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Abstract

We describe an algorithm and a C++ implementation that we have written and made available for calculating t
nonlinear evolution of 5D braneworld models with scalar fields. Bulk fields allow for the stabilization of the extra d
sion. However, they complicate the dynamics of the system, so that analytic calculations (performed within an e
4D theory) are usually only reliable for static bulk configurations or when the evolution of the extra dimension is n
ble. In the general case, the nonlinear 5D dynamics can be studied numerically, and the algorithm and code we
are the first ones of that type designed for this task. The program and its full documentation are available on the
http://www.cita.utoronto.ca/~jmartin/BRANECODE/.1 In this paper we provide a brief overview of what the program does
how to use it.

Program summary

Title of program: BRANECODE
Catalogue identifier: ADVX
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADVX
Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland
Licensing provisions: none

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on Sc
(http://www.sciencedirect.com/science/journal/00104655).
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E-mail address: jmartin@th.physik.uni-bonn.de(J.U. Martin).

1 We also maintain a mirror of the BRANECODE website athttp://www.cita.utoronto.ca/~kofman/BRANECODE/.
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Operating systems under which the program has been tested: Linux
Programming language used: C++
Memory required to execute with typical data: less than 1 MB
Has the code been vectorized?: no
Peripherals used: none
No. of lines in distributed program, including test data, etc.: 8277
No. of bytes in distributed program, including test data, etc.: 74 939
CPC Program Library subprograms used: none
Nature of physical problem: Dynamics of two co-dimension one branes in a five-dimensional spacetime with a bulk
field and arbitrary potentials. The dynamics is governed by the five dimensional Einstein equations of gravity and the
conditions at the position of the branes.
Method of solution: Leapfrog algorithm to solve system of(1+1)-dimensional partial differential equations; Initial and boun
ary value problem.
Restrictions on the complexity of the problem: Assumption of homogeneity along three spatial dimensions parallel to the br
Typical running time: Depending on the grid size and length of the time evolution: from∼1 s to∼1 h or longer.
Unusual features of the program: none
 2005 Elsevier B.V. All rights reserved.

PACS: 11.25.Wx; 04.25.Dm; 04.50.+h

Keywords: Numerical String theory; braneworld dynamics; Brane cosmology; Brane collision; Nonlinear evolution
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1. Introduction

Many extensions of the Standard Model have
common the presence of extra dimensions. This ha
be contrasted with the fact that our world looks fo
dimensional, so one has to explain why the prese
of the extra space has not yet been detected. The t
tional answer has been that the extra space is com
and very small, so that the fields associated with its
citations are too heavy to be observable in accelera
or cosmology. More recently, it has been realized t
ordinary matter and gauge interactions may be c
fined on lower dimensional submanifolds, known
branes. In this case, they could be four-dimensio
objects, even if the geometry of the theory is higher
mensional. The situation is different for gravity, whi
propagates in the whole bulk space. Several qu
tions naturally arise, such as why a compact sp
would remain small while the three non-compact
mensions are undergoing cosmological expansion
why the expansion of the universe we see is descr
by (3+ 1)-dimensional general relativity so well. Th
presence of extra dimensions may cause deviat
from the standard FRW cosmology that is suppor
by observations.

In most cases, these two questions turn out to be
timately related. Only if the extra space is static c
-
t

the evolution of the non-compact coordinates beh
as in the standard four-dimensional case. Hence
dynamics of the hidden dimensions becomes a cru
ingredient in understanding the evolution of the on
we observe. In some particular cases, static bulk c
figurations can be achieved under the combined ac
of the bulk/brane gravity. In most realistic examp
that could account for our observed four-dimensio
cosmology the stability is due to the presence of ad
tional fields that acquire nontrivial configurations
the bulk. While the stabilization has to be effecti
at relatively “late” times, the first stages of our un
verse (before primordial nucleosynthesis, for instan
are much less constrained. The evolution of the b
may have been significant at this phase, and this
fers many new possibilities for phenomenology. T
is particularly true with the addition of the fields r
sponsible for the “late” time stabilization, since th
constitute new dynamical degrees of freedom for
system.

