

Laser Heat Processing: Advantages

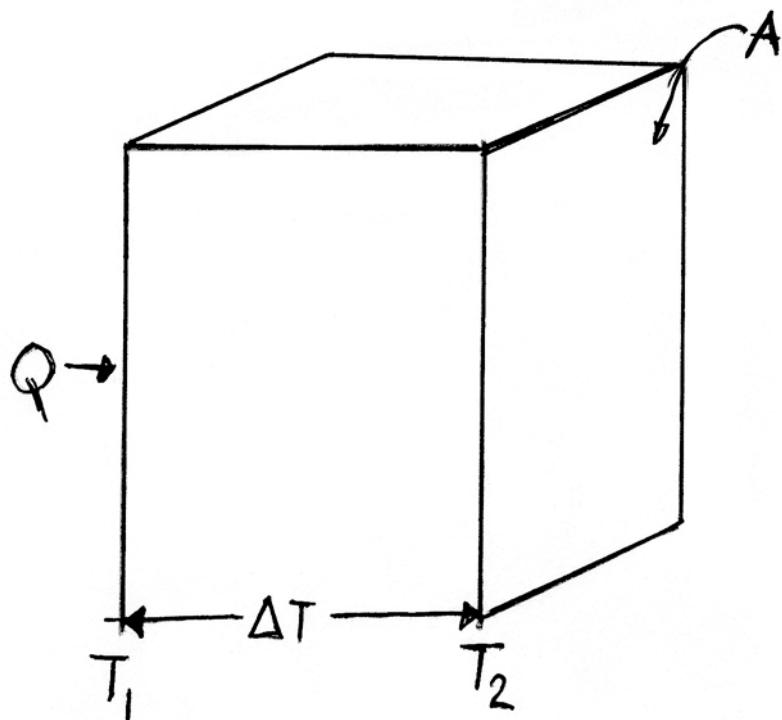
- Laser radiation very "clean"
no containments with other materials
- Working atmosphere can be controlled as needed
- Lasers can be focused to small spots
very localized heating at very high power
- Careful control of heating power
- Beam easy to direct into hard to access points
Can pass beam through glass to isolated areas
- Energy generally deposited near the surface

General Heat Flow

- Laser heating is just like other heat flow problems
- For the time being assume heat source
note that this is not always possible for laser
- Heat flows by Fourier Law of Heat Conduction

$$Q = -kA \frac{\partial T}{\partial x} = -kA \nabla T$$

where Q = heat generated: Watts (some books use H)


k = Thermal conductivity $\text{W}/\text{m}^{\circ}\text{C}$ or $\text{W}/\text{cm}^{\circ}\text{C}$ or $\text{W}/\text{m}^{\circ}\text{K}$
heat flow per unit area per unit distance

A = cross sectional area

T = temperature in $^{\circ}\text{C}$

z = depth into the material

- This is actually the definition of thermal conductivity
- Note this assumes steady state conditions
- laser heating stabilizes in 10^{-12} to 10^{-13} sec
Thus assume steady state conditions

Thermal Values of Materials

- Thermal Conductivity changes with temperature
Hence k may change with position

Specific Heat

- When heat enters a volume temperature change depends
Specific Heat C of material, $J/kg/\text{°K}$
- Specific Heat determine how much heat needed to raise
temperature of unit mass one degree C.

Density

- Density of material ρ Kg/m^3

Latent Heats

- Latent heats give the energy required for a phase change
units of J/kg
- L_f Latent Heat of Fusion: energy for melting
- L_v Latent Heat of Vaporization: energy to vaporize

