of these pioneering work
the simplest cases in the absence of any scalar field@12,13#.
The 4D evolution on the brane, in terms of effective Frie
mann equations, is typically different from the standard fo
dimensional cosmology. The effective 4D Einstein equatio
on the brane were also derived for the more general situa
of self-consistent geometry with the bulk-brane scalar fi
@14#.

Standard cosmology can be recovered after the extra
mensions have been stabilized@15#. In this respect, the pres
ence of bulk scalar field~s! becomes crucial. In this more
relevant case, however, the evolution is only known for li
iting situations. In general, the system is very complicat
since the effective four-dimensional Einstein equations
not closed and require solutions of the full five-dimension
equations@16#.
©2004 The American Physical Society17-1
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In this paper we address the problem of self-consis
fully nonlinear dynamics of the 5D braneworld with bu
scalar field~s! with a bulk potential as well as brane pote
tials required for brane stabilization. We consider plan
parallel orbifold branes, so that the problem is effective
two dimensional, with the metric and fields depending
time and the extra dimension (t,y). Although this setting is
already too involved to be studied analytically, it is still si
nificantly simpler than what we will need in order to unde
stand cosmological solutions in ‘‘realistic’’ higher dimen
sional theories. However, as we shall see, already this
requires the introduction of new techniques. We have
signed and used a numerical code to solve the partial di
ential equations describing the system of nonlinear gra
and a scalar field, complementing the existing approache
this problem found in the literature.

We aim for generic features of braneworld dynamics—
particular, attractor solutions. They will generally depend
the specific braneworld model—i.e., on the bulk-brane sc
field potentialsV(f),Ui(f). As a simple illustration, con-
sider a static five-dimensional warped geometry with a b
scalar and four-dimensional slices of constant curvature.
possible to exhaust the global properties of the static war
geometry using the method of phase trajectories@17#, al-
though some details of the phase portraits depend on the
potential. For this problem the phase space is three dim
sional, the critical points~like attractors, repulsors, and oth
ers! can be identified, and all trajectories~solutions! start and
end at critical points.

The (t,y) problem of the time-dependent braneworld d
namics is much more complicated than the static~y! prob-
lem. Using theBRANECODEwe were trying to give example
of interesting dynamical features. We notice several no
phenomena including a transition between different war
states and a generic strong gravity solution of collidi
branes.

The plan of the paper is as follows.
In Sec. II, we give the setup of the braneworld models a

write down the bulk equations supplemented by the junct
conditions at the branes. We pay especially close attentio
the choice of gauge in order to have a suitable metric for
numerical calculations. It turns out that, without any loss
generality, it is possible to choose coordinates where the
branes have fixed positions along the fifth directiony. The
geometry is described by two metric componentsA(t,y) and
B(t,y).

In Sec. III, we describe theBRANECODE, an algorithm we
use to solve the dynamical equations numerically. At the m
ment we have slightly different implementations of t
BRANECODE ~in C11 and FORTRAN-90! in order to cross-
check them. We plan to release theBRANECODE using the
most optimized and documented version~in C11). As is
typical for numerical general relativity~GR! problems, we
have to take initial conditions for the metric and fields whi
satisfy the constraint equations at an initial time hypers
face. In Sec. III C, we discuss how to fix the initial cond
tions for the numerical integration with theBRANECODE.

In Secs. IV–VI, we apply ourBRANECODEto three brane-
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world models where we encounter qualitatively different d
namics.

In order to check our numerical code, in Sec. IV we fi
apply it to a simpler brane model without a scalar field, f
which analytic solutions are known. As a playground he
we use the Randall-Sundrum~RS! model of two branes em
bedded in an AdS 5D background. In Sec. IV A we first u
the static RS solution without moving branes. In Sec. IV
we extend the calculations to the case of moving branes
this case the 5D geometry is described by the analytic A
Schwarzschild solution~with the mass of the virtual 5D
black hole screened by the branes!. We compare our numeri
cal calculations with the analytic solution.

In Sec. V we consider de Sitter~inflating! branes which
are initially in a static configuration. It turns out that w
often observe an instability of the inflating branes. Analy
calculations of small scalar perturbations around this ba
ground geometry show that the radion mass squarem2 for
this case can be negative@18#. A strong tachyonic instability
predicted analytically is in full agreement with the instabili
of inflating branes found numerically. For certain configur
tions of potentialsV(f),Ui(f), we find the existence of two
warped geometry solutions with different values of the 4
cosmological constantL4 ~i.e., the curvatures of the 4D
slices!. The brane configuration with the higher 4D curvatu
is in general unstable due to this tachyonic radion mode
violently reconfigures to the second static configuration w
lower 4D curvature. We illustrate this effect with numeric
simulations as well as analytic calculations; see also@18#.

In Sec. VI we give an example where the instability of t
brane configuration causes a brane collision. In Sec. VI A
show that the space-time metric of the 5D geometry betw
colliding branes becomes homogeneous—i.e.,y independent.
The time-dependent solutions asymptotically cease to
the scalar field potentialsV(f) andUi(f), and approach a
universal asymptotic. It sounds naturala posteriori that this
universal asymptotic is nothing but a Kasner-like asympto
with a scalar field, which we describe in Sec. VI B. Th
effect of the branes here is manifested by the fact that
Kasner indices associated with the three brane directions
equal, but different from that associated with they direction.
This is a strong gravity regime, so it is not surprising that t
4D induced metric on the brane is different from that deriv
with moduli approximations in terms of 4D effective theor

In the Conclusion we summarize the most interest
physical results. Technical details are collected in the App
dixes.

II. SETUP

The class of braneworld models we are interested in
characterized by the action

k5
2S5

1

2E d5xA2gR1E d5xA2gF2
1

2
~]f!22V~f!G

2 (
i 51,2

E
bi

d4xA2g$@K#1Ui~f!%, ~1!
7-2



-

y
s

o
l

e

e

ric
po

e
l
e
ify
g

-
ifi
e
e
rld
o

t
fte

to
su

i
-
ve

di
v

ou
uc

It
the

-

l

r-
wn
,
om-

the

be-
in

ted
si-
nt

l

a-

on
5D

the

ful
t

e-
dy-

BRANEWORLD DYNAMICS WITH THE BRANECODE PHYSICAL REVIEW D69, 084017 ~2004!
wherek5
251/M5

3 is a 5D gravitational constant. In this con
vention f is measured in units ofk5

21 and physical poten-
tials are multiplied byk5

22. The first term describes gravit
in the five-dimensional bulk space. We use the ‘‘mostly po
tive’’ metric signature. The second term corresponds t
~minimally coupled! bulk scalar field with the potentia
V(f). The last term corresponds to two (311)-dimensional
branes, which constitute the boundary of the fiv
dimensional space. We allow for a potential termU(f) for
the scalar field at each of the two branes. We denote byg the
induced metric on the two branes and byK their extrinsic
curvature. Here and in the following,@Q#[Q(y1)
2Q(y2) denotes with the jump of any quantityQ across a
brane (6 defined with respect to the normal of the bran!.
We assumeS1/Z2 symmetry across each brane.

The algorithm we have written is implemented for gene
bulk and brane potentials. In this paper we specify the
tentials introduced for the brane stabilization@7#. We choose

V~f!5 1
2 m2f21L,

Ui~f!5 1
2 Mi~f i2s i !

21l i , ~2!

wheref i is the value off on the i th brane. A 5D cosmo-
logical constantL in the bulk and tensionsl i on the branes
are included in the potentials.

The two branes are assumed to be parallel. We denot
y the coordinate transverse to them and byx the three spatia
longitudinal coordinates. We assume isometry along thr
dimensionalx slices including the branes. We have to spec
a metricgAB that respects this symmetry. In brane cosmolo
it is customary to use the metric in the formds252n2dt2

1a2dx21b2dy2, where the metric componentsn,a,b de-
pend on (t,y). However, this form of metric does not ex
haust the freedom of the coordinate choices. Most sign
cantly, in this metric the branes do not stay at the fix
positions; in general,yi5yi(t). There are other gaug
choices, which were used for specific branewo
problems—for example, coordinates comoving with one
the branes, the choice of the bulk scalarf as they hypersur-
face, and others. In these contexts, a gauge in which
position of one of the two branes is time dependent was o
preferred and identified with the radion fieldR(t) associated
with the extra dimension. Although this choice may lead
an easier interpretation of the interbrane distance, the re
ing bulk and junction conditions~see below! are significantly
more complicated. In addition, in terms of the four dynam
cal quantitiesa, b, n, f and R the system is actually un
derdetermined, and some gauge fixing is needed to ha
closed set of equations.