While the above considerations are valid for
models with extra dimensions, significant compu
tions have been performed in the framework of bra
models. These models can be thought of as simplifi
phenomenological (bottom-up) versions of branes
string theory. The string dynamics is ignored and
primary focus is on the classical dynamics from
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point of view of General Relativity. Branes act as
source for the Einstein equations of the system, w
their tension and possibly with the energy density
fields confined on them. Additional sources are a b
cosmological constant, or the energy density of p
sible bulk fields. This set-up is sufficiently rich
describe very interesting situations. For example,
flation in braneworlds can acquire a nice geometr
interpretation, with the inflation associated with t
distance between different branes, the Hubble para
ter scale associated with the induced curvature on
branes, and with reheating through radion oscillatio

Despite this great simplification, the whole dyna
ics is still very complicated, in particular when a bu
scalar field is present. In this case, analytical co
putations are typically performed within an effecti
4-dimensional theory, obtained after the extra dim
sion is integrated out, or perturbatively, using l
earized analysis around simple backgrounds. W
these studies are very useful when the extra sp
is static or quasi-static, they are not sufficient to
scribe the system when the evolution of the bulk
important. For example, systems that are stable at
energy (low curvature of the branes) can become
stable when the energy/curvature is increased.
stability/instability can be studied analytically. How
ever, one cannot determine analytically where the s
tem will evolve towards when the initial configuratio
turns out to be unstable.

For example, we numerically examined the dyna
ics of brane collisions and found that, as the bra
approach each other, the spacetime of the bulk asy
totically approaches the Kasner-type solution.

Motivated by these limitations with the analytic
treatment, we undertook a numerical study of th
models. We developed a numerical algorithm, i
plemented in a C++ code, specifically designed
codimension one braneworlds, with a scalar field
cluded in order to provide stabilization of the bu
at low energies. With the assumption of homoge
ity and isotropy along the brane spatial coordinatex
(corresponding to the standard assumption of ho
geneity and isotropy of the non-compact coordinat
the problem is reduced to an effectively 2-dimensio
one. The independent variables are the bulk timet and
the bulk dimensiony. The program integrates nume
ically the full set of Einstein equations in the bul
together with the Israel junction conditions at two o
ifold branes. We discretize the two-dimensional spa
time (time and the bulk coordinate) and solve the b
differential equations by finite-differencing them u
ing the so-calledleapfrog scheme. This algorithm i
sufficient for our problem, and it provides a good co
promise between accuracy and computational t
(see Section2 for more details). The two branes a
as (one-dimensional) boundaries of this space, and
junction conditions provide the boundary conditio
for the system at each time-step. The solution o
boundary value problem is required to provide gene
initial conditions that fulfill the constraint equation
and the boundary conditions at the beginning of
evolution. In the static configurations we have me
tioned above, this boundary value problem is sign
cantly simpler than in the general case. The setu
initial conditions is explained in more detail in Se
tion 4.

The first results obtained with the code have b
presented in[1]. We are now making the code publ
on the World Wide Web under the name BRAN
CODE. Its website is athttp://www.cita.utoronto.ca
~kofman/BRANECODE/. The website for the pro
gram has documentation, including derivations of
the equations used in the program. Here we pre
a short summary of what the program does and w
it can be used for. For more details see the web
Section2 of this paper gives an overview of what th
program is and how it works. Sections3 and 4describe
the evolution equations and the setting of initial co
ditions, respectively. Section5 describes some of th
output generated by the program. The references
tion is limited to papers from our group related to t
BRANECODE design and its first results[1–5]. See
these papers for a more complete set of reference

2. Overview and user adjustable files

In this section we give an overview of the progra
and how to adjust it for a particular simulation. Mo
details can be found in the documentation.

