Criteriafor Optical Systems. Optical Path Difference
e How do we determine the quality of a lens system?
e Several criteria used in optical design Computer Aided Design
e Several CAD tools use Ray Tracing (see lesson 4)
e Then measure these criteria using the CAD tools
e Optical Path Difference (OPD) measures quality
e Measures path different from different parts of lens
e Plot OPD difference across the image relative to spherical wave
e Related to the Airy disk creation of a spot
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Point Sour ces and OPD
e Simplest analysis: what happens to a point source
e Know that point sources should give perfect Airy disc
e Adding the OPD delay creates the distortion
e ¢.g. by adding a glass plate to provide longer path in part of image
e Or slight distortion in shape of lens on one side
e Little effect at A/4 of path delay (on top in image below)
e By OPD A/2 get definite distortion — rings die out
e A OPD point is really distorted only bottom side correct
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Point Spread Function
¢ Point Spread Function (PSF) is distribution of point source
e Like the response to an impulse by system in electrical circuits
e Often calculate for a system
e Again distorted by Optical path differences in the system
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Wave Front Error
e Measure peak to valley (P-V) OPD
e Measures difference in wave front closest to image
e and furthest (lagging behind) at image
e Eg. in mirror system a P-V <A/8 to meet Rayleigh criteria
e Because P-V is doubled by the reflection in mirrors
e Also measure RMS wave front error
e Difference from best fit of perfect spherical wave front
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Depth of Focus
e Depth of focus: how much change in position is allowed
e With perfect optical system <A/4 wave front difference needed
e Set by the angle 6 of ray from edge of lens
e This sets depth of focus 6 for this OPD <A/4

A
o“zi(2nsin29)=i2/1(f#)2

e Thus f# controls depth of focus

e f#:4 has 16 micron depth

e f#:2 only 2 micron

e Depth of Focus used with microscopes

e Depth of Field is term used in photography

e Depth that objects appear in focus at fixed plan

Figure 4.7
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Depth of Field in Photography
¢ Depth of Field is the range over which item stays in focus
e When focusing close get a near and far distance
e When focusing at distance want to use the Hyperfocal Distance
¢ Point where everything is in focus from infinity to a near distance
e Simple cameras with fixed lens always set to Hyperfocal Distance
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Depth of Field Formulas
e Every camera has the “circle of confusion” ¢
e Eg for 35 mm it is 0.033 mm, point & shoot 0.01 mm
e Then Hyperfocal Distance H (in mm)

f2
" F#c

H + f

fis lens focal length in mm
e When focused at closer point distance s in mm
e Then nearest distance for sharp image is D,

_ sH-1)
" H+s-2f
e Furthers distance for sharp image D¢
D, = s(H-f)
H-s

e Put focus point at s=H (Hyperfocal) then D¢ = o0 and D, = H/2
e As s gets closer Depth of focus becomes very small

e Get good DOF tools at google play or itunes
https://play.google.com/store/apps/details?id=jds.dofcalc&hl=en
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Modulation Transfer Function
e Modulation Transfer Function or MTF
e Basic measurement of Optical systems
e Look at a periodic target
e Measure Brightest (Imax) and darkest Imin

MTF = Lmex Lo

Irnax_i_lmin

e Contrast is simply

constrast = Iﬂ

min

e MTF more accurate than contrast




Square Wave vs Sin wave
e Once MTF know for square wave can get sine wave response
e Use fourier components
e [f S(v) at frequency v is for square waves
e Then can give response of sine wave
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Diffraction Limited MTF
e For a perfect optical system

MTF = = (¢ - cos(g)sin(¢))
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Figure 11.15 The modulation transfer function of an aberration-
free system (solid line). Note that frequency is expressed as a
fraction of the cutoff frequency. The dashed line is the modula-
tion factor for a square wave (bar) target. Both curves are based
on diffraction effects and assume a system with a uniformly

transmitting circular aperture.



Defocusin MTF
e Adding defocus decreases MTF

e Defocus MTF
defocus MTF = 23,(x)
X
Where x 1s
V()
e Max cutoff1s 0.017 at v=v/2
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Figure 11.16 The effect of defocusing on the modulation
transfer function of an aberration-free system.