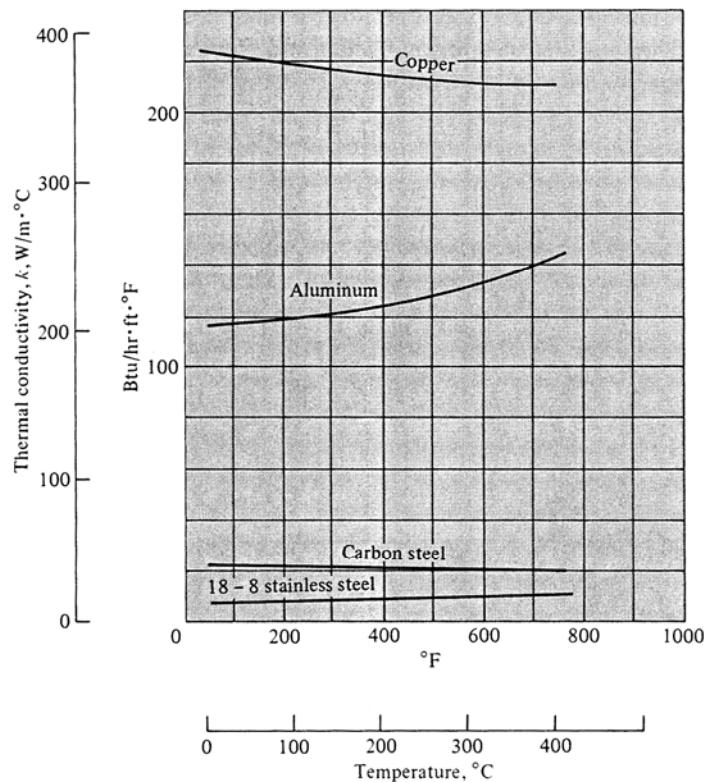
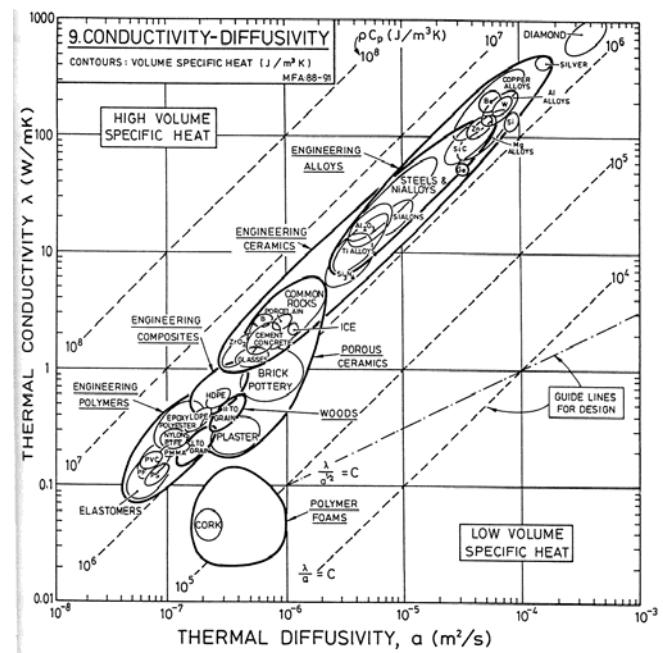
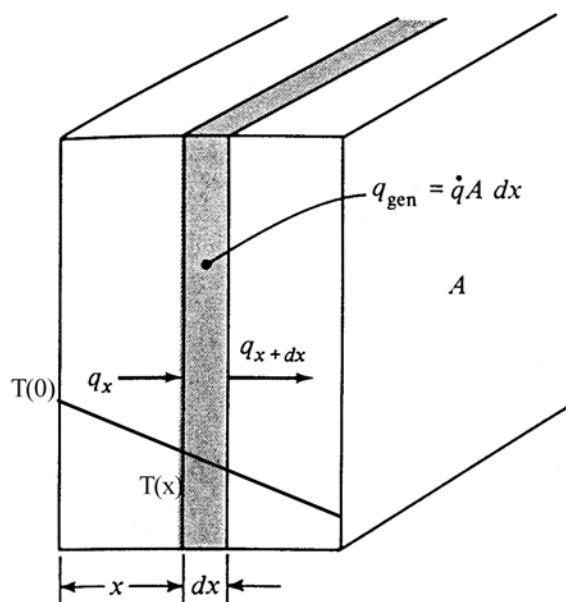


Fig. 1-6 Thermal conductivities of some typical solids.

