
Laser Heat Processing: Advantages 
 Laser radiation very "clean" 
      no containments with other materials 
 Working atmosphere can be controlled as needed 
 Lasers can be focused to small spots 
      very localized heating at very high power 
 Careful control of heating power  
 Beam easy to direct into hard to access points 
      Can pass beam through glass to isolated areas 
 Energy generally deposited near the surface 
 

 

 



General Heat Flow 
 Laser heating is just like other heat flow problems 
 For the time being assume heat source 
      note that this is not always possible for laser 
 Heat flows by Fourier Law of Heat Conduction 
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where Q = heat generated: Watts (some books use H) 
      k = Thermal conductivity W/moC or W/cmoC or W/moK  
             heat flow per unit area per unite distance 
      A = cross sectional area 
      T = temperature in oC 
      z = depth into the material 
 This is actually the definition of thermal conductivity 
 Note this assumes steady state conditions 
 laser heating stabilizes in 10-12 to 10-13 sec 
      Thus assume steady state conditions 
 

 
 



Thermal Values of Materials 
 Thermal Conductivity changes with temperature 
   Hence k may change with position 
Specific Heat 
 When heat enters a volume temperature change depends  
      Specific Heat C of material, J/kg/oK 
 Specific Heat determine how much heat needed to raise 
      temperature of unit mass one degree C. 
Density 
 Density of material  Kg/m3 
Latent Heats 
 Latent heats give the energy required for a phase change  
      units of J/kg 
 Lf Latent Heat of Fusion: energy for melting 
 Lv Latent Heat of Vaporization: energy to vaporize 
 

 
 



Basic Heat Flow Differential Equations 
 let q. be the energy deposited per unit volume 
      (use H in some books) W/m3 
 Consider heat flowing through a volume 
 Then: energy at left face  
      = change in internal energy + energy out right face 
 Then energy per unit time in left face (Fourier’s law) 
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 Thermal Conductivity k in W/m/oK  
 If uniform k, steady state get Newton’s Law of Cooling 
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 Hence can calculate heat loss if know thermal conductivity 
 

  
 

 



Thermal Values of Materials 
 Thermal Conductivity changes significantly with materials 
 Inverse of thermal conductivity like resistance in electric circuit 
 Newton heat flow means slope of conductive varies as 1/k 
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 In construction use R values, which are 1/k but in British units 
   hr-ftoF/BTU 
 Higher the R the less heat flow 
 

 

 
 



Basic Heat Flow Differential Equations 
 Now consider 1 dimensional heat flowing through a volume 
 In the general case there q deposited and q generated within 
 Then: energy at left face + heat generated  
      = change in internal energy + energy out right face 
 Energy per unit time in left face 
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 Energy out of right face of x+dx is  
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 Energy generated within the element per unite volume & time 
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 Change (loss) in internal energy due to heating of material 
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Basic Heat Flow Differential Equations 
 Thus writing the energy balance 
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 Combining gives heat flow DE 
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 If assume thermal conductivity constant with position then 
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 where  Thermal Diffusivity in m2/s 
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 Thermal Diffusivity 
 Thermal Diffusivity gives T rise caused by an applied heat pulse 
      or how rapidly heat diffuses through the material 
 High thermal diffusivity: low surface temperature rise 
      deep penetration of heat pulse 
 Low thermal diffusivity: high surface temperature rise 
 

 

 In three dimensional the heat flow DE becomes 
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 Use 2 for coordinate system that notes symmetry of problem 
 For Cartesian  
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 Often useful to use cylindrical coordinates for laser 
 Example laser spots are circularly symmetric 
 As angle θ is often uniform reduces from 3D to 2D problem values 
 Reduces to a problem in radius r and depth z 
 But must use proper cylindrical polar equations to get right 
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 Generally use angular symmetric conditions so θ term eliminated 



Temperature Change for Uniform Illumination 
 Assume that the surface is uniformly illuminated by the laser 
 Energy absorbed at the surface in a very small depth 
 

H=I(1-R) 
where R = reflectivity 
            I = light intensity 
 The heat 1 Dim DE has been solved for depth z and time t  
   (by Carslaw & Jaeger, 1959) 
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 The ierfc is the integral of the complementary error function 
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Error Function Related Equations 
 Heat flow equations are related to the Error Function erf  
 

dse
2

)x(erf
x

0

s2

 


 

 This is the integral of a Gaussian between 0 and x  
 The Complementary Error Function erfc 
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 erfc is the error function but integred from x to infinity 
 The ierfc is related to the error function by  
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 ierfc(1) = 0.05 and is falling rapidly 
 

 




Useful Error Function erfc(x) Approximations 
 Error function erf(x), Complementary Error Function erfc(x) are 
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 erf(x) hard to find but easy to approximate with 
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         a1 =  0.3480242, a2 = -0.0958798, a3 =  0.7478556 
 See Abramowitz & Segun (Handbook of Mathematical Functions) 
 Error on this is < 2.5x10-5 for all x (<2% error for x << 5.5) 
 We are using complementary error function 
 

erfc(x) = 1 - erf(x)        erfc(0) = 1          erfc() = 0 
 

 Asymptotic approximation 
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 For x>3.5 this has <1% error (use plot page following for x<3.5) 
 Excel & Quatropro spreadsheet have erf and erfc built in. 
   Must activate analysis toolpack & solver first 
   but become inaccurate for x>5.4 – then use asymptotic 
 Matlab & maple OK for higher x’s  
 For x > 5.4 then ierfc(x) becomes 
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 Especially useful for approx. solving for x when have ierfc value 



Temperature Rise for Uniform Illumination 
 From DE solution since ierfc is small for x>1 
 Thus find that T rise is small when 
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 Hence small rise when 
t4z2   