To work with the BRANECODE the user mu
specify a model, consisting of bulk and brane pot
tials for the scalar field, plus initial conditions for th
field and the geometry. This information is encoded
a model file, which is a header file read in by the pr
gram. The file should be calledmodel_numeric.h

http://www.cita.utoronto.ca/~kofman/BRANECODE/
http://www.cita.utoronto.ca/~kofman/BRANECODE/
http://www.cita.utoronto.ca/~kofman/BRANECODE/
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or model_analytic.h depending on whether th
initial conditions are specified numerically or an
lytically. The model files contain the potentials a
their first and second derivatives that are needed
the evolution of the bulk equations(3) and bound-
ary conditions(5). For example, the BRANECODE
distribution includes both a numeric and an analy
model file (with different initial conditions). The file
model_analytic.h contains examples for brane
in AdS and AdS-Schwarzschild geometries, wher
the file model_numeric.h we designed for the
class of models with bulk scalar fields determined
the bulk and brane potentials

(1)
V (φ) = 1

2m2φ2 + Λ,

Ui(φ) = 1
2Mi(φi − σi)

2 + λi.

A bulk cosmological constant and brane tensions
included as constant terms in these potentials. M
importantly, the program is designed to work for
bitrary potentials, different from(1). Other potentials
V (φ), Ui(φ) can be implemented by modifying th
corresponding lines in the model file. Aside from th
file, the only other file that the user needs to mod
is parameters.h, which contains all the parame
ters for a given run of the program. These include
number of grid points, the running time, and a num
of other general variables specific to each run. Th
is also a parameter in this file that tells the progr
which type of model file to look for.

Given a specific model and set of parameters,
BRANECODE solves the system of equations of m
tions for the metric functions and the scalar field(3)
along with the boundary conditions provided by t
presence of the branes(5). The required functions ar
contained in the fileequations.cpp.

The BRANECODE has built-in routines for ou
putting and plotting the metric fields, the scalar fie
and derived quantities. These outputs are store
ASCII files that can be read in and plotted by any st
dard plotting software. There are also options (se
parameters.h) to have the program callGNUPLOT
to generate and display postscript plots of the dat
runtime. (These options should only be chosen if
program is running on a computer with bothGNU-
PLOT andGHOSTVIEW.) An example of this graph
ical output is shown inFig. 1.
Fig. 1. An example of the graphical output generated by
BRANECODE. The plot shows the evolution of a metric comp
nentB (describing the interbrane separation) as a function of sp
and time. Physically, this evolution shows a transition from an un
ble static warped geometry solution towards a stable static solu
During this non-linear reconfiguration the interbrane distance
the Hubble scale of the de Sitter geometry decreases.

Once all parameters have been set and you h
modified or created a model file according to yo
wishes you simply compile and run the BRANECOD
The code is designed to be platform independent
should work with any C++ compiler. The makefile th
comes with the distribution has entries and flags
the GNU gcc compiler and the INTELicc com-
piler. You can select one of them or edit the make
to invoke your favorite compiler.

3. Algorithm

The evolution equations solved by the BRAN
CODE are the set of Einstein/scalar field equati
on an effectively 2-dimensional spacetime obtain
after imposing homogeneity and isotropy on the n
compact spatial coordinatesx. In [1] we showed tha
under these conditions it is always possible to cho
coordinates that bring the metric to the form

(2)ds2 = e2B(t,y)(−dt2 + dy2) + e2A(t,y)dx2,

with the two branes fixed aty = 0,1, respectively. This
choice is motivated by the fact that in this coordin
system the lattice size is time independent due to
fixed position of the branes and the equations simp
significantly. In this gauge, we have the following d
namical equations
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Ä − A′′ + 3Ȧ2 − 3A′2 = 2
3e2BV,

(3)

B̈ − B ′′ − 3Ȧ2 + 3A′2 + 1
2φ̇2 − 1

2φ′2 = −1
3e2BV,

φ̈ − φ′′ + 3Ȧφ̇ − 3A′φ′ = −e2BV,φ,

supplemented by the constraint equations

(4)

−A′Ȧ + B ′Ȧ + A′Ḃ − Ȧ′ = 1
3φ̇φ′,

2A′2 − A′B ′ + A′′ − Ȧ2 − ȦḂ

= −1
6φ̇2 − 1

6φ′2 − 1
3e2BV.