(a) In focus OPD = 0.0
(b) Defocus = M(2n sin? U) OPD = M4
(¢) Defocus = M(n sin? U) OPD = M2
(d) Defocus = 3\M(2n sin? U) OPD = 3\/4
(e) Defocus = 2M(n sin? U) OPD =\~
(f) Defocus = 4AN(n sin? U) OPD = 2\

(Curves are based on diffraction effects—not on a geo-

metric calculation.)



MTF and Aberrations
e Aberrations degrade MTF
e Eg. 3" order spherical aberrations
e Effect goes as wavelength defect
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Figure 11.18 The effect of third-order spherical aberra-
tion on the modulation transfer function.
(a) LA, = 0.0 OPD =0
(b) LA, = 4M(n sin® U) OPD = M4
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These curves are based on diffraction wave-front com-
putations for an image plane midway between the mar-
ginal and paraxial foci.



MTF and Filling Lens

e MTF decreases as lens is not filled
e i.c. object blocking part of the lens
¢ Best result when image fills lens
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MTF Specifications
e MTF in lenses are specified in lines per millimetre
e Typically 10 and 30 lines
e Specified separately for Saggittal and tangential
e Saggittal — vertical aberrations on focus plane
e Tangential or Meridional: horizontal on focus plane
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Reading MTF in Camera L enses
e Camera lenses often publish MTF charts
e Below example for Nikon 18-55 mm zoom
e Plots show MTF at 10 lines/mm and 30/mm
e Shown with radius in mm from centre of image
e For a 24x15 mm image area
e Usually specified for single aperature (/5.6 here)
¢ 10/mm measures lens contrast
¢ 30/mm lens resolution
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Poor MTF Charts
e Some companies give charts but little info
e Entry level Cannon 18-55 mm lens
e Chart give MTF but does not say lines/mm
e Cannot compare without that
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e Resolution set in Aerial Image Modulation (AIM)

e Combines the lens and the detector (eg film or digital sensor)
e Measures the smallest resolution detected by sensor

e Sensor can significantly change resolutions
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Film or Sensor MTF
e Film or sensor has MTF measured
e Done with grating directly on sensor
e Eg Fuji fine grain Provia 100 slide film
e 50% MTF frequency (fs0) is 42 Ip/mm
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MTF/AIM and System
e Adding each item degrades system
e Also need to look at f/# for the lens
e Adding digitization degrades image
e This 1s 4000 dpi digitizing of negative
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MTF and Coherent Light

e MTF is sharpest with coherent light
e Decreases as coherence decreases
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Low Power Laser Applications: Alignment & M easur ement
Circularizing Laser Diodes

e Laser diodes are important for low power applications
¢ But laser diodes have high divergence & asymmetric beams
e Get 5-30° beam divergence
e Start with collimator: high power converging lens: stops expansion
e Then compensate for asymmetry
e Use cylindrical lens beam expander
e Cylindrical lenses: curved in one axis only unlike circular lenses
e Expands/focuses light in one direction only (along curved axis)
e Results 1n circular collimating beam
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Figure 9-1 Optics used to circularize and collimate beam from diode laser. (Courtesy of Melle
Griot.)




Quadrature Detectorsfor Alignment
e Often put detector on object being aligned to laser
e Use 4 quadrant detector Silicon photodiode detector
e Expand beam so some light in each quadrant
e Amount of photocurrent in each quadrant proportional to light
e Detect current difference of right/left & top bottom
e Higher current side has more beam
e Perfect alignment null current for both sides

Vertical position
indicator

Quadrant detector

Pt a) l

/5\ Horizontal position
Beam expander indicator

Figure 9-2 Simplified diagram of a laser alignment system.
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Laser Leveling
e Lasers used to project lines of light
e Accuracy is set by the level of the beam source
e Used 1n construction projects: lines and cross lines
¢ Get vertical and horizonal
e Laser diodes give low cost levels now
e More complex: reflect light back from object
e Make certain light is reflected along the same path
e Called Autocolation

Penta-prism

Detector
} Beam expander

Laser

Figure 9-4 Diagram of a laser scanner system used for leveling.



