Far IR (FIR) Gas Lasers
e 10 - 1500 microns wavelengths, 300 — 10 THz frequency
e Called Terahertz lasers or FIR lasers
e At this wavelength behaves more like microwave signal than light
e Created by Molecular vibronic transitions
e Requires gases with a permanent dipole moment
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Figure 15.1 Representative energy-level diagram for a far-infrared laser, showing
how optical pumping raises a molecule to an excited vibrational state, where laser
action in the far-infrared takes place on a transition between two vibrational levels.

The laser levels are pulled out of the series of other rotational levels for clarity;
their spacing actually is similar to that of other levels.

TABLE 15.1 Major Far-infrared Laser Lines Available from Commercial Lasers

Wavelength, pm Gas Wavelength, pm Gas
41.0 CD,0D 265 CD,0D
46.7 CH,0D 375 C,H,F,
57.0 CH,0D 433 HCOOH
70.6 CH3;0H 460 CD,l
96.5 CH,0H 496.1 CH,F

118.8 CH;0H 570.5 CH,0H
148.5 CH,yNH, 699.5 CH,OH
163.0 CH,OH 764.1 C,HL I,
184 CD,0D 890.0 C,H,F,
198.0 CH3;NH, 1020.0 C,H,F,
229.1 CD,0D 1222.0 CUH,F

sourck: From tabulations by Laser Photonics Inc. and MPB Technologies Inc.



Far IR Gas Lasers
e Use a Carbon Dioxide laser to pump FIR gas laser
¢ \Was mostly for research but now moving into applications
e Molecular & atmospheric spectroscopy
e Diagonistics of plasmas (plasma fusion)
e Astronomy (sub mm wave amplifiers)
e Strong interest in medical applications — penetrates tissue readily
e Terahertz is non-ionzing radiation hence safe
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Figure 15.2 Typical arrangement for pumping a far-infrared laser opti-
cally. (Adapted from diagram by MPB Technologies, Inc.)
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Terahertz Imaging:
Non Destructive Evaluation (NDE) for dielectric materials
Passes through dielectrics: ceramics, organics and wood
Security — detect hidden items for smuggling/screening
Medical — can possibly detect cancers better than X-rays
X-rays not see cancers directly - density cancer same as regular
Only through calcium created around cancer
Terahertz different tissues have different absorptions
Similar for quality control — finding voids in ceramics/plastics
Difficulty is detectors — best is cooled to 77°K

Fast electronics can see E field change rather than intensity
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Quantum Cascade Lasers
QCL are Mid to Far IR diode type lasers
InGaAs/InAlAs on InP substrates often used
Created at Bell Labs in 1994
Uses periodic quantum layers forming a superlattice
Creates a varying electric potential across device
Varies the probability of carriers occupying different locations
1D quantum well confinement
e’s to a inter-subband transition emitting photons
e then quantum tunnels to next sublattice periodic structure
Then emits another photon - hence quantum cascade
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New Room Temperature Maser
e Original maser required atomic sources, vacuum & magnets
e Solid state (ruby) ones cooled to near 10°K
e Good amplifier but not a beam source
e New solid state maser at room temperature on lab bench
e 585nm (yellow) pumped
e pentacene-doped p-terphenyl (organic crystal)
e Output 1.45 GHz ( 20.7 cm A): pulsed not CW
e Uses Spin selectivity of triplet state in dopand
e Power -10 dB mW — 108 times atomic maser power
e Oxborrow, Breeze, Alford Room-temperature solid-state maser
e Nature 488, 353-356(16 /August 2012)
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Free Electron Laser (FEL)

e Proposed J. Mandey 1971
e Create a laser using high powered electron beams

tunable over wide wavelength range
e High energy electrons emit bent by magnetic field
e Produce synchrotron radiation (light)
e No energy levels
e Free Electron Laser has array of magnets of alternating polarity
e Called wigglers
¢ Recall electrons in a magnetic field create circular motion
e Due to electromotive force interaction between moving e & B field
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Figure 28.1 Structure of a free-electron laser. (Courtesy of University of California at Santa
Barbara Quantum Institute.)
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Free Electron Laser

e Alternating Mag field cause e's path to wiggle
(move back an forth) and collect e’s into clumps

e Emit synchrotron radiation:

