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Abstract

We describe an algorithm and a C++ implementation that we have written and made available for calculating the fully
nonlinear evolution of 5D braneworld models with scalar fields. Bulk fields allow for the stabilization of the extra dimen-
sion. However, they complicate the dynamics of the system, so that analytic calculations (performed within an effective
4D theory) are usually only reliable for static bulk configurations or when the evolution of the extra dimension is negligi-
ble. In the general case, the nonlinear 5D dynamics can be studied numerically, and the algorithm and code we describe
are the first ones of that type designed for this task. The program and its full documentation are available on the Web at
http://www.cita.utoronto.ca/~jmartin/BRANECODEAn this paper we provide a brief overview of what the program does and
how to use it.

Program summary

Title of program: BRANECODE

Catalogue identifier: ADVX

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADVX

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland
Licensing provisions: none

Y This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect
(http://www.sciencedirect.com/science/journal/00104655
* Corresponding author.
E-mail address: jmartin@th.physik.uni-bonn.d@.U. Matrtin).
1 We also maintain a mirror of the BRANECODE websitéhétp://www.cita.utoronto.ca/~kofman/BRANECODE/

0010-4655/$ — see front mattét 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2005.04.009


http://www.elsevier.com/locate/cpc
http://www.cita.utoronto.ca/~jmartin/BRANECODE/
http://cpc.cs.qub.ac.uk/summaries/ADVX
http://www.sciencedirect.com/science/journal/00104655
mailto:jmartin@th.physik.uni-bonn.de
http://www.cita.utoronto.ca/~kofman/BRANECODE/

70 J.U. Martin et al. / Computer Physics Communications 171 (2005) 69-78

Operating systems under which the program has been tested: Linux

Programming language used: C++

Memory required to execute with typical data: less than 1 MB

Has the code been vectorized?: no

Peripheralsused: none

No. of linesin distributed program, including test data, etc.: 8277

No. of bytesin distributed program, including test data, etc.: 74 939

CPC Program Library subprograms used: none

Nature of physical problem: Dynamics of two co-dimension one branes in a five-dimensional spacetime with a bulk scalar
field and arbitrary potentials. The dynamics is governed by the five dimensional Einstein equations of gravity and the junction
conditions at the position of the branes.

Method of solution: Leapfrog algorithm to solve system @f+ 1)-dimensional partial differential equations; Initial and bound-
ary value problem.

Restrictions on the complexity of the problem: Assumption of homogeneity along three spatial dimensions parallel to the branes.
Typical running time: Depending on the grid size and length of the time evolution: fretrs to~1 h or longer.

Unusual features of the program: none

0 2005 Elsevier B.V. All rights reserved.