Basic Heat Flow Differential Equations



- let q be the energy deposited per unit volume (use H in some books) W/m^3
- Consider heat flowing through a volume
- Then: energy at left face
= change in internal energy + energy out right face
- Then energy per unit time in left face (Fourier's law)

$$q_x = -kA \frac{\partial T}{\partial x}$$

- **Thermal Conductivity** k in $\text{W/m}^\circ\text{K}$
- If uniform k , steady state get Newton's Law of Cooling

$$q_x = -kA \frac{\Delta T}{\Delta x}$$

- Hence can calculate heat loss if know thermal conductivity

Thermal Values of Materials

- Thermal Conductivity changes significantly with materials
- Inverse of thermal conductivity like resistance in electric circuit
- Newton heat flow means slope of conductive varies as $1/k$

$$\frac{\Delta T}{\Delta x} = -\frac{q_x}{kA}$$

- In construction use R values, which are $1/k$ but in British units hr-ft²F/BTU
- Higher the R the less heat flow

Table 5.1

Material	Thermal conductivity [†] (K) (W m ⁻¹ K ⁻¹)	Thermal diffusivity (x) (m ² s ⁻¹) (10 ⁻⁶)	Specific heat capacity (C) (J kg ⁻¹ K ⁻¹)	Density(ρ) (kg m ⁻³)	Melting point(T _m) (K)	Boiling point(T _b) (K)	Latent heat of vaporization(L _v) (J kg ⁻¹) (10 ⁶)
Aluminum	238	97.3	903	2 710	932	2 720	10.90
Copper	400	116.3	385	8 960	1 356	2 855	4.75
Iron	82	23.2	449	7 870	1 810	3 160	6.80
Mild steel	45	13.6	420	7 860	1 700		
Stainless steel (304)	16	4.45	460	7 818	1 700		
Nickel	90	22.8	444	8 900	1 726	3 110	6.47
Silver	418	169	235	10 500	1 234	2 466	2.31
Alumina (ceramic)	29	9.54	800	3 800	2 300		
Perspex	0.2	0.11	1 500	1 190	350		
Silicon	170	103	707	2 330	1 680	2 628	10.6

[†]Measured at 300 K, values fairly strongly temperature dependent.

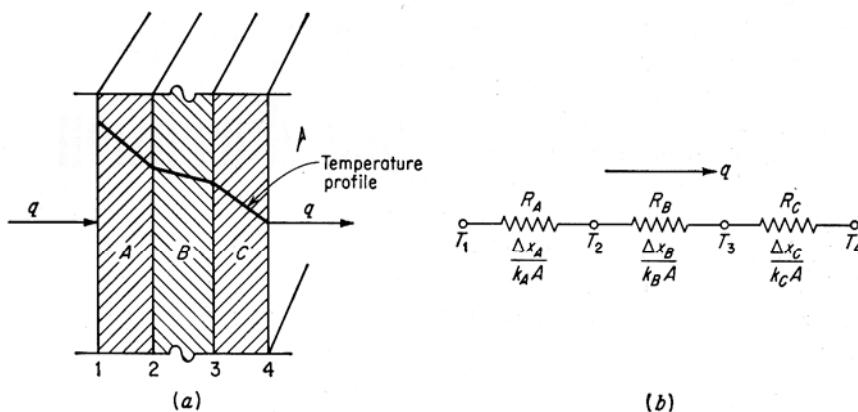


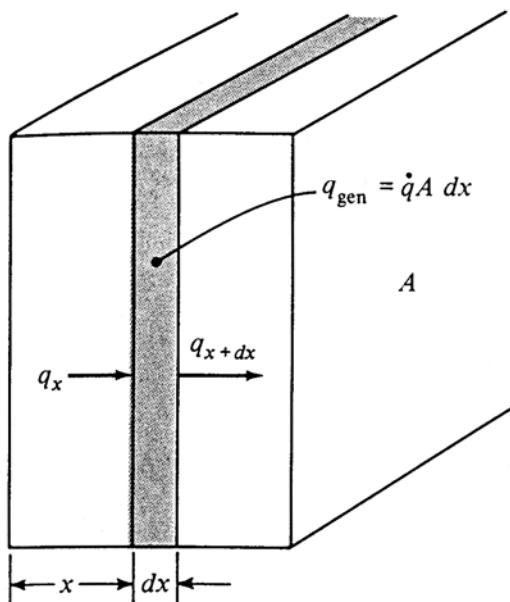
Fig. 2-1 One-dimensional heat transfer through a composite wall and electrical analogue.