¢ Radiation create by charges moving in a near circular path

¢ \Wavelength set by energy of e’s & radius of curved path

¢ With line of wiggler magnet emit at same wavelength and in phase
e Emitted energy set e velocity & magnet period p

1= P

e One example tunable from 120 to 800 microns wavelength

¢ 30% efficiency demonstrated

e Electrons 5 MeV so need an accelerator

e Heavily Supported by Strategic Defense Initiative/Star Wars
e Called Self Amplified Stimulated emission (SASE)
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Current Free Electron Lasers
e Russian OK-4 first powerful FEL at Duke University ~ 1992
e Pumped by 1.2 GeV electron storage ring- needs huge accelerators
e Produced 240 nm UV emissions
e 2012 have X-ray lasers with diamond monchrometer
e Linac Coherent Light Source (LCLS) at Stanford
e European X-ray free electron laser (XFEL)Hamburg — 3.4Km long
e Univ of Nebraska XFEL 0.1 nm pulse of 10" sec

Early output from JOhnSOI’l -LabS - Harvard

Russian laser at Duke

Linac Coherent Light Source: Stanford Linear Accelerator



X ray Lasers
e Use highly ionized materials
e Two basic types: radiation pumped & current pumped
Bomb driven X-ray Lasers
e Use atomic bomb to vaporize rods: form plasma
e Get a population inversion
¢ 1.4 nm wavelength reported
e Funded by Strategic Defense Initiative until late 1980's
e Done at Lawrence Livermore Labs
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Light Driven X-ray Lasers
e Done at Lawrence Livermore Labs laser fusion source
e Focus laser pulse on metal rod to create plasma
e Use 0.5 nsec pulse, with terawatt (10'> W) power
e Selenium rod: Se** ion: 20.6 nm, 20.9 nm
e Shortest published W** ion: 4.316 nm
e Interest in studying living cells (X-ray holograms)

Slab Target

X-ray Laser

Infrared Drive Laser Pulse



X-ray Lasers from Discharge
e Small capillary with Argon gas
e Excited by 40 KA, 60 nsec pulse
e Changes gas to Neon like
e 1 nsec pulse of 46.9 nm wavelength
e Colorado State university
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X-ray Laser Emission from Discharge
e As plasma length grows to 12 get X-ray laser
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Figure 2. Variation of the intensity of the spectral lines in the neighborhood of 47 nm as a function of
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Microchips and Photolithography

e Integrated Circuits (IC’s) created using optical process
e Creation of three dimensional structures

using photographic techniques
X Derived from creation of printing plates
X Usually start with thin film on wafer (eg SiO,)
X Coat with photosensitive material (photoresist)
X Exposure: to UltraViolet Light through mask of structure
X Development of resist:

leaves pattern of resist with openings
X Etching: removes film unprotected by resist
X Striping Resist: leave only patterned film

. Y Si
l«— Photomask :&1 \_\E"\\:A_ Si0,
~—— Photoresist ST
Si0,
|=—— Si ‘ Si

(a) (b

Figure 2.11 The arcas from which the oxide is to be etched are defined by
polymerizing a light-sensitive resist through a photographic negative or mask.



Microchips and Optical Steppers
e Current devices are created by optical projection
e Start with a mask (pattern on quartz) to create the circuit pattern
e Use a Direct Step on Wafer (DSW) or Steppers
e Creates image in photosensitive material called photoresist
e |C created by developing and etching that material
e Devices from 1 um to now 35 nm
¢ Project one mask (reticule) print of circuit at a time
e Step to next chip site and repeat over wafer
e Reticules up to 3x3 cm now: may be one or several chips
e Table position uses laser interferometry for < 0.02 micron
e Lens most expensive ~$1M, full DSW ~$5-10M