Dots and primes denote derivatives with respect to
time t and the coordinatey along the bulk, respec
tively. In addition, the program imposes the follow
ing junction (Israel) conditions at the positions of t
branes

(5)
A′ = −1

6UeB, B ′ = −1
6UeB,

φ′ = 1
2eBU,φ.

These junction conditions are equivalent to extend
the space beyond the two branes, and imposingZ2
symmetry across the branes.

In the coordinate system(2), the characteristic
propagation speed of the dynamical equations is
ways 1. This is advantageous from a numerical vie
point as the size of the time step can be optimi
uniformly by setting it equal to spatial grid separatio
We describe below our implementation of theleapfrog
discretization scheme, which is stable, second o
accurate, and non-dissipative.

The program discretizes the 2-dimensional{t, y}
space and computes the value of the three funct
B,A,φ at each grid point. For any fixed time, th
grid is made ofN + 1 points equally spaced alon
the bulk, with 0 andN corresponding to the location
of the two branes. The value ofN is set inpara-
meters.h. The same grid spacing is taken in t
y- and t-directions. The initial conditions are in th
form (A(y),B(y),φ(y), Ȧ(y), Ḃ(y), φ̇(y)), and they
can be chosen arbitrarily subject to the fact that t
satisfy(4) and (5)at the initial time. Of particular in-
terest are configurations with an initially static bu
since the program can be used to verify their stab
and to study the dynamics when they are unstabl
described in Section4.

The discretized initial data(Ai, Ȧi ,Bi, Ḃi , φi, φ̇i),

i = 0, . . . ,N , has to be converted to a form suitable
theleapfrog algorithm. Instead of having the fields an
their velocities at the timet = t0, the algorithm need
the spatial profiles of the fields(Ai,Bi,φi) at two sub-
sequent moments in timet = t0 andt = t0+ε. In some
special cases the profiles at the two initial times
be calculated analytically, but in general the progr
takes a Runge–Kutta step using the initial derivati
to calculate the field values att0 + ε.

The field values at all subsequent time steps
calculated as follows. (Note that we will usef here
to denote a generic field, i.e. for equations that ap
to all three fieldsA, B, andφ.) In the gauge chosen
the bulk equations only contain derivatives in the fo
f̈ − f ′′, andḟ ġ − f ′g′. Recall that our grid spacin
ε = 1/N is equal to our time step. Thus, to second
der accuracy, we can write the derivatives at a gi
point in spacetime in terms of the values of its neig
bors as

f̈ − f ′′ = 1

ε2
(fup + fdn − flt − frt) + O(ε2),

(6)ḟ ġ − f ′g′ = 1

4ε2

[
(fup − fdn) (gup − gdn)

− (frt − flt)(grt − glt)
] + O(ε2),

where the indices label relative grid positions as
fined inFig. 2. In this way, the three differential equ
tions (3) become three algebraic equations for
three unknown quantities(Bup,Aup, φup). Notice that
this can be done independently site by site in the b

Once the bulk field values at the new time ha
been determined, we can apply the junction con
tions (5) to advance the boundary field values. W
discuss only the computation at the first brane (i = 0).
The treatment for the second brane is analogous. O
first derivatives iny enter in(5). To preserve secon
order accuracy, we use an “asymmetric” discretiza
of the derivatives

(7)f ′
0 = 1

2ε
(−3f0 + 4f1 − f2) + O(ε2),

where subscripts indicate the grid position of ea
field value (seeFig. 2). The junction conditions(5)
thus become a set of three algebraic equations in te
of three unknowns. We can eliminateA0 andB0 in fa-
vor of φ0, and write an equation in terms of the on
unknown quantityφ0,

(8)4φ1 − φ2 − 3φ0 − εeB0(φ0)U ′
0(φ0) = 0.
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Fig. 2. Numerical evolution scheme. See text for details.
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For specific brane potentials, these equations ca
solved analytically. However, as the code is desig
for arbitrary bulk/brane potentials, Eq.(8) is solved
numerically using the iterative Newton’s metho
Onceφ0 is determined, the remaining unknownsB0
andA0 are trivially computed through the remainin
junction conditions.