For numerical simulations, it is preferable to have coor
nates where neither brane is moving, although it is not ob
ous a priori that such a gauge can be constructed with
loss of generality. It is possible to choose coordinates s
that the bulk metric has the ‘‘2D conformal gauge’’

ds25e2B(t,y)~2dt21dy2!1e2 A(t,y)dx2. ~3!
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This gauge still has the residual freedom to change (t,y)
→(t8,y8) in a way that preserves the 2D conformal form.
can be demonstrated that this freedom can be used to fix
position of the two branes alongy. Without loss of generality,
we can locate them aty50,1. We found that in the 2D con
formal gauge the set of bulk equations~5! acquires a rela-
tively simple form, which is well suited for the numerica
scheme we have adopted~see the next section!. The possi-
bility of choosing a gauge, in which the metric is 2D confo
mal and in which the branes are at a fixed position, is sho
explicitly in Appendix A 1. As is discussed in Appendix A 2
even these requirements do not fix the gauge choice c
pletely.

Although in the system of coordinates we have chosen
branes to be always at a fixed position along they axis, their
physical distance is encoded in the metric componentB,
which is a time-dependent quantity. Clearly, the distance
tween two extended objects is not an invariant quantity
general relativity, and different definitions can be adop
when they are in relative motion. A simple heuristic pos
bility, which we adopt here, is to integrate the line eleme
across the extra dimension at a fixed time:

D~ t ![E
0

1

dyAg555E
0

1

dyeB(t,y). ~4!

One can check thatD(t) is invariant under the residua
gauge freedom in our coordinates~3!, which is discussed in
Appendix A 2~but not under general coordinate transform
tions!.

For the output of our numerical calculations, we rely
gauge invariant quantities such as the invariants of the
Weyl tensorCABCDCABCD, the curvature scalarR, and oth-
ers. These invariants are calculated using the metric in
form ~3!. Additionally, we can use the 411 split of the 5D
curvature, symbolically written asR5R41K2, whereR4 is
the curvature of the 4D slices. This will be especially use
when we work with de Sitter~inflating! branes of constan
curvature.

In the gauge we have chosen, the nontrivial fiv
dimensional Einstein equations can be split into three
namical equations

Ä2A913Ȧ223A825 2
3 e2BV,

B̈2B923Ȧ213A821 1
2 ḟ22 1

2 f8252 1
3 e2BV,

f̈2f913Ȧḟ23A8f852e2BV,f , ~5!

plus two constraint equations

2A8Ȧ1B8Ȧ1A8Ḃ2Ȧ85 1
3 ḟf8,

2A822A8B81A92Ȧ22ȦḂ

52 1
6 ḟ22 1

6 f822 1
3 e2BV. ~6!
7-3
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Overdots and primes denote derivatives with respect tot and
y, respectively. It is easy to show that the constraint eq
tions are preserved by the dynamical equations.

In addition, from the boundary terms in the action for t
two branes we recover the following junction~Israel! condi-
tions

@A8#57 1
3 UeB,

@B8#57 1
3 UeB,

@f8#56eBU ,f , ~7!

where the upper and lower signs refer to the branes ay
50 and 1, and respectively. We imposeZ2 symmetry across
the two branes. That is, for any given functionQ, we assume
that

@Q8#052Q8~01!, @Q8#1522Q8~12!. ~8!

To conclude, we describe the four-dimensional induc
metrics of the two branes. Since they are at fixed positio
their induced metrics are simply given by

ds252dt21a2~t!dx2. ~9!

That is, we recover a Friedman-Robertson-Walker~FRW!
universe with proper timedt5eBidt and scale factora
5eAi ~whereAi and Bi refer to quantities evaluated at th
positions of the two branes!. The Hubble parameters on th
two branes are thus given by

Hi[
1

a

da

dt U
i

5e2BiȦi , ~10!

where, as usual, an overdot denotes derivative with respe
the bulk timet. The Hubble parametersHi are invariant un-
der residual gauge transformations of the metric~3!.

III. NUMERICAL CODE

In this section, we describe the algorithm that we emp
to integrate the equations of motion~5! numerically. The
algorithm copes with two tasks: It provides the time evo
tion of N11 grid sites, equally spaced between the t
branes aty50,1, and it solves the constraints arising fro
the boundary conditions at the two branes. In both case
second order discretization scheme is used. In the cur
version of the program, the same step size of discretizatio
employed in both the time and spatial directions:dt5dy
51/N[e. This assumption is made not only for simplicit
but also to assure the proper propagation of the nume
data along the characteristics of the partial differential eq
tions.

It is convenient to scale the factor 1/k5
25M5

3 out of the
action ~1!. This fixes the units of the scalar fieldf and its
potentials. However, the dynamical equations of motion
mit a scaling of the metric functions, which allows us
choose, in principle, arbitrary units of the space-time sca
We use this freedom to secure the supergravity limit of
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models—this is to say that all length scales are greater t
the 5D fundamental scalesl 55M5

21. We discuss this issue a
greater length in Sec. III D.

A. Bulk evolution

The system of bulk equations consists of the three sec
order differential equations~5! for the functionsA, B, andf,
which we call bulk evolution equations, as well as the tw
constraint equations~6!. The latter are preserved by the ev
lution equations and can be used as a check of accurac
the numerical integration.

In the evolution equations~5!, derivatives of functions
only appear in the formsf̈ 2 f 9 and ḟ ġ2 f 8g8.

We discretize the equations by finite-differencing the
combinations using the leapfrog scheme~see Fig. 1!. Let f hr
denote the value of the fieldf at a given grid pointyi on the
last time stept that had been computed,f hr[ f (t,yi). Then
definef lt and f rt to be the value off at the same timet and on
the left and right neighboring sites,f lt[ f (t,yi 21) and f rt
[ f (t,yi 11). Finally, denote withf dn and f up the value of the
function onyi at the two times just before and aftert, respec-
tively f dn[ f (t2dt,yi) and f up[ f (t1dt,yi) ~see Fig. 1!. In
terms of these quantities, the relevant differential opera
of f at the point (t,yi) can be discretized with second ord
accuracy as

f̈ 2 f 95
1

e
~ f up1 f dn2 f lt2 f rt!1O~e2!,

ḟ ġ2 f 8g85
1

4e2
@~ f up2 f dn!~gup2gdn!

2~ f rt2 f lt!~grt2glt!#1O~e2!. ~11!

Recall thate51/N corresponds to the distance between co
secutive grid sites. After the discretization, the three evo
tion equations become three algebraic equations, which
be solved for the unknown quantitiesAup, Bup, and fup.
This procedure is repeated at each bulk site, leading to
bulk values of the three functions att1dt, which are then
used in the subsequent time steps.

B. Boundary conditions

The numerical scheme described in the previous sub
tion allows us to determine the value of the metric coe
cients and of the scalar field at the next time step for all
bulk sites, but not for the two sitesi 50,N, corresponding to

FIG. 1. Numerical evolution scheme.
7-4
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BRANEWORLD DYNAMICS WITH THE BRANECODE PHYSICAL REVIEW D69, 084017 ~2004!
the positions of the two branes. To obtain the latter,
boundary conditions~7! have to be used. First we advance
the bulk sites as described in the previous section. Once
know the value ofA, B, andf in the bulk at timet1dt, Eqs.
~7! can be finite-differenced into a set of algebraic equati
for the boundary values at that time. In the following w
describe how to implement this procedure aty50. The com-
putation for the other brane proceeds analogously.

The boundary conditions contain first derivatives with
spect toy of the metric coefficients and of the scalar field
the brane locations. An asymmetric discretization for the fi
derivative of a generic functionf, which preserves secon
order accuracy ine, is given by

f 085
1

2e
~23 f 014 f 12 f 2!1O~e2!. ~12!

Since the right-hand sides of the first two boundary c
ditions coincide, we replace the first of them simply byA08
2B0850 or, using Eq.~12!,

23~A02B0!14~A12B1!2~A22B2!50. ~13!

If we defineb[eB, the second boundary condition simp
fies to (1/b)85U0(f0)/6, which can be rewritten as

b05
3b1b2

4b22b12
e

3
U0~f0!b1b2

. ~14!

Finally, the third boundary condition gives

4f12f223f02eb0U08~f0!50. ~15!

Only the values of the three functions on the brane
unknown. By substituting the value forb0 given by Eq.~14!
into Eq. ~15!, the latter becomes an equation where the o
unknown quantity isf0. For specific brane potentialsU0,
this equation can be solved analytically; more generally,
can solve it numerically through some iterative method.
our algorithm, the iterative Newton’s method is employe
Finally the value ofB05 ln(b0) can be used in Eq.~13! to
determineA0.