PACS 11.25.Wx; 04.25.Dm; 04.50.+h
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1. Introduction the evolution of the non-compact coordinates behave
as in the standard four-dimensional case. Hence, the
Many extensions of the Standard Model have in dynamics of the hidden dimensions becomes a crucial
common the presence of extra dimensions. This has toingredient in understanding the evolution of the ones
be contrasted with the fact that our world looks four- we observe. In some particular cases, static bulk con-
dimensional, so one has to explain why the presence figurations can be achieved under the combined action
of the extra space has not yet been detected. The tradi-of the bulk/brane gravity. In most realistic examples
tional answer has been that the extra space is compacthat could account for our observed four-dimensional
and very small, so that the fields associated with its ex- cosmology the stability is due to the presence of addi-
citations are too heavy to be observable in acceleratorstional fields that acquire nontrivial configurations in
or cosmology. More recently, it has been realized that the bulk. While the stabilization has to be effective
ordinary matter and gauge interactions may be con- at relatively “late” times, the first stages of our uni-
fined on lower dimensional submanifolds, known as verse (before primordial nucleosynthesis, for instance)
branes. In this case, they could be four-dimensional are much less constrained. The evolution of the bulk
objects, even if the geometry of the theory is higher di- may have been significant at this phase, and this of-
mensional. The situation is different for gravity, which fers many new possibilities for phenomenology. This
propagates in the whole bulk space. Several ques-is particularly true with the addition of the fields re-
tions naturally arise, such as why a compact space sponsible for the “late” time stabilization, since they
would remain small while the three non-compact di- constitute new dynamical degrees of freedom for the
mensions are undergoing cosmological expansion, or system.
why the expansion of the universe we see is described While the above considerations are valid for all
by (3+ 1)-dimensional general relativity so well. The models with extra dimensions, significant computa-
presence of extra dimensions may cause deviationstions have been performed in the framework of brane
from the standard FRW cosmology that is supported models. These models can be thought of as simplified,
by observations. phenomenological (bottom-up) versions of branes in
In most cases, these two questions turn out to be in- string theory. The string dynamics is ignored and the
timately related. Only if the extra space is static can primary focus is on the classical dynamics from the
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point of view of General Relativity. Branes act as a ifold branes. We discretize the two-dimensional space-
source for the Einstein equations of the system, with time (time and the bulk coordinate) and solve the bulk
their tension and possibly with the energy density of differential equations by finite-differencing them us-
fields confined on them. Additional sources are a bulk ing the so-calledeapfrog scheme. This algorithm is
cosmological constant, or the energy density of pos- sufficient for our problem, and it provides a good com-
sible bulk fields. This set-up is sufficiently rich to promise between accuracy and computational time
describe very interesting situations. For example, in- (see Sectior? for more details). The two branes act
flation in braneworlds can acquire a nice geometrical as (one-dimensional) boundaries of this space, and the
interpretation, with the inflation associated with the junction conditions provide the boundary conditions
distance between different branes, the Hubble parame-for the system at each time-step. The solution of a
ter scale associated with the induced curvature on the boundary value problem is required to provide generic

branes, and with reheating through radion oscillations.
Despite this great simplification, the whole dynam-
ics is still very complicated, in particular when a bulk
scalar field is present. In this case, analytical com-
putations are typically performed within an effective
4-dimensional theory, obtained after the extra dimen-
sion is integrated out, or perturbatively, using lin-

earized analysis around simple backgrounds. While

initial conditions that fulfill the constraint equations
and the boundary conditions at the beginning of the
evolution. In the static configurations we have men-
tioned above, this boundary value problem is signifi-
cantly simpler than in the general case. The setup of
initial conditions is explained in more detail in Sec-
tion 4.

The first results obtained with the code have been

these studies are very useful when the extra spacepresented ifl]. We are now making the code public

is static or quasi-static, they are not sufficient to de-
scribe the system when the evolution of the bulk is

on the World Wide Web under the name BRANE-
CODE. Its website is ahttp://www.cita.utoronto.ca/

important. For example, systems that are stable at low ~kofman/BRANECODE/ The website for the pro-

energy (low curvature of the branes) can become un-

gram has documentation, including derivations of all

stable when the energy/curvature is increased. Thethe equations used in the program. Here we present

stability/instability can be studied analytically. How-

ever, one cannot determine analytically where the sys-

tem will evolve towards when the initial configuration
turns out to be unstable.
For example, we numerically examined the dynam-

a short summary of what the program does and what
it can be used for. For more details see the website.
Section2 of this paper gives an overview of what the
program is and how it works. SectioBsnd 4describe

the evolution equations and the setting of initial con-

ics of brane collisions and found that, as the branes ditions, respectively. Sectidh describes some of the
approach each other, the spacetime of the bulk asymp-output generated by the program. The references sec-

totically approaches the Kasner-type solution.
Motivated by these limitations with the analytical

tion is limited to papers from our group related to the
BRANECODE design and its first resulfs—5]. See

treatment, we undertook a numerical study of these these papers for a more complete set of references.

models. We developed a numerical algorithm, im-
plemented in a C++ code, specifically designed for
codimension one braneworlds, with a scalar field in-
cluded in order to provide stabilization of the bulk
at low energies. With the assumption of homogene-
ity and isotropy along the brane spatial coordinates

(corresponding to the standard assumption of homo-

geneity and isotropy of the nhon-compact coordinates),
the problem is reduced to an effectively 2-dimensional
one. The independent variables are the bulk tiraad

the bulk dimensiory. The program integrates numer-
ically the full set of Einstein equations in the bulk,
together with the Israel junction conditions at two orb-

2. Overview and user adjustablefiles

In this section we give an overview of the program
and how to adjust it for a particular simulation. More
details can be found in the documentation.