4. Initial conditions

In general, the specification of initial condition
i.e. the determination of the initial spatial profiles f
the fields and their velocitiesA(y), B(y), φ(y), Ȧ(y),
Ḃ(y), and φ̇(y) is a nontrivial task. These functio
cannot be chosen independently, but rather are su
to the constraint equations(4) and boundary condi
tions (5). However, the physical instability of stat
de Sitter configurations[1,3] provides the possibility
to generate interesting braneworld dynamics with
tic solutions as initial conditions that we can reco
mend. All the static solutions for a given model can
exhaustively classified by the phasespace analys
the dynamics of the gravity/scalar system perform
in [2].

One simple way to generate static initial conditio
is to consider a configuration of the formB = B(y),
φ = φ(y), A = B + Ht (de Sitter branes in a stat
bulk). The first of Eqs.(4) is then trivially satisfied.
For a sufficiently simple model, the remaining co
straint equation can be solved analytically. Otherw
we provide aMATHEMATICA notebook andMAPLE
worksheet to solve them numerically for a given bu
potential and generate appropriately formatted ini
data. For simplicity, the code determines two of
three parameters of the brane potentials(1) in such a
t

way that the boundary conditions(5) are fulfilled ini-
tially. The third parameter, either the tension on
braneλi or the minimum of the brane potentialσi ,
is set by the user in the filemodel_numeric.h. If
the user instead wants to set up initial conditions
a given choice of brane potentials, he can make
of a shooting method operating in the phasespac
the static solutions. Namely, he can start with init
conditions chosen such that they fulfill the bound
conditions on one of the branes, compute the co
sponding bulk configuration, and keep varying the i
tial conditions (e.g., with a numerical scan) until t
solution also satisfies the junction conditions at
second boundary. For any given set of bulk and br
potentials, there can be none, one, or more than on
lution to the boundary value problem. The latter ca
opens up the possibility for interesting dynamics
transitions as investigated in[1].

5. Output

The main outputs of the program are the valu
of the three functionsB,A, and φ at different bulk
sites and time steps. Two parameters insideparame-
ters.h control how many points (both in they- and
t-directions) are to be saved. From these quanti
one can construct some outputs of immediate ph
cal relevance. One is the physical interbrane dista
The branes are at a fixed coordinate distance in
gauge and their physical separation is encoded in
metric coefficientB

(9)D(t) ≡
1∫

0

dy
√

g55 =
1∫

0

dy eB(t,y).
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Another interesting quantity is the Hubble parame
as computed by observers on each of the two bran

(10)Hi ≡ 1

a

da

dτ

∣∣∣∣
i

= e−Bi Ȧi ,

where τ is the physical time measured by the o
servers, defined byDτ ≡ eB dt . Quite interestingly,
the gauge choice used in the algorithm (see the
vious section) does not exhaust the gauge free
of the problem. Residual gauge transformations h
been described in[1], and one can show that they d
not change the values ofD andHi , which therefore
have physical meaning. Besides these physical qu
ties the BRANECODE also computes the Ricci sca
and the square of the Weyl tensor in the bulk. Ot
quantities of interest can easily be obtained from
“raw” values ofB,A,φ.