[ASM Lithography)



e Lenses best every made: diffraction limited
e Important factor in lens is Numerical Aperature

NA=n sin(a)

e Typical NA 0.16 - 0.5 for steppers

e Smallest object projected set by

A

Wmin = k1—

NA

e ki depends on resist and other factors ~0.7

e Typical limit is A/2
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Wavelength and Steppers
e First Steppers use Mercury Vapour lamp source
e Filters allow single line from source
e 1980: G line (439 nm ) steppers > 0.8 microns
e 1990: I line (365 nm) steppers > 0.3 microns
e Now Excimer laser sources
¢ ~1994 KrF (248 nm) > 90nm,
e ~2001 ArF (193 nm) down to 35 nm
e Old idea suddenly revived: Immersion Lithography
e Immerse lens & wafer in a high index fluid (DI water)
e Effective reduces wavelength of light by n (index of refraction)

A, ==
n
e Use modified 193 nm steppers: same ArF Excimer & lens
e Now get 133 nm effective source (Nwater = 1.44)
e Effectively increases Numerical Aperature
NA=n sin(«)

e Problem: lens material limits at short wavelength
e Can produce 0.045 micron devices with these




Extreme UV Lithography (EUV)
e Next Generation Lithography Extreme UV 13.5 nm
e Under development at Lawrence Livermore Lab since 2000
e Uses Laser Produced Plasma Source (LPS)
e Uses Nd:Yag or CO, laser focused on copper wire or Xeon gas
e Creates a plasma with 13.4 nm EUV emission
e Near X-ray but acts like light (not too penetrating)
e Must use grazing mirror reflectors for optics in 10X stepper
e Probably will exceed the ultimate transistor limits.
e Problem as of 2014 trouble getting the system to work well
e Not certain if EUV will get to 10 nm devices
e Transistor operation limit in 5-10 nm range
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Phase Shift Mask
e Regular optical limits is ~A/2 so 70 nm for immersion
e But what if change masks: add a layer that phase sifts the light
e If invert the phase of light then can make line < diffraction limit
e Get about ~A/4 or 35 nm structures
e Create phase shift by etching mask glass
e Alternative adding semitransparent
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Computational Lithography
e Failure to get shorter wavelengths than 195 immersion
e To reduce more from Phase shift use Computational Lithography
e Phase shift at limit creates distorted structure
e Instead design the optical pattern you want on the wafer
e Now compute using Emag wave pattern back through stepper
e Find the mask patter to create structure want in resist
e \ery compute intensive operation — only on smallest structures
e With this get 20-25 nm structures
e Pushing to get to 15 nm

a) Design pattern

= | =11,
L= =Ty,

b) Pixelated mask

A portion of the 65nm metal 1 design (a) i converted to a plxelated phase
sk design (b}, where red represents 180° phase shift pets and green
represents 0F, and projected by the stepper forming the resst image in (c)
Waleriiews source: intel Comp.



Chart of Lasers & Ranges
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Summary of Laser Ranges