To work with the BRANECODE the user must
specify a model, consisting of bulk and brane poten-
tials for the scalar field, plus initial conditions for the
field and the geometry. This information is encoded in
amodé file, which is a header file read in by the pro-
gram. The file should be calletbdel _nuneri c. h
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or nodel _anal yti c. h depending on whether the
initial conditions are specified numerically or ana-
Iytically. The model files contain the potentials and

their first and second derivatives that are needed for _

the evolution of the bulk equation®) and bound-
ary conditions(5). For example, the BRANECODE
distribution includes both a numeric and an analytic
model file (with different initial conditions). The file
nodel _anal yti c. h contains examples for branes
in AdS and AdS-Schwarzschild geometries, whereas
the file nodel _numeri c. h we designed for the
class of models with bulk scalar fields determined by
the bulk and brane potentials

V(p) = 3m°p” + A,

(1)
Ui ($) = AMi(¢i — 07)? + hi.

A bulk cosmological constant and brane tensions are
included as constant terms in these potentials. Most
importantly, the program is designed to work for ar-
bitrary potentials, different fronfl). Other potentials
V(¢), Ui(¢) can be implemented by modifying the
corresponding lines in the model file. Aside from this
file, the only other file that the user needs to modify
is par anet er s. h, which contains all the parame-
ters for a given run of the program. These include the
number of grid points, the running time, and a number
of other general variables specific to each run. There
is also a parameter in this file that tells the program
which type of model file to look for.

Given a specific model and set of parameters, the
BRANECODE solves the system of equations of mo-
tions for the metric functions and the scalar fi¢g)
along with the boundary conditions provided by the
presence of the bran€s). The required functions are
contained in the filequat i ons. cpp.

The BRANECODE has built-in routines for out-
putting and plotting the metric fields, the scalar field,
and derived quantities. These outputs are stored in
ASCII files that can be read in and plotted by any stan-
dard plotting software. There are also options (set in
par anet er s. h) to have the program caBNUPLOT
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Fig. 1. An example of the graphical output generated by the
BRANECODE. The plot shows the evolution of a metric compo-
nentB (describing the interbrane separation) as a function of space
and time. Physically, this evolution shows a transition from an unsta-
ble static warped geometry solution towards a stable static solution.
During this non-linear reconfiguration the interbrane distance and
the Hubble scale of the de Sitter geometry decreases.

Once all parameters have been set and you have
modified or created a model file according to your
wishes you simply compile and run the BRANECODE.
The code is designed to be platform independent and
should work with any C++ compiler. The makefile that
comes with the distribution has entries and flags for
the GNU gcc compiler and the INTEL cc com-
piler. You can select one of them or edit the makefile
to invoke your favorite compiler.

3. Algorithm

The evolution equations solved by the BRANE-
CODE are the set of Einstein/scalar field equations
on an effectively 2-dimensional spacetime obtained
after imposing homogeneity and isotropy on the non-
compact spatial coordinates In [1] we showed that
under these conditions it is always possible to choose
coordinates that bring the metric to the form

ds? = B0V (—dr® + dy?) + 40D dx?, )

with the two branes fixed at= 0, 1, respectively. This

to generate and display postscript plots of the data at choice is motivated by the fact that in this coordinate

runtime. (These options should only be chosen if the
program is running on a computer with boBNU-
PLOT and GHOSTVI EW) An example of this graph-
ical output is shown iffrig. 1

system the lattice size is time independent due to the
fixed position of the branes and the equations simplify
significantly. In this gauge, we have the following dy-
namical equations
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A—A"+34% -34"%2=2e?By, theleapfrog algorithm. Instead of having the fields and
5o a2 2,152 1,2_  1.2B their velocities at the time = rg, the algorithm needs
B—B"—3A% 4347+ 3¢° —3¢" = 382 v, 3) the spatial profiles of the fields\;, B;, ¢;) at two sub-
v i i oAl 2B sequent moments in tinte= 7o andr = 7g+ €. In some
=" +34¢ —34'¢/ = ¢ Vi, special cases the profiles at the two initial times can
supplemented by the constraint equations be calculated analytically, but in general the program
L L Y takes a Runge—Kutta step using the initial derivatives
—AA+BA+AB—-A =308, to calculate the field values af+ .
202 _A'B' + A" — A2— AB 4) The field values at all subsequent time steps are