6. Conclusions

The main motivation for our work was to extend t
knowledge of braneworld dynamics beyond the f
situations where it was known analytically. Apart fro
these situations (characterized by a static or slo
evolving bulk), approximate methods based on eff
tive 4-dimensional computations are unreliable. In t
short note we have presented an algorithm, toge
with its C++ implementation, designed for numeric
computations in this framework. First results obtain
from this code were presented in[1,4]. We could show
that some bulk configurations which are stable at
energy (low value of the expansion rateH of the two
branes) become unstable asH increases, in agree
ment with the analytical calculations of[3]. This can
be interpreted as a part of a more general phen
enon of gravitational instability of compactification
four-dimensional de Sitter geometry[5]. The numeri-
cal integration allowed us to follow the evolution of th
system starting from the unstable configuration.
certain bulk/brane potentials the system may evo
towards another static, but stable configuration, ch
acterized by a lower value ofH . The transition is
typically a process of quick bulk reconfiguration.
many cases, however, the second configuration d
not exist or cannot be reached. The two branes t
either move apart to infinite distance, or they collid
Brane collisions is a very interesting subject by itse
The study of the numerical evolution led us to t
conclusion that the asymptotic geometry is given
the universal Kasner-type that is typical of homog
neous but anisotropic strong gravity regimes. We
not investigated the case of branes departing from e
other when one of them in general approaches a na
singularity in the bulk configuration. We also did n
studied the possibility of the formation of an appar
horizon between the branes.

Our algorithm is focused on the simplest pos
ble set-up which allows for brane stabilization bas
on a generalized Goldberger–Wise mechanism. O
one bulk scalar field has been considered, altho
with arbitrary potentials in the bulk and at the tw
branes. The inclusion of more scalar fields would
straightforward. In particular, one could consider ot
fields, which are confined to the branes, and wh
are coupled to the bulk fields, e.g., through the br
potentials. (The interplay between bulk/brane fie
may lead to novel interesting features not conside
in [1].) Another easy generalization would be the
clusion of perfect fluids on the branes (for examp
describing standard matter and radiation). Less tri
but more interesting extensions could be the inclus
of other types of fields (form fields in the bulk, for in
stance), or evolution with more dimensions includ
For example, relaxing the hypothesis of homogen

**************************************
* Potential parameters on the branes *
**************************************

Brane0 Brane1
VEVs : 9.990000e-02 5.371387e-01
Zetas : 1.000000e+03 1.000000e+03
Lambdas: 6.186450e+00 -7.707347e+00

****************************
* The Branecode is running *
****************************

Directory data/ existed, will be moved
to data_sav/

New data will be stored in directory:
data/

Start at coordinate time: 0.000000
End at coordinate time : 150.000000
Current coordinate time :+1.010000e+02

Fig. 3. Output during the simulation.
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and isotropy along the ordinary dimensions would
low the study of inhomogeneous perturbations of
system.

Appendix A. Test run output

Once the program is started the message capt
in Fig. 3 is printed on the screen. It provides info
mation about the parameters that are computed
the program, the location where the generated da
stored and the current time of calculation together w

the starting time and the time of termination.
Once the calculation is finished and the data
stored the message inFig. 4 is printed. It includes the
real time that it took to perform the simulation as w
as additional system commands for the graphical
resentation of the data if selected in the header
parameters.h, cf. Section2.

In the example provided with the distribution th
main variables of the simulation are plotted using st
dard LINUX packages GNUPLOT and GV, cf.Fig. 5.

All model and simulation parameters of a particu
run are stored in the fileinfo.dat. An example for

its content is given inFig. 6.
Data stored on disk in directory data/

*************************************
* Calculation finished successfully *
*************************************
Elapsed real time: 0 d:0 h:0 min:22 sec.

Execute: gnuplot radion.gp && gv -antialias -geometry 643x430+0+20 radion.eps &
Execute: gnuplot B.gp && gv -antialias -geometry 643x430+645+470 B.eps &
Execute: gnuplot A.gp && gv -antialias -geometry 643x430+0+470 A.eps &
Execute: gnuplot phi.gp && gv -antialias -geometry 643x430+645+20 phi.eps &

Fig. 4. Output after the completion of a simulation.