C. Initial configurations

Initial conditions are imposed by specifying the thr
functions and their first time derivatives on the grid sites
some initial time t0[0. We denote them a
A0(yi), . . . ,ḟ0(yi), with i ranging from 1 toN21 in the
bulk (i 50,N are the sites of the two branes!. These functions
cannot be chosen arbitrarily but rather must satisfy the c
straint equations~6!. Once this is done a second ord
Runge-Kutta time step is used to ‘‘convert’’ the initial co
ditions of the formf 0(y), ḟ 0(y) into initial conditions given
at the first two initial time stepsf 0(y) and f 01dt(y). The
Runge-Kutta step is done as follows:

f 01dt~y!5 f 0~y!1dt@ ḟ 0~y!1 1
2 dt f̈0~y!#, ~16!
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where the second time derivativesf̈ 0(y) are replaced by the
equations of motion~6!. This ‘‘conversion’’ is needed to have
the initial conditions in a form suitable for the leapfro
scheme described in Sec. III A.

In general, the initial time derivatives can be nonvanis
ing, so that one can study situations in which the geometr
the extra dimension is time dependent already at the be
ning of the numerical integration. For example, this is t
case for the AdS-Schwarzschild solution we will deal with
Sec. IV B. For each such case the choice of initial conditio
must be consistent with the constraint equations~6!. We dis-
cuss one such algorithm in Sec. IV B.

A particularly interesting class of initial conditions is
however, the one of static warped solutions

ds25W~y!2~dy22dt21e2Htdx2!, ~17!

characterized by a fixed bulk geometry and maximally sy
metric ~de Sitter or Minkowski! branes. This metric turns to
the form ~3! with the identification

B~ t,y!→B~y!5 ln W, A~ t,y!→B~y!1Ht, ~18!

whereH is the Hubble parameter of the de Sitter brane a
the bulk scalar fieldf is also a function ofy only. Such
solutions were studied with dynamical system methods
@17#. The numerical integration can be used to check th
stability. Numerical errors due to the grid discretization a
as small perturbations. If the initial configuration is n
stable, the tiny numerical errors accumulate with time a
eventually lead to an evolution of the system. When t
happens, a full numerical calculation is the only tool to stu
where this evolution leads to—namely, whether the t
branes collide, move apart to infinity, or get stabilized a
finite distance in another static but stable configuration.
we will see below, in many cases de Sitter branes turn ou
be unstable. Therefore even static warped geometry confi
rations can provide suitable initial conditions for tim
dependent braneworld dynamics.

When numerical inaccuracy is used to seed the evolut
as described above, the initial amplitude and conseque
the timing of the instability depend on the accuracy of t
numerical integrator. This accuracy is in turn related to
spacing of the grid sites in the bulk. Increasing the numbe
grid sites decreases their separation, and the instability
velops later. Alternatively, initial perturbations on the top
the static configurations can be imposed directly as ini
conditions. This allows a quicker development of the ins
bility or, for static configurations, the excitation of some
the lowest eigenmodes of the system. A simple class of in
perturbations, which can be implemented in our numeri
algorithm, is described in Appendix C and illustrated in F
5. We found, however, that the qualitative behavior of t
system did not depend on the details of how the initial p
turbations are generated, whether imposed explicitly
through numerical roundoff errors. In the following, w
therefore discuss instead how the static configurations
determined.

For static configurations, the bulk equations reduce to
7-5
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f913B8f82e2BV8~f!50,

B821 1
6 e2BV~f!2 1

12 f825H2. ~19!

In addition, the last two of the boundary conditions~7! have
to be satisfied at each brane. In the gauge we are using
the constraint equations~6! are automatically satisfied.

The bulk equations are thus reduced to a system of
order differential equations for the functionsB, f, andf8,
so that the phase space of possible solutions is effecti
three dimensional@17#. To solve these equations subject
~given! boundary conditions, we specify the values of t
three functions aty50, as well as the value of the consta
parameterH.1 For a given brane potentialU0, only two of
these four numbers can be chosen arbitrarily, and the o
two are determined by the junction conditions at the fi
brane.~In the 3D phase space this means that the junc
condition at the first brane defines a 1D curve in phase sp
along which the trajectory must begin.! The bulk equations
~19! are then integrated with a standard fourth order Run
Kutta integrator. Depending on the initial values and on
bulk potential, the bulk solution may become singular bef
the brane aty51 is encountered. If this happens, some ot
initial values~or some other bulk potential! have to be con-
sidered.

Even if the brane aty51 is reached, we face the non
trivial problem of satisfying the boundary conditions also
the second brane. The simplest way to solve it is to reg
the junction conditions as equations for the parameters of
brane potentials. One can freely choose the three nume
values at the first brane~as well as the numerical value o
H), integrate the bulk equations, and then use the junc
conditions to determine the potentials at the two bran2

However, one is typically interested in the more difficu
situations in which the brane potentials are specified, and
initial configurations have to be determined accordingly.

In the second case, we face a boundary-value probl
values of the fields satisfying the boundary conditions at
first brane do not in general lead to field values that sat
the boundary conditions at the second brane, once they
evolved across the bulk according the bulk differential eq
tions ~19!. It is by no means guaranteed that any choic
consistent with the junction conditions at both branes ex

1One may be wondering why we can specify four variables i
3D phase space. Recall, however, that in our gauge the positio
the second brane is fixed aty51. In the language of@17# we are
using three degrees of freedom to specify the starting point of
trajectory in phase space and one to specify the length of
trajectory—i.e., at what point on the trajectory the second br
will be found.

2In general, this does not determine the brane potentials, but
their values and their derivatives at a single value of the fieldf.
One can complete the functional form of the potential arbitrarily
say, as in Eq.~2!. In this case, one is for example free to choo
large positive values for the two mass parametersMi , favoring
values of the scalar field at the branes which are close to
vacuum expectation valuess i .
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Indeed, as discussed in@17#, many potentials do not give
static solutions at all, while some others typically lead
only a finite number of them. In Appendix B we discuss t
numerical method~known as the ‘‘shooting’’ method@19#!
which we employ to find these solutions.

D. Units

Let us inspect the dynamical equations~5!, constraint
equations~6!, and the boundary conditions~7!. While the
units of the bulk scalar field are fixed by our form of th
action~1!, it is easy to see that these equations are invar
under the scaling transformation

A→A1S8, B→B1S, ~20!

whereS8 andS are arbitrary real valued transformation p
rameters. The scalar field potentials enter the equations
in the combinationse2BV andeBU. Therefore Eqs.~20! can
be accompanied by the transformation

V→e22SV, U→e2SU. ~21!

Suppose some metric functionsA,B are the solutions of
Eqs. ~5! for given potentialsV,U. The scaling transforma
tions~20! and~21! tell us that from these metric functions w
can generate a family of solutions for rescaled potenti
This is very useful for introducing the units of scales f
numerics. Indeed, whiley and t in Eq. ~3! are 2D conformal
length and time~i.e., affine parameters along correspondi
directions!, the metric functioneB defines the physical inter
brane distanceD and the physical time. As often occurs
numerical simulations, it is not always easy to extend
range of variables, likeeB in our case. As we will see in the
example of the next section, numerical stability~without
brane stabilization! has a controlled but finite lifetime. If we
naively increase the scale ofeB, the stability will be short
lived. The trick is to continue to work with numerically con
venient values ofeB, but interpret scales in units ofl
5eSl 5. One can takeS to be large enough to have the sca
eSl 5 much greater than the fundamental bulk scalel 5. This is
to say that numerically we solve our equations not only fo
given scale and given choice of parameters of the poten
but for the whole family of scales and parameters wh
corresponds to the orbit of the group transformation~20!,
~21!. For the parameters of the potentials~2! we have the
units @m#5e2SM5 , @M #5e2SM5 , @L#5e22SM5

5, @l#
5e2SM5

4, @f#5@s#5M5
23/2.

The time evolution of variables in the paper will be plo
ted versus conformal timet. The units oft are the light cross-
ing time between branes. This corresponds to the dista
between branes in the conformal coordinatey which is sim-
ply 1 in our units.