152 142 128 calculated as follows. (Note that we will ugé here
= —= — = — 5 V H H H H
69" — 5% 3 : to denote a generic field, i.e. for equations that apply

Dots and primes denote derivatives with respect to the to all three fieldsA, B, and¢.) In the gauge chosen,
time ¢ and the coordinate along the bulk, respec-  the bulk equations only contain derivatives in the form
tively. In addition, the program imposes the follow- ./ — f”, andf¢ — f’¢’. Recall that our grid spacing
ing junction (Israel) conditions at the positions of the € =1/N is equal to our time step. Thus, to second or-

branes der accuracy, we can write the derivatives at a given
point in spacetime in terms of the values of its neigh-
A'=-%Uuef, B =-%Ué”, bors as
'=1eBy . O 1
¢ ¢ f_f//=—z(fup‘l‘fdn—flt—frt)-l-o(éz),
These junction conditions are equivalent to extending €
h beyond th b d impodi o g = L
the space beyond the two branes, and impoging  fs — f'g' = P[(fup_ fdn) (gup — gdn) (6)
symmetry across the branes. 5
In the coordinate systeni2), the characteristic — (ft — fi) (gt — &) ] + O(e),

propagation speed of the dynamical equatipns i?‘ al- where the indices label relative grid positions as de-
ways 1. This IS advantage-ous from a numenca! VIEW" fined inFig. 2 In this way, the three differential equa-
point as the size of the time step can be optimized g (3) become three algebraic equations for the
uniformly by setting it equal to spatial grid separation. three unknown quantitieSyp. Aup. ¢up). Notice that

We describe below our implementation of feapfrog this can be done independently site by site in the bulk.
discretization scheme, which is stable, second order Once the bulk field values at the new time have

accurate, and non-'dissipative. i ) been determined, we can apply the junction condi-
The program discretizes the 2-dimensiofgly} . tions (5) to advance the boundary field values. We
space and computes the value of the three functions yiqiss only the computation at the first brane ).
B.A.¢ at each grid point. For any fixed time, the  1pe reatment for the second brane is analogous. Only
grid is made ofN + 1 points equally spaced along gt gerivatives iny enter in(5). To preserve second

the bulk, with 0 andv correspondmg to the locations order accuracy, we use an “asymmetric” discretization
of the two branes. The value & is set inpar a- of the derivatives

met er s. h. The same grid spacing is taken in the
y- and¢-directions. The initial conditions are in the fo= i(_gfo +4f1 — f2)+ O(e?), (7)
form (A(y), B(y), ¢(y), A(y), B(y), ¢(y)), and they 2¢
can be chosen arbitrarily subject to the fact that they where subscripts indicate the grid position of each
satisfy(4) and (5)at the initial time. Of particular in-  field value (se€Fig. 2). The junction conditiong5)
terest are configurations with an initially static bulk, thus become a set of three algebraic equations in terms
since the program can be used to verify their stability of three unknowns. We can eliminatg and By in fa-
and to study the dynamics when they are unstable asvor of ¢g, and write an equation in terms of the only
described in Sectioa. unknown quantitypo,

The discretized initial datéA;, A;, B;, Bi, ¢i, ¢;),
i=0,..., N, hastobe converted to a form suitable for 4p1 — ¢p2 — 3o — ceowo) U6(¢0) =0. (8)
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t Bulk t
P--0-%-0-0--0-O

Boundary
OO
__‘__..___

0 1 ---N-3N-2N-1 N7

Fig. 2. Numerical evolution scheme. See text for details.