Commercial Laser Types, Organized by Wavelength

Appendix

Types of Laser

Wave-
length, pm Type Chapter QOutput type and power
0.152 Molecular fluorine (F,) 13 Pulsed, to a few watts aver-
: age
0.192 ArF excimer 13 Pulsed, to tens of watts aver-
age
0.2-0.35 Doubled dye 17 Pulsed
0.222 KrCl excimer 13 Pulsed, to a few watts aver-
age
0.235-0.3 Tripled Ti-sapphire 24 Pulsed
0.248 KrF excimer 13 Pulsed, to over 100 W aver-
-age
0.266 Quadrupled Nd 22 Pulsed, watts
0.275-0.306 Argon ion 8 Continuous-wave (CW), 1-W
range
0.308 XeCl excimer 13 Pulsed, to tens of watts
0.32-1.0 Pulsed dye 17 Pulsed, to tens of watts
0.325 He-Cd 9 CW, to tens of milliwatts
0.33-0.36 Ar or Kr ion 8 CW, to several watts
0.33-0.38 Neon 8 CW, 1-W range
0.337 Nitrogen 14 Pulsed, under 1 W average
0.347 Doubled ruby 23 Pulsed, under 1 W average
0.35-0.47 Doubled Ti-sapphire 24 Pulsed
0.351 XeF excimer 13 Pulsed, to tens of watts
0.355 Tripled Nd 22 Pulsed, to tens of watts
0.36-0.4 Doubled alexandrite 24 Pulsed, watts
0.37-1.0 CW dye 17 CW, to a few watts
0.442 He-Cd 9 CW, to over 0.1 W
0.45-0.52 Ar ion 8 CW, to tens of watts
0.48-0.54 Xenon ion 16 Pulsed, low average power
0.51 Copper vapor 12 Pulsed, tens of watts
0.523 Doubled Nd-YLF 22 Pulsed, watts
0.532 Doubled Nd-YAG 22 Pulsed to 50 W or CW to
watts
0534, 0.538 He-Cd 9 CW, milliwatts, in white-light
laser
0.5435 He-Ne 7 CW, 1-mW range
0.578 Copper vapor 12 Pulsed, tens of watts
0.594 He-Ne 7 CW, to several milliwatts



Summary of Laser Ranges

488 Appendix

Commercial Laser Types, Organized by Wavelength (Continued)

Wave-
length, pm Type Chapter Output type and power
0.612 He-Ne 7 CW, to several milliwatts
0.628 Gold vapor 12 Pulsed
0.6328 He-Ne 7 CW, to about 50 mW
0.635-0.66 InGaAlP diode 19 CW, milliwatts
0.636 He-Cd 9 CW, milliwatts, in white-light
laser
0.647 Krypton ion 8 CW, to several watts
0.67 GalnP diode 19 CW, over 10 mW
0.68-1.13 Ti-sapphire 24 CW, watts
0.694 Ruby 23 Pulsed, to a few watts
0.72-0.8 Alexandrite 24 Pulsed, to tens of watts (CW
in lab.)
0.73 He-Ne : 7 CW, 1-mW range
0.75-0.9 GaAlAs diode 19 CW, to many watts in arrays
0.98 InGaAs diode 19 CW, to 50 mW
1.047 or Nd-YLF 22 CW or pulsed, to tens of watts
1.053
1.061 Nd-glass 22 Pulsed, to 100 W
1.064 Nd-YAG 22 CW or pulsed, to kilowatts
1.15 He-Ne 7 CW, milliwatts
1.2-1.6 InGaAsP diode 20 CW, to 100 mW
1.3-1.4 Overtone HF 11 CW or pulsed, to tens of watts
1.313 Nd-YLF 22 CW or pulsed, to 0.1 W
1.315 Iodine 16 Pulsed, to several watts aver-
age
1.32 Nd-YAG 22 Pulsed or CW, to a few watts
1.4-1.6 Color center 25 CW, under 1 W
1.523 He-Ne 7 CW, milliwatts
1.54 Erbium-glass (bulk) 27 Pulsed, to 1 W
1.54 Erbium-fiber (ampli- 26 CW, milliwatts
fier)
1.75-2.5 Cobalt-MgF, 24 Pulsed, 1-W range
2-4 Xe-He 16 CW, milliwatts
2.1 Holmium 27 Pulsed, watts
2.3-3.3 Color center 25 CW, under 1 W
2.6-3.0 HF chemical 11 CW or pulsed, to hundreds of
watts
2.94 Erbium-YAG 27 Pulsed, to tens of watts
3.3-29 Lead salt diode 21 CW, milliwatt range
3.39 He-Ne 7 CW, to tens of milliwatts
3.6-4.0 DF chemical 11 CW or pulsed, to hundreds of
watts
5-6 Carbon monoxide 16 CW, to tens of watts
9-11 Carbon dioxide 10 CW or pulsed, to tens of kilo-
watts
¢ 10-11 Nitrous oxide (N,0) 16 CW
40-1000 Far-infrared gas 15 CW, generally under 1 W