 Heat will diffuse a depth L in time of order 
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 Change in surface temperature with time 
      substitute z = 0 and note 
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 Thus surface temperature change is: 
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 Thus temp increases with t  
 

 



Comparison of Normalized Gaussian & ERFC 
 erfc(x) much steeper than Gaussian 
 For erfc use plot for x<3.5, asymptotic formula for > 3.5 
 Use for getting inverse of erfc  
 Use asymptotic eqn for inverse values of erfc(x)<10-6 
 

 



Temperature Change with Finite Time Laser Pulse 
 If have a square pulse of duration tp 
 The for t < tp follow the previous formula 
 For Time greater than the pulse 
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 eg. Consider Cooper with H = 1010 W/m2 for tp = 10-6 sec 
 From table  = 1.16x10-4 m2/s 
 T rises highest at surface (z=0) and changes fastest 
 At pulse end heat has diffused about L 
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 At depth peak T occurs much later, and lower values 
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Laser Focused into a Spot 
 If laser focused into uniform spot radius a  
      then formula changes to (by Carslaw & Jaeger, 1959) 
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 Term on right caused by sideways diffusion 
 At the centre of the spot (z = 0 ) 
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 This gives same as uniform heating if 
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 This is true for ierfc(>1) thus 

4

a
t

2

  

 eg for Copper with a = 1 mm and  = 1.16x10-4 m2/s,  
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Laser Focused into a Spot 
 As t goes to infinity (very long times) it can be shown 
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 Thus for finite spot temperature reaches a limit 
 Highest surface temp 
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 Effects of beam Gaussian distribution is not that different 
 Choose set diameter to FWHM with same total power 
 In practice as thermal conductivity k, reflectance R,   
   thermal diffusivity  all vary with temperature 
 Thus tend to use numerical simulations for real details 
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Example Focused Laser Spot Calculation 
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Phase Changes and Energy Balance 
 Energy Balance: 
      Energy in = Energy to raise temp + heat flow 
 

 Note: a rough rule of thumb if near steady state 
      half the energy goes into heat flow 
      so energy required is twice that to raise temperature 
 As heating increase will get melting of the surface 
 Eventually also get vaporization point 
 All requires energy to heat  
 In general the specific heat of the material changes 
      Cs = specific heat of solid 
      Cl = specific heat of liquid phase 
      Lf = Latent Heat of Fusion: energy for melting 
      Lv = Latent Heat of Vaporization: energy to vaporize 
 Energy required to melt a unite volume of material 
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where Tm is the melting point,  
      T the starting temp. 
       = density of material 
 Note: this does not include energy lost to heat flow 

 



Phase Changes and Energy Balance 
 When vaporization occurs 
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 Generally true that heat capacity does not change much with T 
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 Generally Latent heat of vapourization >heat of fusion 
vf LL   

 Vapourization temperature is much > base or melting 
T<Tm<Tv 

 Energy input required is approximately 
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Melting Depths 
 Consider light pulse on surface 
 Will get melting to some depth 
 Eventually also raise surface to vaporization point 
 This is the laser welding situation 
 Can estimate the depth of melt front after some time t 
 Recall temperature distribution 
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 Ratio of the Temperatures changes with depth are 
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 Eventually surface raises to vaporization point 
 It cannot rise higher without vapourization thus stays at Tv 
 Hence can calculate the melt pool depth with this. 
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Melt Depth Estimate 
 Estimate the depth of melt front for that after some time t 
 Bottom of melt is at melting point,  
 Top at vapourization point 
 Assume base temperature is near 0oC (ie ~room temp) 
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 Recall that at the surface 
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 Thus time can be eliminate by solving for  
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 Depth of melt is given by  
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 Note: for a given material Hzm is fixed 
 Thus large welding depths given by low heat intensities 
      applied for long time 
      provided that there is sufficient energy in the beam 
 



Example of Melting Calculations 
 What is the heat flow required for  
      weld depth of 0.1 mm in copper 
 From the table for copper 
      Tm = 1060 oC 
      Tv =  2570 oC 
      K  =   400 W/moC 
 Thus  
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 From the graph or calculation 
 

ierfc(x=0.44) = 0.232 
 

 Thus  
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Vaporization of Material 
 When material removed by vaporization  
 Get a melt front and a heated front 
 liquid front moves with velocity vs 
 From the heat balance,  
      assume that all power goes into heating 
 Then the melt front should be 
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where H is power density per square area 
 Note this is the minimum power value 
 Good rule of thumb is actual power required twice this 
   loss about the same by heat flow to substrate 
 Can calculate depth dv of holes by knowing  
      laser pulse duration tp and front velocity 
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Example Depth of Hole with Vaporization 
 Heat pulse of H = 1011 W/m2 and t = 500 microsec 
      hits copper.  What will be the resulting max hole depth 
 From the tables 
      Tv = 2570 oC 
      = 8960 kg/m3 
      C = 385 J/kgoC 
      Lv = 4.75x106 J/kg 
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Keyholes and Increased Welding/Cutting Depths 
 When the laser forms hole in material 
 Beam penetrates to much greater depth 
 Creates a large deep melt pool behind moving beam 
 Melt fills in hole behind moving beam 
 If not true welding limited 1 mm in steel 
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Keyholes Formulas 
 Modeled by Swift, Hook and Gick, 1973 
 Assume linear heat source power P (W)  
 Note P is total power while H is unreflected power 
   because keyhole absorbs all the power (reflections do no escape) 
 Extends into metal depth a 
 Moving forward with velocity v (weld speed) in direction y 
   direction across weld is x (centred on the heating point) 
 Temperature distribution becomes 
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 where K0 is the Bessel function 2nd kind order 0 
 Width w of the weld is given by the point where T=melting 
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