For specific brane potentials, these equations can beway that the boundary conditiorS) are fulfilled ini-
solved analytically. However, as the code is designed tially. The third parameter, either the tension on the
for arbitrary bulk/brane potentials, E{B) is solved branei; or the minimum of the brane potential,
numerically using the iterative Newton’s method. is set by the user in the filkodel _nuneri c. h. If

Once ¢y is determined, the remaining unknowiBs the user instead wants to set up initial conditions for
and Ag are trivially computed through the remaining a given choice of brane potentials, he can make use
junction conditions. of a shooting method operating in the phasespace of

the static solutions. Namely, he can start with initial

conditions chosen such that they fulfill the boundary

conditions on one of the branes, compute the corre-

sponding bulk configuration, and keep varying the ini-
In general, the specification of initial conditions, tjal conditions (e.g., with a numerical scan) until the

i.e. the determination of the initial spatial profiles for sojution also satisfies the junction conditions at the

the fields and their velocitied(y), B(y), ¢(y), A(y), second boundary. For any given set of bulk and brane

B(y), and¢(y) is a nontrivial task. These function  potentials, there can be none, one, or more than one so-

cannot be chosen independently, but rather are subjectution to the boundary value problem. The latter case

to the constraint equation@) and boundary condi-  opens up the possibility for interesting dynamics of

tions (5). However, the physical instability of static  transitions as investigated ji].

de Sitter configurationfl,3] provides the possibility

to generate interesting braneworld dynamics with sta-

tic solutions as initial conditions that we can recom- 5 Qutput

mend. All the static solutions for a given model can be

exhaustive!y classified by the phasespace analysis of The main outputs of the program are the values
the dynamics of the gravity/scalar system performed of the three functionsB, A, and ¢ at different bulk

4. Initial conditions

in [2]. sites and time steps. Two parameters ingideane-
One simple way to generate static initial conditions t er s. h control how many points (both in the and
is to consider a configuration of the forf = B(y), t-directions) are to be saved. From these quantities,

¢ =¢(y), A= B + Ht (de Sitter branes in a static  one can construct some outputs of immediate physi-
bulk). The first of Eqs(4) is then trivially satisfied.  cal relevance. One is the physical interbrane distance.
For a sufficiently simple model, the remaining con- The branes are at a fixed coordinate distance in our
straint equation can be solved analytically. Otherwise gauge and their physical separation is encoded in the
we provide aMATHEMATI CA notebook andvAPLE metric coefficientd

worksheet to solve them numerically for a given bulk 1 1

potential and generate appropriately formatted initial

data. For simplicity, the code determines two of the () E/dy“/ﬁzfdy ey, ©)
three parameters of the brane potent{dlsin such a 0 0
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Another interesting quantity is the Hubble parameter The study of the numerical evolution led us to the
as computed by observers on each of the two branes conclusion that the asymptotic geometry is given by
the universal Kasner-type that is typical of homoge-
neous but anisotropic strong gravity regimes. We did
not investigated the case of branes departing from each
where 7 is the physical time measured by the ob- other when one of them in general approaches a naked
servers, defined byt = ef dr. Quite interestingly, singularity in the bulk configuration. We also did not
the gauge choice used in the algorithm (see the pre- studied the possibility of the formation of an apparent
vious section) does not exhaust the gauge freedomhorizon between the branes.
of the problem. Residual gauge transformations have  Our algorithm is focused on the simplest possi-
been described ifL], and one can show that they do ble set-up which allows for brane stabilization based
not change the values d» and H;, which therefore on a generalized Goldberger—Wise mechanism. Only
have physical meaning. Besides these physical quanti-one bulk scalar field has been considered, although
ties the BRANECODE also computes the Ricci scalar with arbitrary potentials in the bulk and at the two
and the square of the Weyl tensor in the bulk. Other branes. The inclusion of more scalar fields would be
quantities of interest can easily be obtained from the straightforward. In particular, one could consider other
“raw” values ofB, A, ¢. fields, which are confined to the branes, and which
are coupled to the bulk fields, e.g., through the brane
potentials. (The interplay between bulk/brane fields
may lead to novel interesting features not considered
in [1].) Another easy generalization would be the in-
The main mativation for our work was to extend the clusion of perfect fluids on the branes (for example,
knowledge of braneworld dynamics beyond the few describing standard matter and radiation). Less trivial
situations where it was known analytically. Apart from but more interesting extensions could be the inclusion
these situations (characterized by a static or slowly of other types of fields (form fields in the bulk, for in-
evolving bulk), approximate methods based on effec- stance), or evolution with more dimensions included.
tive 4-dimensional computations are unreliable. In this For example, relaxing the hypothesis of homogeneity