Basic Heat Flow Differential Equations

- Now consider 1 dimensional heat flowing through a volume
- In the general case there q deposited and q generated within
- Then: energy at left face + heat generated
= change in internal energy + energy out right face
- Energy per unit time in left face

$$q_x = -kA \frac{\partial T}{\partial x}$$

- Energy out of right face of $x+dx$ is


$$q_{x+dx} = q_x + \frac{\partial q_x}{\partial x} dx = -A \left[k \frac{\partial T}{\partial x} + \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) dx \right]$$

- Energy generated within the element per unite volume & time

$$q_{gen} = \dot{q} A dx$$

- Change (loss) in internal energy due to heating of material

$$q_{internal} = \rho C A \frac{\partial T}{\partial t} dx$$

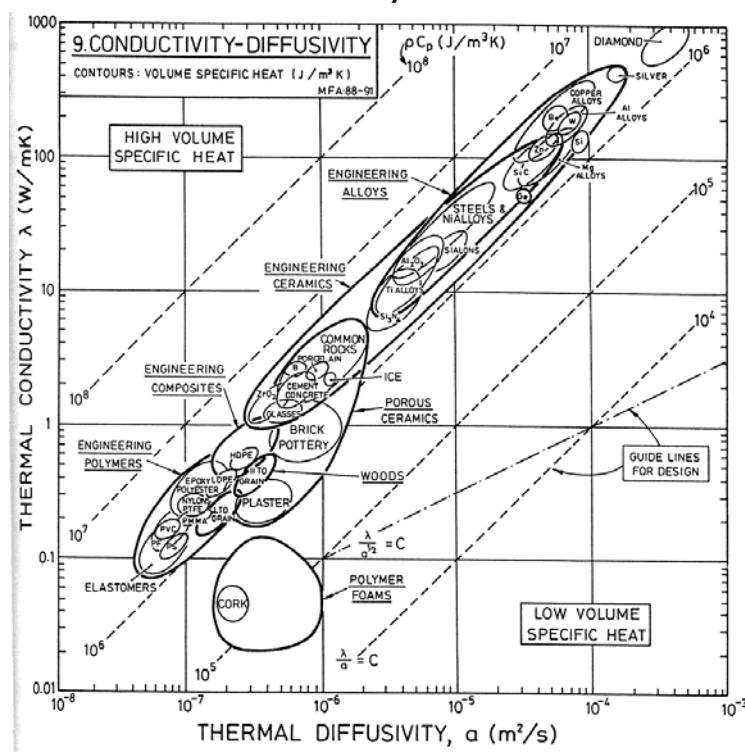
Basic Heat Flow Differential Equations

- Thus writing the energy balance

$$q_x + q_{gen} = q_{internal} + q_{x+dx}$$

$$-kA \frac{\partial T}{\partial x} + \dot{q}Adx = \rho CA \frac{\partial T}{\partial t} dx - A \left[k \frac{\partial T}{\partial x} + \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) dx \right]$$

- Combining gives heat flow DE


$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \dot{q} = \rho C \frac{\partial T}{\partial t}$$

- If assume thermal conductivity constant with position then

$$\frac{\partial^2 T}{\partial x^2} + \frac{\dot{q}}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

- where α Thermal Diffusivity in m^2/s

$$\alpha = \frac{k}{\rho C}$$

α Thermal Diffusivity

- Thermal Diffusivity gives T rise caused by an applied heat pulse or how rapidly heat diffuses through the material
- High thermal diffusivity: low surface temperature rise deep penetration of heat pulse
- Low thermal diffusivity: high surface temperature rise

Table 5.1

Material	Thermal conductivity†(KJ) (W m ⁻¹ K ⁻¹)	Thermal diffusivity (x) (m ² s ⁻¹)(10 ⁻⁶)	Specific heat capacity (C) (J kg ⁻¹ K ⁻¹)	Density(ρ) (kg m ⁻³)	Melting point(T _m) (K)	Boiling point(T _b) (K)	Latent heat of vaporization(L _v) (J kg ⁻¹)(10 ⁶)
Aluminum	238	97.3	903	2 710	932	2 720	10.90
Copper	400	116.3	385	8 960	1 356	2 855	4.75
Iron	82	23.2	449	7 870	1 810	3 160	6.80
Mild steel	45	13.6	420	7 860	1 700		
Stainless steel (304)	16	4.45	460	7 818	1 700		
Nickel	90	22.8	444	8 900	1 726	3 110	6.47
Silver	418	169	235	10 500	1 234	2 466	2.31
Alumina (ceramic)	29	9.54	800	3 800	2 300		
Perspex	0.2	0.11	1 500	1 190	350		
Silicon	170	103	707	2 330	1 680	2 628	10.6

†Measured at 300 K, values fairly strongly temperature dependent.