Fig. 5. Output example of the BRANECODE.
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Grid Resolution
500
OUTPUT_SKIP
50
OUTPUT_INTERVAL
10
Starting time TMIN
0.000000e+00
Final time TMAX
1.500000e+02
Bulk Mass of the Scalar Field
5.000000e-01
Cosmological Constant in the Bulk
-6.000000e+00
Effective Mass of the Scalar Field on the Brane at y=0
1.000000e+03
Expectation Value of the Scalar Field on the Brane at y=0
9.990000e-02
Effective Mass of the Scalar Field on the Brane at y=1
1.000000e+03
Expectation Value of the Scalar Field on the Brane at y=1
5.371387e-01
Tension of the Brane at y=0
6.186450e+00
Tension of the Brane at y=0
-7.707347e+00
Bulk Hubble Parameter
2.500000e-01
Error status
0

Fig. 6. Example of the parameters stored in the fileinfo.dat.

# time proper time Hubble C2

9.980000e-01 9.999987e-01 2.499949e-01 1.763024e-12
1.998000e+00 1.999995e+00 2.499937e-01 1.114797e-10
2.998000e+00 2.999982e+00 2.499929e-01 4.309199e-11

Fig. 7. Example of the data format of the generated filebrane0.dat.

# time A

0.000000e+00 0.000000e+00 -9.844431e-02 -1.886905e-01 -2.721424e-01
2.000000e-03 4.999965e-04 -9.794431e-02 -1.881905e-01 -2.716424e-01
1.000000e+00 2.499959e-01 1.515521e-01 6.130630e-02 -2.214513e-02
2.000000e+00 4.999891e-01 4.015455e-01 3.112998e-01 2.278485e-01

Fig. 8. Example of the data format of the generated fileA.dat.
s of
ri-

es,
The data generated during a simulation consist
discretized functions of one or two independent va
ablest andy. The induced quantities on either bran
e.g., the proper timeτ or the expansion parameterH ,
only depend on the coordinate timet . They are col-
lected in the filesbrane0.dat andbrane1.dat,
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# time y phi A B

0.000000e+00 0.000000e+00 1.000000e-01 0.000000e+00 0.000000e+00
0.000000e+00 2.000000e-01 1.276959e-01 -1.886905e-01 -1.886905e-01
0.000000e+00 4.000000e-01 1.753732e-01 -3.499188e-01 -3.499188e-01
0.000000e+00 6.000000e-01 2.513273e-01 -4.920424e-01 -4.920424e-01
0.000000e+00 8.000000e-01 3.662943e-01 -6.214045e-01 -6.214045e-01
0.000000e+00 1.000000e+00 5.350111e-01 -7.442296e-01 -7.442296e-01

2.000000e-03 0.000000e+00 1.000000e-01 4.999965e-04 -3.518520e-09
2.000000e-03 2.000000e-01 1.276959e-01 -1.881905e-01 -1.886905e-01
2.000000e-03 4.000000e-01 1.753732e-01 -3.494188e-01 -3.499188e-01
2.000000e-03 6.000000e-01 2.513273e-01 -4.915424e-01 -4.920424e-01
2.000000e-03 8.000000e-01 3.662943e-01 -6.209045e-01 -6.214045e-01
2.000000e-03 1.000000e+00 5.350111e-01 -7.437296e-01 -7.442296e-01

Fig. 9. Example of the data format of the generated filegnu.dat.
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cf. Fig. 7. For the functions that depend on the tw
independent variablest andy there are two possibl
formats for the output. The first possible choice
formatting prints the function in an array. Each li
starts with the value of time for which the values
the function are plotted along the one-dimensional
tice y ∈ [0,1] in equidistant steps.Fig. 8 shows the
first lines of the data fileA.dat that contains the
discretized version of the metric functionA(t, y). Al-
ternatively, the data can be stored in a format tha
adjusted to GNUPLOT. Here the first two columns c
lect the values of the independent functionst andy.
The values of the dependent functions are conta
in the subsequent columns.Fig. 9shows the first lines
of the data file gnu.dat that stores the numerica
data of the discretized fieldsφ(t, y), A(t, y), B(t, y).
The number of grid points and the number
time steps that are stored in the data files can be
justed with the corresponding control parameters
the header fileparameter.h.
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