=e B4, (10)

6. Conclusions

short note we have presented an algorithm, together
with its C++ implementation, designed for numerical
computations in this framework. First results obtained
from this code were presented[ih4]. We could show
that some bulk configurations which are stable at low
energy (low value of the expansion rateof the two
branes) become unstable &k increases, in agree-
ment with the analytical calculations {8]. This can

be interpreted as a part of a more general phenom-
enon of gravitational instability of compactification to
four-dimensional de Sitter geometiy]. The numeri-

cal integration allowed us to follow the evolution of the
system starting from the unstable configuration. For
certain bulk/brane potentials the system may evolve
towards another static, but stable configuration, char-
acterized by a lower value off. The transition is
typically a process of quick bulk reconfiguration. In

many cases, however, the second configuration does gng at coordinate time

not exist or cannot be reached. The two branes then
either move apart to infinite distance, or they collide.
Brane collisions is a very interesting subject by itself.

Rk b Sk b R R Sk kO kS b O R R I o

* Potential paraneters on the branes *

L I O O S R O O O

Br ane0 Branel
VEVs 9. 990000e- 02 5.371387e-01
Zet as 1. 000000e+03 1. 000000e+03
Lanbdas: 6. 186450e+00 -7.707347e+00

LRk I S S S O

* The Branecode is running *

LR R S O R S S

Directory data/ existed, will be noved
to data_sav/
New data will

dat a/

be stored in directory:

Start at coordinate tine: 0.000000
150. 000000
Current coordinate tine :+1.010000e+02

Fig. 3. Output during the simulation.
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and isotropy along the ordinary dimensions would al- Once the calculation is finished and the data is
low the study of inhomogeneous perturbations of the stored the message Fig. 4is printed. It includes the
system. real time that it took to perform the simulation as well
as additional system commands for the graphical rep-
Appendix A. Test run output resentation of the data if selected in the header file

par anet er s. h, cf. Sectior2.

Once the program is started the message captured In the example provided with the distribution the
in Fig. 3 is printed on the screen. It provides infor- main variables of the simulation are plotted using stan-
mation about the parameters that are computed bydard LINUX packages GNUPLOT and GV, ¢fig. 5.
the program, the location where the generated data is  All model and simulation parameters of a particular
stored and the current time of calculation together with run are stored in the filei nf 0. dat . An example for
the starting time and the time of termination. its content is given irfrig. 6.

Data stored on disk in directory data/

R R O O O O I

* Cal culation finished successfully *

R I O O Rk o O O R S O

El apsed real tine: 0 d:0 h:0 min:22 sec.

Execute: gnuplot radion.gp & gv -antialias -geonetry 643x430+0+20 radi on. eps &
Execute: gnuplot B.gp & gv -antialias -geonetry 643x430+645+470 B.eps &
Execute: gnuplot A gp &k gv -antialias -geonetry 643x430+0+470 A. eps &

Execute: gnuplot phi.gp & gv -antialias -geonetry 643x430+645+20 phi.eps &

Fig. 4. Output after the completion of a simulation.