- In three dimensional the heat flow DE becomes

$$\nabla^2 T + \frac{\dot{q}}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

- Use ∇^2 for coordinate system that notes symmetry of problem
- For Cartesian

$$\nabla^2 T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}$$

- Often useful to use cylindrical coordinates for laser
- Example laser spots are circularly symmetric
- As angle θ is often uniform reduces from 3D to 2D problem values
- Reduces to a problem in radius r and depth z
- But must use proper cylindrical polar equations to get right

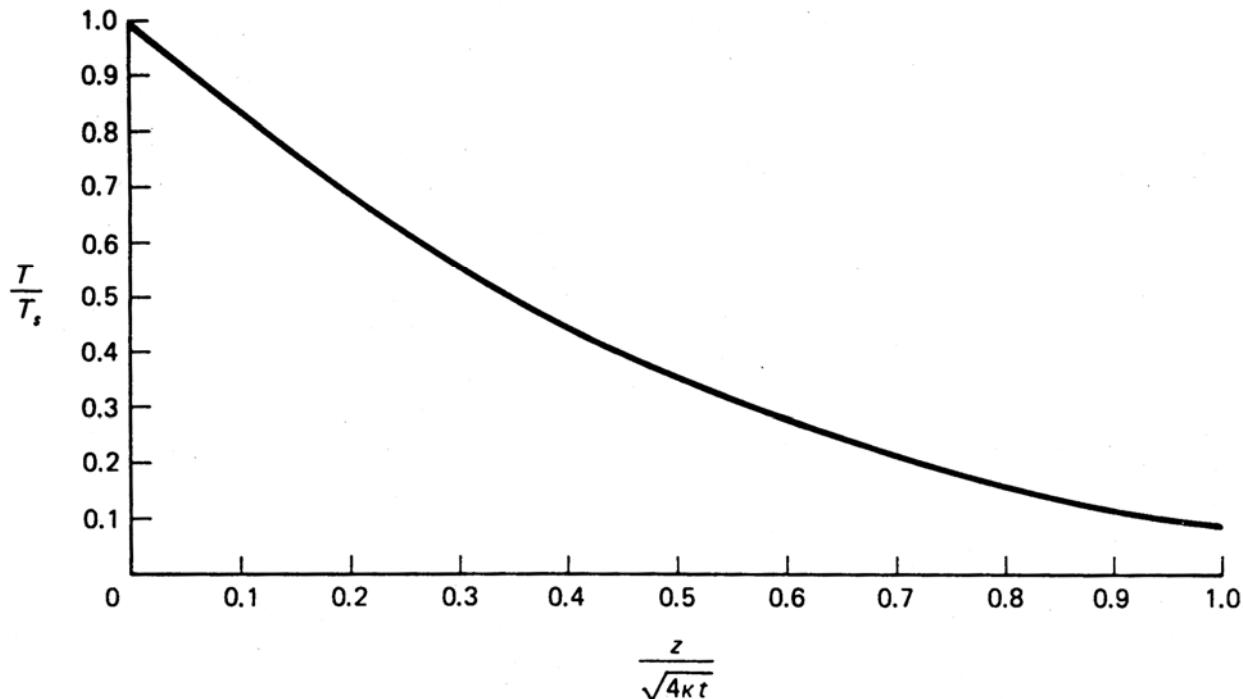
$$\nabla^2 T = \frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial z^2} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2}$$

- Generally use angular symmetric conditions so θ term eliminated

Temperature Change for Uniform Illumination

- Assume that the surface is uniformly illuminated by the laser
- Energy absorbed at the surface in a very small depth

$$H=I(1-R)$$


where R = reflectivity

I = light intensity

- The heat 1 Dim DE has been solved for depth z and time t (by Carslaw & Jaeger, 1959)

$$\Delta T(z,t) = \frac{2H}{k} \sqrt{\alpha t} \operatorname{ierfc} \left[\frac{z}{2\sqrt{\alpha t}} \right]$$

- The ierfc is the integral of the complementary error function

Figure 12-1 Ratio of temperature T at depth z to the surface temperature T_s , versus $z/\sqrt{4\kappa t}$ for uniform, constant irradiance.