Laser Size Gauging
e Gauging is measuring the size of objects in the beam
e Simplest expand beam the refocus
e Object (eg sphere) in beam reduces power
¢ Estimate size based on power reduction
e More accurate: scanning systems
¢ Scan beam with moving mirror (focused to point)
e Then measure time beam is blocked by object
e Knowing scan range then measure size of object
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Figure 9-5 Simplified diagram of laser scanner gage.

Figure 9-7 Laser scanner and detector being used to measure the diameter of a round bar.
(Courtesy of Zygo.)



Laser & Linear Detector Array
e Use laser diode to illuminate a linear or 2D detector array
e Laser diode because creates collimated beam
¢ Expand beam to fill area
e Image is magnified or shrunk by lens
e Use pixel positions to determine object profile
e Low cost pixel arrays makes this less costly to gage scanners
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Figure 9-16 Typical linear photodiode array camera system.
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array, collimated light, and a constant image distance.



L aser Scanner to Detect Surface Defects
e Laser beam scanned across surface of reflective (eg metal) sheets
e Detect reflected light
e Flaws result in reduce or increase light
e Timing (when scanning) determines defect size
e Instead of spot use cylindrical expander to beam line of light
* Moving sheet (eg metal, glass, paper) crosses beam
e Use line or 2D 1mages to detect changes
e Use both reflection and transmission depending on material
e Transmission can detect changes in thickness or quality

Flaw Honed surface
analyzer analyzer

Figure 9-8 Laser scanner system designed to detect surface defects,




Bar Code Scanners
¢ Diode laser now widely used in Bar code scanners
e Typically use two axis scanner
e Laser beam reflected from mirror on detector lens
e Bar code reflected light comes back along same path
¢ Detect rising and falling edge of the pattern
¢ Note: have the laser beam & return light on same path
e Use small mirror or beam splitter to put beam in path

Scanner mirrors

Bar code

Detector

Figure 9-10 Bar-code scanner/reader.



Laser Triangulation
e Lasers aimed at precise angles depth/profiles using triangulation
e Single spot for depth measurement
e Laser spot focused by lens onto detector array
e Change 1in laser spot depth position Az
e Gives change in position Az’ at detector
e Change set by magnification caused by lens
¢ 0 laser to lens angle
¢ ¢ angle between detector an lens axis
¢ Resulting equations

AZ = S'_—ne Az
sing

¢ Get real time measurement of distance changes
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Figure 9-11 Diagram of optical triangulation system.



Laser Profileometry
e Use cylindrical lens to create line of laser light
e Use 2D detector array (imager) & lens to observe line
e [f object is moving get continuous scan of profile
e Problems: Background light eg sunlight
e Changes in surface reflectance makes signal noisy
¢ Eg log profileometry for precise cutting of logs
e Problem is log surface changes eg dark knots, holes
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Figure 9-13 Line-of-sight optical triangulation unit.



3D Laser Scanner Revolution
¢ 3D laser scanners moving out of industry into many fields
e XYZ at 10’s um resolution and Red, Green, Blue high accuracy
e Art: record museum objects for preservation and reproduction
e Then preserved even if destroyed
e Police: record 3D crime scene for later analysis
e Science: Archaeology, Paleontology, Space exploration
e Scan objects eg fossils, then full data available for community
e Combined with 3D printers can reproduce exact copies of form




LIDAR
e Laser equivalent of Radar (RAdio Detection And Ranging)
e LIDAR: LIght Detection And Ranging
¢ Can use pulses & measure time of flight (like radar)
e Related distance to return time
e But only hard to measure <107'% sec or 3 cm
e When using plane as source must use GPS to get initial position
e Need to deal with multiple returns (eg trees)
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Lidar: Phase method
e Better phase method
e Modulate the laser diode current with frequency i
e Then detector compares phase of laser to detector signal
¢ Phase shift for distance R is
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T4z f. 4
¢ > modulation wavelength An need to get number of cycles

e [n extreme phase changes in the laser light
e That requires a very stable (coherent) laser: HeNe not diode
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Figure 9-14 Diagram of laser range finder that uses an amplitude-modulated laser beam.