As usual, the parameters for the numerical simulations
not allow the introduction of a large hierarchy, since nume
cal inaccuracies accumulate much faster. Therefore mos
the parameters are chosen to be of order unity in our un
The values of parameters that correspond to the nume
runs shown in the figures of this paper are collected in Ta
I at the end of the Appendixes.
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FIG. 2. Left panel: drift of the free modulus of the RS model depending on the numerical accuracy. Right panel: stabilization o
radion.
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IV. BRANES IN AdS BACKGROUND
WITHOUT A SCALAR FIELD

The algorithm presented above allows an exact integ
tion of general two-brane configurations with bulk sca
fields. In this and in the next sections we discuss in de
several applications. The first two examples of this sect
have no scalar field, and the evolution is known analytica
We report them mainly to discuss the accuracy of the c
and to outline its main features. The code is accurate eno
to reproduce the known analytic solutions. In the followi
sections we will study the more complicated nonlinear e
lution of a system with a scalar field, for which the solutio
were not previously known. Fortunately, we still will be ab
to check certain properties of the solutions analytically.

In this section we first consider the static unstabiliz
Randall-Sundrum flat brane solution, from the point of vie
of the numerical solution of the equations. Then we stu
nonstatic~moving! branes in an AdS-Schwarzschild bac
ground and compare the numerical solution with the kno
AdS-Schwarzschild solution.

A. Randall-Sundrum model

Our first example is the two-brane Randall-Sundru
model @5#. It represents a particularly simple example of
brane world that only consists of a five-dimensional A
space with a curvature radiusl 2526/L, determined by its
5D cosmological constantL, and of two flat branes with
tensionsl i566/l . The system is entirely described by on
time-independent function. In terms of the 2D conform
gauge~3! we have

A~y!5B~y!52 lnFy1~eD/ l21!21

l G , ~22!

whereD can take any constant value, which—according
Eq. ~4!—corresponds to the interbrane distance.

We can reproduce this setup in our code by simply set
to zero all the scalar field related parameters in the bulk
brane potentials in Eqs.~5! ~as well as the initial conditions
for the scalar field!. The numerical solutions of the Eqs.~5!
are in agreement with Eq.~22!. As discussed in Sec. III C
small perturbations are unavoidably introduced by the d
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cretization. Thus, this setup is particularly useful for verif
ing the accuracy of the code. Notice, also, that numer
instability is much worse for the RS model without stabi
zation. In the left panel of Fig. 2 we show how the time sc
at which the instability develops is related to the numberN
of bulk sites. The more we increaseN, the more the accuracy
of the computation increases, and numerical instability
delayed for the later times. We estimate the time sc
where the code is stable as being proportional to the g
resolutionN.

The right panel of Fig. 2 also shows how the introducti
of the stabilization mechanism@with the bulk scalar fields
with the potential~2!# can, for appropriate choices of th
parameters, lead to a stabilization of the interbrane dista
In this case the code is much more stable. We discuss
issue in more detail in Sec. V.

The choice of parameters and initial conditions that w
used in the numerical runs plotted in Fig. 2 as well as
ones for all following simulations are collected in Table I.

B. AdS-Schwarzschild solution

Starting from a setting similar to the Randall-Sundru
example of the previous section, but allowing for nonvanis
ing initial ~at t5t0) time derivatives, we generate time
dependent numerical solutions that belong to a larger clas
solutions. Assuming the initial spatial profileA(t0 ,y)
5B(t0 ,y) of Eq. ~22!, the constraint equations~6! are solved
by

Ȧ~ t0!5cF y1
1

eD/ l21
G , Ḃ~ t0!52Ȧ~ t0!, ~23!

where c is a constant. The choicec50 gives Randall-
Sundrum solutions, while a nonvanishingc corresponds to
moving branes. From the Birkhoff theorem for plane-para
brane configurations it follows@20# that the generic 5D bulk
metric must be a stripe of the AdS-Schwarzschild geome
~where the Schwarzschild mass is virtual because it
screened by the branes!. Thus, the branes are moving in a
AdS-Schwarzschild background. To see this, note that in
absence of the scalar field and for brane tensions as in
Randall-Sundrum model, the boundary conditions~7! give
7-7
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FIG. 3. Comparison between numeric and analytic solutions for the Hubble parameter and Weyl tensor on the brane.
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,
e, as
A8(A81B8)52L exp(2B) at the location of the two branes
From the bulk equations, we then recover

Ä12Ȧ22ȦḂ50, y50,1, ~24!

which, in terms on the proper timet and the Hubble param
eterHi on the two branes@cf. Eqs.~9! and ~10!#, becomes

dHi

dt
12Hi

250. ~25!

This corresponds to a radiation dominated standard fo
dimensional universe:

H5
H0

112H0~t2t0!
. ~26!

The appearance of effective radiation domination on
branes is characteristic of an AdS-Schwarzschild bulk ge
etry @21#. The invariant of the 5D Weyl tensorC2

5CABCDCABCD projected into the brane scales asC2

}a28, wherea(t) is the scale factor of the induced FRW
brane metric. Sincea(t) is radiation dominated, at the bran
we have
08401
r-

e
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C25C0
2@112H0~t2t0!#24. ~27!

The two equations~26! and ~27! are independent of the
choice of coordinates in the bulk and can be easily rep
duced with our code. For a particular realization of the init
conditions~23! with the parameterc51, in Fig. 3 we plot
the numerical calculation~squares! of the time evolution of
H and the 5D Weyl tensor on the brane. Solid curves co
spond to the AdS-Schwarzschild analytic solutions~26! and
~27!. The agreement between numerics and analytics
manifest.

In the left panel of Fig. 4, we show instead the evoluti
of the metric componentB(t,y) for the same configuration
used to generate Fig. 3. The ripples ofB(t,y) are not physi-
cal. As mentioned in Sec. II, our choice of coordinates do
not fix the gauge completely. The residual gauge freed
appears numerically as ripples inB(t,y). The precise form
of these gauges modes is worked out in Appendix A 2 an
in agreement with the numerical plots. The lowest frequen
mode of these gauge modes generically appears in the
lution of B(t,y). In the left panel of Fig. 4, we see this effe
in the form of two bulk waves with period 2, which propa
gate on top of the profile ofB(t,y). As discussed in Sec. II
these gauge modes do not affect the interbrane distanc
defined in Eq.~4!.
FIG. 4. Left panel: nonphysical waves appearing as gauge modes in the metric functionB(t,y) ~for c51). Right panel: interbrane
distance for various initial conditions controlled by the parameterc.
7-8
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FIG. 5. Instability of static solutions with dS branes: Perturbations have induced significant departure from the static solutt
'40. The two unstable solutions shown correspond to positive~upper surfaces and increasingD) and negative~lower surfaces and
collapsingD) initial perturbations ofdf; see Appendix B 1.
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The numerical evolution of the interbrane distance for
AdS-Schwarzschild solution is shown in the right panel
Fig. 4 for different values and signs of the parameterc. For
positivec the branes approach each other, while for nega
c they move apart.

V. INSTABILITY OF de SITTER BRANES AND
RESTRUCTURING OF WARPED CONFIGURATIONS

Let us now study the evolution of the system~5! in the
presence of a bulk scalar field. We have to specify ini
conditions, which do satisfy the constraint equations. T
task is now more complicated than it was without the sca
field.

A. Instability of warped geometry with curved branes

As a starting point we can check the code for known sta
warped geometry configurations~18! with the scalar field
and potentials chosen so as to stabilize the branes. We
then impose perturbations consistent with the constr
equations.~This technique is described in detail in Append
B.!

Static solutions of warped geometries with bulk sca
fields and with branes at the boundaries have been stu
and classified in@17#. In the 2D conformal gauge the stat
solutions with curved branes are given by

A~y,t !5B~y!1Ht, f5f~y!, ~28!

whereB(y) and f(y) are related through a set of ordina
differential equations, which can be treated with the meth
of @17#.

We use scalar field potentials~2!, which are designed fo
brane stabilization. The outputs of the numerical integrat
of an initially static configuration of two curved~de Sitter!
branes and bulk scalar filed with small perturbations aro
it is shown in Fig. 5.