Error Function Related Equations

- Heat flow equations are related to the Error Function erf

$$\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-s^2} ds$$

- This is the integral of a Gaussian between 0 and x
- The Complementary Error Function erfc

$$\text{erfc}(x) = 1 - \text{erf}(x)$$

- erfc is the error function but integrated from x to infinity
- The ierfc is related to the error function by

$$\text{ierfc}(x) = \int_{\infty}^x \text{erfc}(s) ds = \frac{1}{\sqrt{\pi}} \exp(-x^2) - x[1 - \text{erf}(x)]$$

- $\text{ierfc}(1) = 0.05$ and is falling rapidly

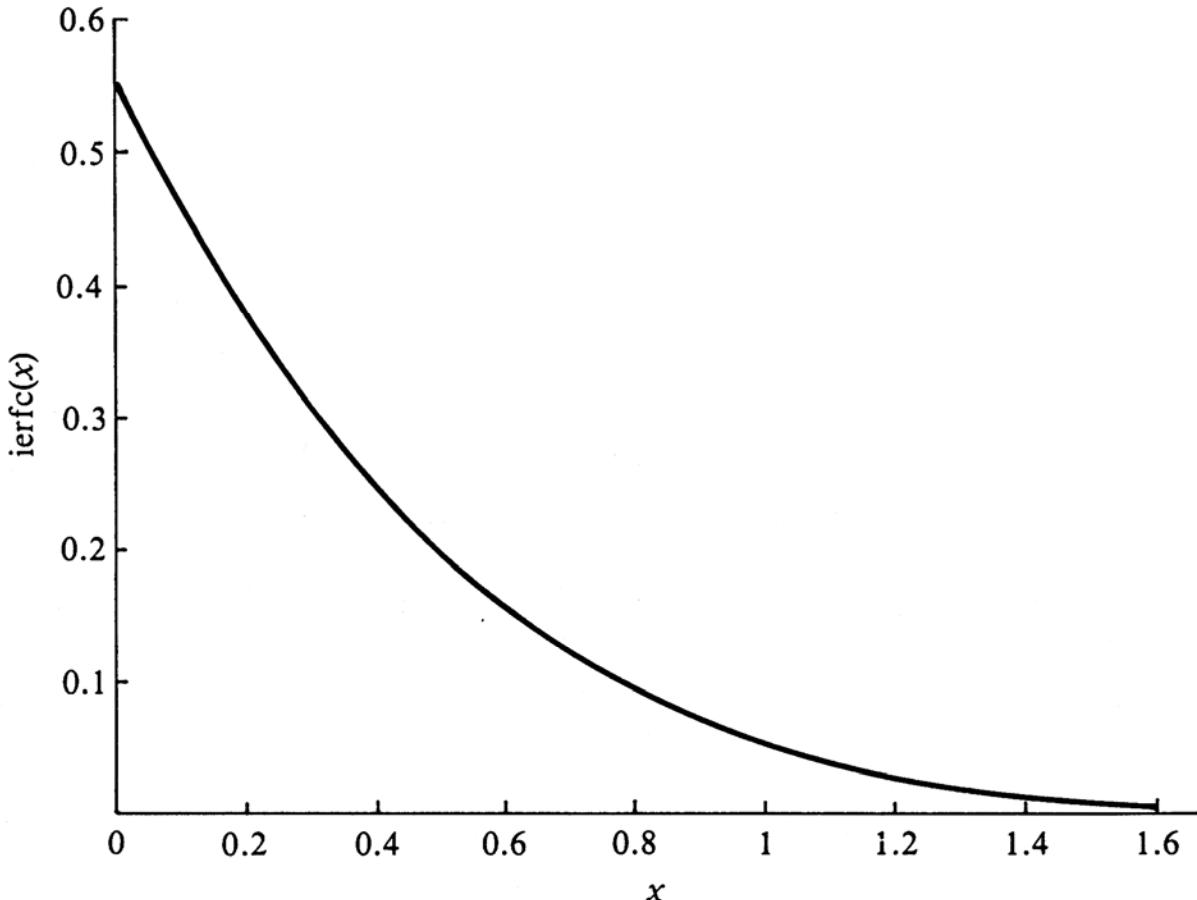


Fig. 5.3 Graph of the function $\text{ierfc}(x)$

Useful Error Function $\text{erfc}(x)$ Approximations

- Error function $\text{erf}(x)$, Complementary Error Function $\text{erfc}(x)$ are

$$\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-s^2} ds$$

$$\text{erfc}(x) = 1 - \text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-s^2} ds$$