Radion

VA

O O O OO
o SESNLORS

0 20 40 60 80 100 120 140
Bulk Time t

Fig. 5. Output example of the BRANECODE.
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Gid Resolution

500

QUTPUT_SKI P

50

OUTPUT_| NTERVAL

10

Starting time TM N

0. 000000e+00

Final time TMAX

1. 500000e+02

Bul k Mass of the Scalar Field

5. 000000e- 01

Cosnol ogi cal Constant in the Bul k

- 6. 000000e+00

Ef fecti ve Mass of the Scalar Field on the Brane at y=0
1. 000000e+03

Expectation Value of the Scalar Field on the Brane at y=0
9. 990000e- 02

Ef fecti ve Mass of the Scalar Field on the Brane at y=1
1. 000000e+03

Expectation Value of the Scalar Field on the Brane at y=1
5.371387e-01

Tension of the Brane at y=0

6. 186450e+00

Tension of the Brane at y=0

-7.707347e+00

Bul k Hubbl e Par anet er

2.500000e-01

Error status

0
Fig. 6. Example of the parameters stored in theifiié 0. dat .
# time proper tine Hubbl e c2
9. 980000e-01 9.999987e-01 2.499949e-01 1. 763024e-12
1.998000e+00 1.999995e+00 2.499937e-01 1.114797e-10
2.998000e+00 2.999982e+00 2.499929e-01 4.309199%e-11
Fig. 7. Example of the data format of the generateddilane0. dat .
# time A

0. 000000e+00 0. 000000e+00 -9. 844431e-02 -1.886905e-01 -2.721424e-01
2. 000000e- 03 4.999965e-04 -9.794431e-02 -1.881905e-01 -2.716424e-01
1. 000000e+00 2.499959e-01 1.515521e-01 6.130630e-02 -2.214513e-02
2.000000e+00 4.999891e-01 4. 015455e-01 3.112998e-01 2. 278485e-01

Fig. 8. Example of the data format of the generatedAileat .
The data generated during a simulation consists of e.g., the proper time or the expansion parameté,

discretized functions of one or two independent vari- only depend on the coordinate timeThey are col-
ablest andy. The induced quantities on either branes, lected in the filedbr ane0. dat andbr anel. dat,
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# time y phi A B
0. 000000e+00 0. 000000e+00 1.000000e-01 0.000000e+00 0.000000e+00
0. 000000e+00 2. 000000e-01 1.276959e-01 -1.886905e-01 -1.886905e-01
0. 000000e+00 4.000000e-01 1.753732e-01 -3.499188e-01 -3.499188e-01
0. 000000e+00 6.000000e-01 2.513273e-01 -4.920424e-01 -4.920424e-01
0. 000000e+00 8.000000e-01 3.662943e-01 -6.214045e-01 -6.214045e-01
0. 000000e+00 1.000000e+00 5.350111e-01 -7.442296e-01 -7.442296e-01
2.000000e- 03 0.000000e+00 1.000000e-01 4.999965e-04 -3.518520e-09
2.000000e-03 2.000000e-01 1.276959e-01 -1.881905e-01 -1.886905e-01
2.000000e-03 4.000000e-01 1.753732e-01 -3.494188e-01 -3.499188e-01
2.000000e- 03 6.000000e-01 2.513273e-01 -4.915424e-01 -4.920424e-01
2.000000e-03 8.000000e-01 3.662943e-01 -6.209045e-01 -6.214045e-01
2.000000e- 03 1.000000e+00 5.350111e-01 -7.437296e-01 -7.442296e-01

cf. Fig. 7. For the functions that depend on the two
independent variablesand y there are two possible

Fig. 9. Example of the data format of the generatedgiie. dat .

The number of grid points and the number of
time steps that are stored in the data files can be ad-
formats for the output. The first possible choice of justed with the corresponding control parameters in

formatting prints the function in an array. Each line the header filpar amet er . h.
starts with the value of time for which the values of
the function are plotted along the one-dimensional lat- References
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first lines of the data fileA. dat that contains the
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discretized version of the metric functiot(z, y). Al-
ternatively, the data can be stored in a format that is
adjusted to GNUPLOT. Here the first two columns col-
lect the values of the independent functionand y.

The values of the dependent functions are contained
in the subsequent columrisig. 9shows the first lines

of the data file gnu. dat that stores the numerical
data of the discretized fields(z, y), A(z, y), B(t, y).
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