We see the appearance of time dependence in the init
static fieldf(y), departure of the metric functionA from the
hypersurface described by the equationA(y,t)5B(y)1Ht,
and a change in the interbrane distanceD. We show two
realizations of this model with different initial perturbation
From these results we conclude that, surprisingly, the st
solutions with scalar field potentials that are supposed
stabilize branes are unstable for a range ofH.
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Fortunately, this unexpected result, which we found h
numerically, can be independently obtained with analyti
methods reported in the accompanying paper@18# ~for re-
lated comments also see@34,35#!. Indeed, it is possible to
consider linearized perturbations of the bulk scalar fielddf
and scalar metric perturbations

ds25W~y!2@~112F!dy21~112C!~2dt21e2Htdx2!#

~29!

around the background warped geometry~17!, whereF and
C are small metric perturbations. From the linearized E
stein equations one can derive second order differential e
tions for the fluctuations, which can be factorized into 4
massive scalar harmonics on the de Sitter slices and
eigenfunctions with eigenvaluesm. The lowest eigenvalue in
the KK spectrum corresponds to the radion mass. The low
eigenvaluem2 is estimated as

m2524H21m0
2~H !, ~30!

wherem0
25 2

3 *dye2B/*dye2Bf822 is a functional ofH. In
many cases the first~negative! term in Eq.~30! exceeds the
second positive term, causing a tachyonic instability of
curved branes. Indeed, the temporal part of the eigenmo
has an exponential instability

f m~ t !}emt, ~31!

where

m5SA9

4
1

um2u

H2
2

3

2D H. ~32!

The time dependence from numerical calculations co
sponding to Fig. 5 is consistent with the analytic result~31!.
In the limit of H50 formula ~30! is reduced to the known
result for flat branes where the branes configuration is sta
@22#. The curvature of the branes upsets the balance betw
the bulk scalar gradients and its potentials, which otherw
provide stabilization.

Thus, both from numerics and analytics we conclude t
many static configurations with de Sitter branes are unsta
against classical~or quantum! fluctuations. While in the fol-
lowing we mostly discuss the physical meaning and con
quences of this result, here we also note that this effect p
vides us with a tool to study brane dynamics numerica
7-9
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FIG. 6. Left panel: transition between two static brane configurations. Right panel: transition observed on the brane aty51 for various
values of the parameterM of Eq. ~2!, where the last plotM51 corresponds to colliding branes~see Sec. VI!.
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This is because we can start with a simple controllable st
configuration, without needing to resolve the time-depend
constraint equations. Doing so, we can investigate num
cally fully nonlinear time-dependent dynamics due to t
real physical tachyonic instability of the initial configuratio

Depending on the sign of the initial perturbations@the
coefficient r in Eq. ~B3!# we encounter runaway behavio
towards smaller or larger interbrane distances as show
Fig. 5. We consider this type of nonlinear dynamics in S
VI. Sometimes we do not find a runaway behavior, but rat
a restructuring of brane configurations as a transition
tween~at least! two static warped geometries. This case w
be considered in the next subsection.

B. Dynamical transition between two static solutions

As we discussed in the Introduction, the construction
brane models with de Sitter branes is particularly challe
ing. Stable static solutions with inflating branes can only
achieved provided the spatial gradient of the bulk scalar fi
is sufficiently high; cf. Eq.~30!.

In the context of static warped geometries, brane emb
dings can be investigated in geometrical terms in a thr
dimensional phase space@17#. This technique is especiall
useful to show that more than one static solution for a giv
brane model—i.e., given potentialsV(f) andUi(f)—might
exist as illustrated in Fig. 10, below. Many of these solutio
are unstable, as shown above. A fully numerical integrat
is a powerful~and maybe the only! tool to study the nonlin-
ear dynamics of the unstable brane configurations. A m
comprehensive study of this issue, with different bulk a
brane potentials taken into account, will be presented e
where. Here we limit our discussion to potentials of the cl
~2!. In this subsection we discuss the case in which
braneworld model admits one unstable and one stable s
solution, and the evolution of the system drives a transit
between the two. Small perturbations around the unsta
solution trigger the tachyonic instability of the system, whi
is followed by a rapid evolution of the bulk configuration.

An example of dynamical transition between two sta
brane configurations is shown in Fig. 6. We plot the tim
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evolution of the distanceD(t) between the branes, the radio
massm2, the Hubble parameter~curvature! H, and the Weyl
tensor invariantC2. The last two are defined as the averag
of these quantities over the extra dimension. We observ
transition between two states, from an initial brane config
ration with higher brane curvature~largerH) to a final con-
figuration with lower curvature~smallerH). The first state is
unstable; during this regime, the radion mass is tachyo
m2,0. The valueH decreases with time until the secon
term in Eq. ~30! dominates and the tachyonic instabili
ceases. In the cases we have studied, the decrease ofH is
accompanied by a decrease of the physical interbrane
tance, until the stable configuration is reached.3 The final
static configuration has positivem2.

The dynamics of the transition between the two sta
configurations is quite violent and is accompanied by a bu
of the Weyl tensorC2. The value ofC2 vanishes for the
warped geometry configurations at the beginning and the
of the transition.

Remember that we restrict ourselves to (t,y) dependence
and ‘‘planar’’ symmetry of the metric. Of course, the actu
dynamics between two warped configurations does not n
essarily occur in this class of metrics, and 3D inhomoge
ities along the brane can be excited. As shown in@18#, the
tachyonic instability of warped geometry with de Sitt
branes occurs for scalar long-wavelength inhomogene
modes with 3D momentak. The present form of the
BRANECODE cannot take them into account. We assume t
the backgroundk→0 mode dominates, but this should b
investigated in the future. Tensor inhomogeneous modes
not have tachyonic KK spectra@23,33# around the curved
brane warped geometry. In fact, gravitational waves are
sent for systems with planar symmetry. However, based
the evolution of the Weyl tensorC2, we conjecture that the
actual

3The quantityH was defined in Eq.~18! only for static configu-
rations. During the time evolution, we choose to define it as

average overy of Ḃ(t,y)2Ȧ(t,y) at any fixed timet. In the ex-
amples discussed, we saw that the combinationA(t,y)2B(t,y) de-
pended only weakly ony during the whole evolution.
7-10
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FIG. 7. Flattening off gradients during the brane collision. The left panel showsf(y) for different t, going from top to bottom. The
lower panel showsf(t) different y. In either plot you can see thatf becomes nearly homogeneous at later times.
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dynamics is accompanied by a burst of gravitational wa
emission with 3D momenta of the order of the nonadiaba
frequency;1/Dt, whereDt is the time of transition. It will
be interesting to check this with a linear tensor mode an
sis around the background geometry of the Fig. 6.

It is interesting to follow how the final state of the un
stable warped configuration depends on the parameters o
potentials. We illustrate this with the parameterM of the
potential ~2!. In the example shown, the four-dimension
cosmological evolution on the two branes is characterized
a transition between two de Sitter spaces. In the right pa
of Fig. 6 we show how the four-dimensional Hubble para
eter on one of the two branes changes as we change the
mass parameterM of the scalar field, while leaving the othe
parameters unchanged. In the limit of largeM, the value of
the scalar field on the branes is always very close to
expectation values. Moreover, phase space portraits@17#
~see Appendix B! indicate that the two static configuration
approach each other in this limit. This is also visible in F
6, where we see that the difference between the initial
the final value ofH decreases asM is increased. As an ana
ogy, one may say that higher mass parametersM correspond
to more rigid systems, characterized by stiffer and quic
transitions between the two static regimes. Tuning the
rameters of the model, one can have flat Minkowski bra
in the stable final configuration.

In the limit of negligible M the system does not adm
stable configurations at all. The curve withM51, shown in
Fig. 6, corresponds to a case in which the dynamics of
system leads to a collision between the two branes. This
is discussed in detail in the next section.

VI. BRANE COLLISIONS

Unstable warped configurations of curved~de Sitter!
branes provide suitable initial conditions for studying colli
ing branes, as we saw in Sec. V A. By controlling the init
fluctuations~see Fig. 5! we can generate numerical runs wi
brane collisions.

The collision of branes is an interesting subject by itse
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In cosmology colliding branes appear in models of bra
inflation @6# as well as in models without~early universe!
inflation @24#. The latter models have difficulties which wer
discussed elsewhere~see e.g.@25#!. In this paper, we focus
on the issue of the bulk geometry and scalar field profiles
colliding brane configurations, in a more general context

In the next subsection, Sec. VI A, we show a numeri
example of the brane collision and try to understand
properties of the interbrane geometry. We find that they
come independent of the specific brane and bulk potential
the model. In Sec. VI B we further argue that there is
universal Kasner-like space-time asymptotic of the int
brane geometry. This is a strong-gravity regime which c
not be described in 4D by the moduli approximation.

A. Geometry between branes

Figures 7 and 8 show in detail the evolution of the bu
scalar fieldf(t,y), metric functionsA(t,y), B(t,y), and
interbrane distanceD(t) in runs which begin with an un-
stable warped de Sitter brane configuration and end wit
brane collision.

The first thing to notice is that the system becomes hom
geneous along they coordinate. This is seen as the flatteni
of f gradients over time. A similar flattening iny direction
occurs for the metric components; see Fig. 8. Also notice
the absolute value off increases with time. This increas
can be fit well byf(t); ln t.

A second feature of the brane collision is the decrease
the metric componenteB; asymptotically,B→2` during
the collision@cf. the definition~4! of the interbrane distance#.
Recall that the bulk and brane scalar field potentials in
bulk equations~6! and boundary conditions~7! are always
multiplied by exponentseB. Therefore the contribution of the
bulk and brane potentials becomes more and more neglig
in the dynamical equations~5! during the collision.

This leads us to the important conclusion that asympt
cally the dynamics of the brane collision do not depend
the form of the bulk and brane potentials. Notice, howeve
potential exclusion from this rule related to exponential p
7-11



MARTIN et al. PHYSICAL REVIEW D 69, 084017 ~2004!
FIG. 8. Numerical solutions~lower surfaces! asymptotically approach universal Kasner-like solution~uppery-independent surfaces!.
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tentialseaf. In this case the typical logarithmic time dive
gence off leading up to the collision leads to the growth
the value of the potentials with time which may compens
the decrease of the metric functioneB. In this paper we
concentrate on the potentials~2! where asymptotically the
dynamics is potential free.

This potential-free asymptotic immediately helps to e
plain heuristically the first feature, why the system becom
homogeneous along they coordinate. Indeed, looking at th
boundary conditions, we see that the gradients ofA, B, andf
at the branes are proportional to exp(B) and therefore vanish
aseB→0.

Next, let us consider Eqs.~5! under the assumption tha
the bulk and brane potentials for the scalar field can be
glected and that the geometry becomes homogeneous.
this simplification Eqs.~5! become ordinary differentia
equations, which can be easily solved. We find

A5A01
1

3
ln~ tc2t !,

f5f02r ln~ tc2t !,

B5B02
1

3
~123Ḃ0tc2 3

2 r 2!
t

tc
2

1

3
~12 3

2 r 2!ln~ tc2t !.

~33!

The constants of integrationA0 , B0, andf0 correspond to
the values of the fields at some timet50. The timet50
cannot be the beginning of integration where we know t
the approximation does not hold. We will give meaning
the integration constants shortly. The collision time istc

521/Ȧ0. We also introduce a convenient intermediate p
rameterr 5ḟ0tc . The brane collision corresponds to valu
of r satisfyingr 2< 2

3 . The scalar field potentials, as well a
inhomogeneities along they coordinate, result in small cor
rections which are neglected in Eqs.~33!. Asymptotically the
logarithmic terms in Eqs.~33! dominate and we arrive at
homogeneous metric with power-law dependence on ti
This is nothing but the recognizable Kasner-like space-t
metric.

B. Universal Kasner-like asymptotic

The regime when the logarithmic terms in Eqs.~33! de-
termine the behavior of the system corresponds to the
08401
e

-
s

e-
ter

t

-

e.
e

i-

versal Kasner solution in five dimensions with a massl
scalar field. Four-dimensional homogeneous but anisotro
Kasner solutions with the massless scalar field were c
structed a long time ago in@26#. Its higher dimensional gen
eralization is obvious@27#. Indeed, in 5D we have the fol
lowing exact solution with the massless scalar field:

ds252dt21t2pydy21(
i 51

3

t2pidxi
2 ,

p11p21p31py51,

p1
21p2

21p3
21py

2512q2,

f5q ln t. ~34!

The vacuum Kasner solution hasq50. The parameterq
characterizes the contribution of the scalar field. The timt
in the 2D conformal gauge~3! andt are related by transfor
mation

t5t12py. ~35!

The significance of the Kasner-like space-time~34! is not
only in the fact that it is an exact solution of the Einste
equations, but mostly because it is agenericasymptotic of
arbitrary collapsing solutions@28#.

In this section we explicitly demonstrate how the geo
etry of colliding branes, as a case of the collapsing soluti
approaches the universal Kasner-like asymptotic.

Kasner-like geometry as generic collapsing solution w
already advocated in string cosmology@29#. As we show
here, this asymptotic also applies to brane cosmology~in
other words, string cosmology with branes!. There is, how-
ever, a specific new feature that appears in the brane cos
ogy case. The isometry in the brane directions is reflecte
the additional constraint. In 5D,

p15p25p3 . ~36!

This constraint and the two equalities for Kasner indices
low to expressp1 andpy through the parameterq:

p15 1
4 ~16A12 4

3 q2!, py5
1
4 ~173A12 4

3 q2!.
~37!
7-12
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BRANEWORLD DYNAMICS WITH THE BRANECODE PHYSICAL REVIEW D69, 084017 ~2004!
The range of the parameterq is 2A3/2<q<A3/2; the
ranges ofpy andp1 correspondingly are2 1

2 <py<1 and 0
<p1< 1

2 . In the vacuum limit of vanishingq one findsp1
50 or 1/2 andpy51 or 21/2.

One of the feature of the Kasner-like asymptotic is a c
otic alteration of the indicespA @28#, with alternating con-
traction and expansion in some of the directions. In the p
ence of the scalar field the process ceases as allpA become
positive. For colliding branespy.0, which gives 0,p1
, 1

3 , so both indices are positive and no alteration of indic
is expected.

For our case~36! the Kasner solution~34! can be rewrit-
ten to the 2D conformal gauge with the help of the tim
redefinition~35!:

ds25t2py /(12py)~dy22dt2!1t2/3dxW2. ~38!

In terms of the metric functionsA andB and the fieldf, the
Kasner solution~38! reads as

A5
1

3
ln~ tc2t !,

B5
py

12py
ln~ tc2t !,

f5
q

12py
ln~ tc2t !. ~39!

The solution~39! is identical to the leading terms of Eq
~33! by the identificationq56r /(3r 214). Thus the integra-
tion constantr in Eqs.~33! is related to the parameters of th
Kasner solution. Figure 8 shows how the metric compone
A and B and the fieldf found numerically, approaches th
universal Kasner asymptotic~38!.

Next, consider metrics induced by the bulk Kasner geo
etry at the branes~which is independent ofy):

ds252dt21~tc2t!2p1dxW2. ~40!

The induced Hubble parameter on either branes is then g
by

H52
p1

tc2t
. ~41!

This time dependence of the Hubble parameter at the bra
a good fit to the asymptotic behavior of the Hubble para
eter we found numerically, as illustrated in Fig. 9.

The induced metric at the brane~40! depends on the pa
rameterq through the indexp1. This parameter is absent i
the simple moduli approximation of the 4D effective theo
at the brane, which does not take into account strong gra
arising in the bulk geometry.

VII. SUMMARY

We designed the numerical codeBRANECODEto treat non-
linear time-dependent dynamics of 5D braneworlds w
08401
-

s-

s

ts

-

en

is
-

ty

plane-parallel branes at the edge and with a bulk scalar fi
with arbitrary bulk and brane potentials. It is possible
choose a convenient gauge where the brane positions ar
changing with time, and dynamics is imprinted in the tw
metric components and the bulk scalar field. These b
equations for gravity and the scalar field are supplemen
by boundary conditions at the orbifold branes and initial co
ditions in the bulk. We also treat the constraint equations
the initial time hypersurface. So far we have only included
single bulk scalar field, but the code could in principle
extended to include other layers such as additional scala
the bulk or on the branes.

We check the code for the brane models with known a
lytic solutions. For two branes embedded in the 5D ba
ground with negative 5D cosmological constant without t
scalar field we numerically reproduce generic Ad
Schwarzschild solutions.

Next, we considered more comprehensive branewo
with a bulk scalar field. We investigated numerically sm
perturbations around warped stationary configuration wit
bulk scalar and with de Sitter branes including the bulk a
brane potentials, which are introduced for brane stabilizat
However, for the large enough 4D curvature of inflatin
branes the system is unstable and runs away from the in
warped configuration with de Sitter branes. This effect
confirmed independently by an analytic calculation of sm
scalar perturbations in this setting@18#. The scalar fluctua-
tions around a warped configuration with curved branes h
as their lowest eigenvalue

m2524H21m0
2~H !. ~42!

The termm0
2(H) is a functional ofH and depends on the

parameters of the model. If parameters are such thatm2 be-
comes negative due to excessive curvature;H2, the brane
configuration becomes unstable. For relatively low values
H2 the radion mass~42! is positive and the system is stabl
Our interpretation of this instability is the following. Stabil
zation of flat branes is based on the balance between
gradientf8 of the bulk scalar field and the brane potentia
U(f) which tends to keepf pinned down to its valuesf i at
the branes. The interplay between different forces beco

FIG. 9. Induced Hubble parameterH(t) at the colliding branes.
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more delicate if the branes are curved, and for the br
curvature exceeding some critical value the brane config
tion becomes unstable.

Tachyonic instability of curved branes has serious imp
cations for the theory of inflation in braneworlds and is d
cussed in details in the accompanying paper@18#.

Our numerical simulations allow us to follow the dynam
ics of the brane configuration triggered by the tachyonic
stability. The end point of the evolution depends on the pr
ence or absence of one or more additional warped statio
configurations in the model.

The question about the multiplicity of warped solutio
can be studied in the framework of warped geometry with
time dependence. We implemented the geometrical cons
tions in the phase space of solutions of the gravity plus sc
system that had been developed earlier. In the model w
quadratic bulk and brane potentials, depending on the par
eters there are single or double warped solutions.

Thus we see that in some cases the warped branes sy
can admit two solutions for the same parameters of the
tentials, with different values of the curvature of the de Sit
brane, which is proportional toH2. Suppose we start a nu
merical run with a warped solution that has a larger value
the brane curvature, which is unstable. Then we observe
merically that this configuration evolves dynamically a
ends up in the state which corresponds to the second wa
solution. The second solution is stable if the correspond
radion massm2 is positive, as in the example shown in th
text. This restructuring is accompanied by strong dynam
features like a burst in the Weyl tensor, which vanishes in
initial and final warped configurations. Although inhomog
neous tensor modes are not included in the code, base
this behavior of the Weyl tensor we conjecture that bra
restructuring should be accompanied by the emission
gravitational waves due to the nonadiabaticity of the proce

All together, this process looks like a decay of the me
stable state of the strongly curved branes due to the ta
onic instability into the more stable state where the bra
have lower curvature. This transition is marked by a burs
gravitational field anisotropy~gravitational waves?!. It will
be interesting to investigate what applications this may h
to cosmology with branes. Another potential application
brane restructuring would be the problem of the 4D cosm
logical constant in the braneworld picture. The cosmologi
constant problem was discussed recently from a branew
perspective, in which a low 4D cosmological constant cor
sponds to a flat brane. There was a suggestion that the
brane is a special solution of the bulk gravity-dilaton syst
with a single brane@30#, but the model has difficulties@31#.
In our setup, we consider two branes. The new elem
which emerges from our paper is the instability of the curv
branes. So far we have only shown an example of restruc
ing between two curved brane configurations. It will be
teresting to see if there are brane models with more than
stationary warped geometry configurations, or with seve
scalar fields, and to investigate if there is a mechanism
brane flattening.

Finally, we studied the geometry of colliding branes.
initial conditions we used the unstable curved brane confi
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rations with parameters which do not allow another warp
geometry configuration. In such cases the end point of
brane dynamics is either a brane collision or branes mov
apart. We investigated in detail the geometry of collidi
branes. The bulk metric and bulk scalar field beco
homogeneous—i.e.,y independent—and the brane dynami
asymptotically does not depend on the scalar field potent
Instead, the geometry of colliding branes asymptotically
proaches a universal Kasner-like solution with a free sca
field. It is known that the Kasner asymptotic is a gene
solution of the high-dimensional gravity-dilaton system@29#.
In our case the isometry of the brane slices guarantees
equality of the Kasner indicesp15p25p3. In 5D this con-
dition leaves only one free parameterq of the Kasner-like
solution, associated with the bulk scalar field contributio
This parameter is determined by the initial conditions. F
the 5D brane system we considered, there is no chaos in
alteration of the Kasner indices. It will be interesting to i
vestigate this issue for other situations—for example, wh
the form field is included and the brane dimensions and co
mensions are different.
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APPENDIX A: CHOICE OF GAUGE

The system we are studying has a gauge freedom w
amounts to different possible coordinates for the fiv
dimensional metric and for the positions of the two bran
Our choice does not only aim for simplifying the equation
motions, but also for removing ‘‘redundant’’ degrees of fre
dom, which would not allow us to write a closed system
equations for the numerical integration. In Sec. II, w
claimed that it is always possible to choose a system of
ordinates in which the (t,y) part of the metric is conformally
flat and in which the two branes are fixed at the positiony
50 andy51, irrespective of whether their physical separ
tion is constant or changing in time. We show this explici
in Appendix A 1. This choice does not fix the gauge co
pletely, however. The form of the remaining gauge degr
of freedom, which are expected to affect the numerical so
tions, is worked out in Appendix A 2.

1. Comoving branes

By assumption, the system is homogeneous and isotr
along the spatial coordinatesx, and the position of each
brane in the extra space is specified by a function of ti
only ~parallel branes!. Since the metric coefficients depen
only on the two coordinatest andy, the metric can be written
in the 2D conformal gauge~3!.

The change of coordinates

t→ t̄ 5 1
2 @ f ~ t1y!1g~ t2y!#,
7-14



es

po
n
o-

,

e
as

a
ng

th
tiv
be

s

tw
,

W

o
u

e
eri-
re

des
one
all-
n

at
n-

in

-
mi-

t in

ns

BRANEWORLD DYNAMICS WITH THE BRANECODE PHYSICAL REVIEW D69, 084017 ~2004!
y→ ȳ5 1
2 @ f ~ t1y!2g~ t2y!#, ~A1!

where f and g are two arbitrary scalar functions, preserv
the 2D conformal gauge, since it affects the metric~3! only
by the change

B~ t,y!→B̄~ t̄ ,ȳ!

5$B~ t,y!2 1
2 ln@ f 8~ t1y!g8~ t2y!#% t,y→ t̄ ,ȳ .

~A2!

This is most easily seen in null coordinates, where

t5
1

A2
~v1u!, y5

1

A2
~v2u!⇒ds2522dudv.

~A3!

Generally, the two branes will have a time-dependent
sition in the extra dimension, described by the two functio
y1(t) andy2(t), respectively. However, as long as their m
tion occurs slower than the speed of light,u ẏ1u and u ẏ2u
,1, we can perform a change of coordinates~A1! to have
them at fixed position alongy, as we now show.

Let us first fix the first brane aty[0. For this to happen
the two functionsf and g appearing in Eqs.~A1! have to
satisfy

f „t1y1~ t !…5g„t2y1~ t !…. ~A4!

We can choosef arbitrarily and use Eq.~A4! to determineg.
The conditionu ẏ1u,1 guarantees this can be always don
since the arguments of both the two functions incre
monotonically in time.

In the new coordinate system, the first brane is fixed
y1[0, while again the second one will be generally movi
according to some functionỹ2(t). This function describes
the parallel motion of the second brane with respect to
first one. Since in the old system of coordinates the rela
motion was at a speed lower than that of light, this will
the case also in the new coordinates,uy8 2u,1. To preserve the
first brane at the origin, the residual freedom~A1! is re-
stricted tof (w)5g(w); i.e., f andg are the same function
of their arguments. If we choosef to satisfy

f „t1 ỹ2~ t !…5 f „t2 ỹ2~ t !…12, ~A5!

we finally reach a third system of coordinates where the
branes are fixed aty1[0 andy2[1, respectively. As before
the functionf can always be constructed. Sinceuy8 2u,1, the
arguments of both terms increase monotonically in time.
can then use the value off at the right-hand-side of Eq.~A5!
to ‘‘construct’’ the value off on the left-hand-side.

2. Residual gauge freedom

Even with the position of the branes fixed, the freedom
reparametrization is not exhausted yet. The residual ga
degrees of freedom are again of the form~A1!, with
08401
-
s
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e
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e
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f ~w!5g~w![F~w!, F~w12!2F~w!52. ~A6!

The most generic functionF with this property is

F~w!5w1 (
n50

`

~an cosnpw1bn sinnpw!, ~A7!

with arbitrary coefficientsan ,bn . The appearance of thes
gauge degrees of freedom is manifest in some of the num
cal results we obtained; for example, in Fig. 4 they a
shown as ripples in the metric componentB(t,y).

3. Perturbations of the Randall-Sundrum geometry

It is interesting to note that, apart from pure gauge mo
described in the previous appendix, there exists only
kind of x-independent small fluctuations about the Rand
Sundrum geometry~22!. As we show now, this perturbatio
is related to a small change of the interbrane distanceD,
which is not stabilized without a scalar field. We know th
any x-independent configuration can be written in the co
formal gauge with the position of the branes aty50,1. Thus,
all the perturbations we are interested in can be written
terms of the metric componentsA(t,y)5A0(y)1da(t,y),
B(t,y)5B0(y)1db(t,y), where A05B0 is the Randall-
Sundrum solution~22!. To find which perturbations are al
lowed, we linearize the bulk Einstein equations. The dyna
cal ones reduce to

d̈a2da91
6da8

y1g
1

8db

~y1g!2
50,

d̈b2db92
6da8

y1g
2

4db

~y1g!2
50, ~A8!

while the two constraint equations are conveniently recas
the form

d

dt S da81
db

y1g D50,

d

dy F ~y1g!23S da81
db

y1g D G50. ~A9!

Here g5(eD/ l21)21; cf. Eq. ~22!. The last two equations
give

da81
db

y1g
[C~y1g!3, ~A10!

with C constant. Finally, linearizing the boundary conditio
we have

S da81
db

y1g D
uy50,1

50, S db81
db

y1g D
uy50,1

50,

~A11!
7-15
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MARTIN et al. PHYSICAL REVIEW D 69, 084017 ~2004!
the first of which enforcesC50. Substituting Eq.~A10! into
the second equation of Eqs.~A8!, we have a differential
equation in terms ofdb and its derivatives only. Fourie
transforming

db5E dveivtdb̃~v,y!, ~A12!

we get an ordinary differential equation which is solved b

db̃5FFcos~vz!2
sin~vz!

vz G1GFsin~vz!1
cos~vz!

vz G ,
z5y1g. ~A13!

The boundary conditions fordb at the two branes becom
two equations for the two parametersF andG. Nonvanishing
solutions are possible only for

v5np, n50,1,2, . . . . ~A14!

For these values, the two coefficientsF andG are related by
G5F tanvg. The Fourier transform ofda is then easily
obtained from the remaining two equations

da5
1

vz
@2F sin~vz!1G cos~vz!#1Kd~v!, ~A15!

whereK is a constant. Back in coordinate space,

da5Sn

2Fn

cos~npg!

einpt sin~npy!

np~y1g!
1K,

db5Sn

Fn

cos~npg!
einptFcos~npy!2

sin~npy!

np~y1g!G .
~A16!

These are the most genericx-independent perturbations o
the Randall-Sundrum solution~22!. However, most of them
are pure gauge modes. Let us consider infinitesimal cha
of coordinates of the residual gauge discussed in Appen
A 2:

F~w!5w1F̃~w!5w1(
n

f neinpw,

t→t1(
n

f neinpt cos~npy!,

y→y1(
n

f neinpti sin~npy!. ~A17!

Under this infinitesimal change of coordinates, the me
coefficients undergo the infinitesimal changes

A0 →A01A08
F̃~ t1y!2F̃~ t2y!

2
,

08401
ge
ix

c

B0→B02B08
F̃~ t1y!2F̃~ t2y!

2

1
F̃8~ t1y!1F̃8~ t2y!

2
. ~A18!

By choosing

f n5
iF n

np cos~npg!
, n51,2, . . . , ~A19!

we see that the perturbations~A16! are equivalent to

A01da[A02
F0y

y1g
1K5A01

F0g

y1g
1K̃,

B01db[B01
F0g

y1g
, ~A20!

whereK̃5K2F0 is also constant.
By an appropriate rescaling of the spatialx coordinates

we can setK̃ to zero.

APPENDIX B: DETERMINATION OF STATIC
CONFIGURATIONS

Here we describe the method used to determine static
lutions, once the bulk and brane potentials for the scalar fi
are given. This is done by a numerical boundary-value pr
lem solver using the shooting method. As discussed in S
III C, we first deal with the two boundary conditions at th
first brane. Any two ofB0 , f0 , f08 , andH can be chosen
freely, while the other two are determined by the juncti
conditions at the first brane. We find it more convenient
choose the values ofB0 and f08 , since the latter cannot b
taken arbitrarily large if we want the solutions to rema
regular all across the bulk. A fourth-order Runge-Kutta in
grator is then employed to integrate Eqs.~19! in the bulk.
The aim is to find the values ofB0 and f08 for which the
solutions are regular in the 0<y<1 interval and for which
the boundary conditions on the second brane are also s
fied. We can recast the latter in the form

c1[B182 1
6 U1eB150, c2[f181

1

2

dU1

df
eB150. ~B1!

Both c1 andc2 are only functions of the chosen value forB0

and f08 , and in general do not vanish. We use Newto
method to find the zeros of these two functions—that is,
initial configurations at the first brane for which the junctio
conditions at the second brane are also satisfied. In prac
for the potentials we have studied, Newton’s method d
not converge globally. Fortunately, the bulk equations~19!
can be integrated very quickly, so that we can perform
‘‘brute force’’ scan in the$B0 ,f08% plane. We then apply
Newton’s method starting only from those values which a
sufficiently close to a solution—i.e., for whichc1 andc2 turn
out to be sufficiently close to zero.
7-16
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The existence of static solutions is not guaranteed for
bitrary bulk and brane potentials. As discussed in@17#, many
potentials do not give static solutions at all, while some o
ers typically lead to a finite number of them. Using the ge
metrical method of phase portraits for quadratic potent
~2! we found at most two static solutions in the~wide! space
of possible initial configurations we have scanned. Figure
shows how the phase portrait method allows us to visua
the quest for static configurations. Following the method
@17#, we draw curves in the$f,e2Bf8,e2BB8% phase space

FIG. 10. Phase space illustration of the two solutions for giv
potentials.
08401
r-

-
-
ls

0
e
f

Each of the two thick curves refers to one of the tw
branes, and it joins points for which the junction conditio
on that brane are satisfied. The thin curves are a samplin
bulk trajectories which satisfy the junction conditions at o
of the two branes~at y50). Valid static solutions consist o
trajectories that satisfy the junction conditions at both bran
Hence, in the phase portrait they are represented by the
trajectories which intersect both the thick curves. Lines p
pendicular to the trajectories represent lines ofy5const. We
see that in the case at hand, corresponding to quadratic
tentials~2!, there are two intersections.

APPENDIX C: PERTURBATIONS OF STATIC SOLUTIONS

Generic perturbations around a static configuration~18!
are described by the functionsdB0(y), dA0(y), anddf0(y)
and their first time derivativesdḂ0(y), dȦ0(y), and
dḟ0(y), which are obtained by equating the time-depend
fields and the first time derivatives at an initial momentt0
50. In the bulk, four of them can be specified arbitrari
while the remaining functions are obtained from the co
straint equations. One possible choice of initial perturbatio
adopted in the example of Fig. 5, is given by

dB0~y!5dA0~y!5dȦ0~y![0,

df0~y![df~y!,

n

TABLE I. Parameters used for simulations presented in the figures.

Figure 2 Figures 3,4 Figure 5 Figure 6 Figures 7,8,9 Figure 10

Bulk

V5
1
2 m2f21L

m5 0 m50.5

L526 L526

m5 0

L526

m50.5

L526

0.5

26

0.5

26

1

26

Branes

Ui5
1
2 Mi~f2s i !

21l i

M05 0 M05 300

l05 6 l05 5.98

s05 0.5

M15 0 M15 300

l1526 l1526.04

s15 0.60

Mi50

l056

l1526

M05 2

l05 36.6

s05 0.201

M15 2

l15 249.7

s1520.692

300

6.04

0.000202

300

27.02

20.406

2

6.24

0.33

2

2102

21.05

100

7.86

0.00815

100

213.9

20.715

~cf. Sec. IV B!

Initial conditions
for static solution

H 50 H 51024

f050 f050.5

f0850 f0850

B050 B050

B08521 B08520.997

H5 0

D5 ln 2

c5 1

Ȧ05y11

Ḃ052Ȧ0

H5 0.3

f05 0

f085 20.02

B05 20.3

B08520.304

0.2

0

20.05

0.5

21.66

0.3

0

20.3

20.1

20.96

0.0354 0.368

20.0508 20.00276

20.393 20.241

22.01 20.818

20.179 20.579

Mass bound meff
2 50 meff

2 ,0.0016 no static solution meff
2 ,20.360 20.139 0.041 0.17

20.387

Perturbations no no df5c1ec2(y2~1/2!)2

c1 561026

c2 521

no no no
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dḟ0~y!5
H

A8
f82S H2

A82
f821df8222f8df8

22e2B@V~f!2V~f2df!# D 1/2

,

dḂ0~y!5
1

3

f8

A8
dḟ. ~C1!

The perturbationdf(y) can be specified arbitrarily. In th
example shown, the Gaussian profile
l.

n

y

ys

y

tt.
J.

m

08401
df5r expS 2
~y21/2!2

2h2 D ~C2!

is centered between the branes. Sufficiently small values
h guarantee that the perturbations are exponentially s
pressed at the brane locations, leaving the junction co
tions ~practically! unaffected.
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