- $\text{erf}(x)$ hard to find but easy to approximate with

$$\text{erf}(x) = 1 - (a_1 t + a_2 t^2 + a_3 t^3) e^{-x^2}$$

$$t = \frac{1}{1 + px} \quad \text{where} \quad p = 0.47047$$

$$a_1 = 0.3480242, a_2 = -0.0958798, a_3 = 0.7478556$$

- See Abramowitz & Segun (Handbook of Mathematical Functions)
- Error on this is $< 2.5 \times 10^{-5}$ for all x ($< 2\%$ error for $x \ll 5.5$)
- We are using complementary error function

$$\text{erfc}(x) = 1 - \text{erf}(x) \quad \text{erfc}(0) = 1 \quad \text{erfc}(\infty) = 0$$

- Asymptotic approximation

$$\text{erfc}(x) \rightarrow \frac{e^{-x^2}}{x\sqrt{\pi}} \left[1 - \frac{1}{2x^2} \right] \quad \text{as} \quad x \rightarrow \infty$$

- For $x > 3.5$ this has $< 1\%$ error (use plot page following for $x < 3.5$)
- Excel & Quattropro spreadsheet have erf and erfc built in.
Must activate analysis toolpack & solver first
but become inaccurate for $x > 5.4$ – then use asymptotic
- Matlab & maple OK for higher x 's
- For $x > 5.4$ then $\text{ierfc}(x)$ becomes

$$\text{ierfc}(x) \rightarrow \frac{e^{-x^2}}{2x^2\sqrt{\pi}} \quad \text{as} \quad x \rightarrow \infty$$

- Especially useful for approx. solving for x when have ierfc value

Temperature Rise for Uniform Illumination

- From DE solution since $ierfc$ is small for $x>1$
- Thus find that T rise is small when

$$\frac{z}{2\sqrt{\alpha t}} > 1$$

- Hence small rise when

$$z^2 > 4\alpha t$$

- Heat will diffuse a depth L in time of order

$$t = \frac{L^2}{4\alpha}$$

- Change in surface temperature with time
substitute $z = 0$ and note

$$ierfc(0) = \frac{1}{\sqrt{\pi}}$$

- Thus surface temperature change is:

$$\Delta T(0,t) = \frac{2H}{k} \sqrt{\alpha t} \quad ierfc[0] = \frac{2H}{k} \sqrt{\frac{\alpha t}{\pi}}$$

- Thus temp increases with $\sqrt{\alpha t}$

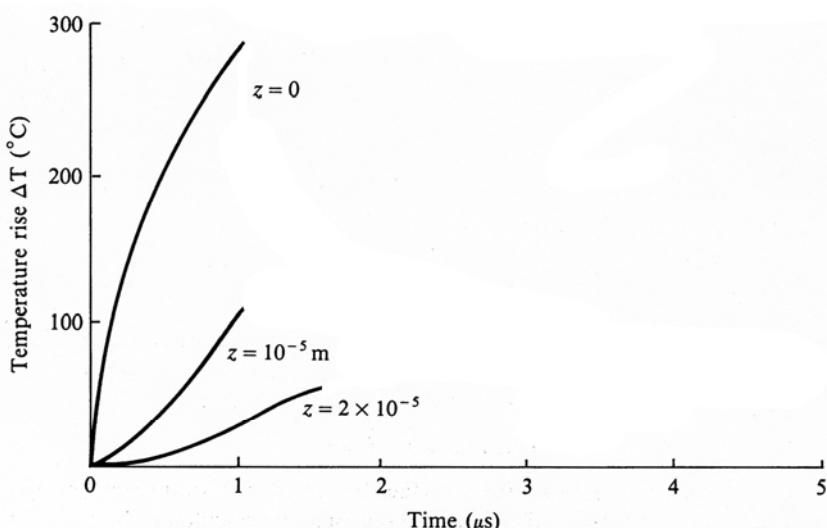
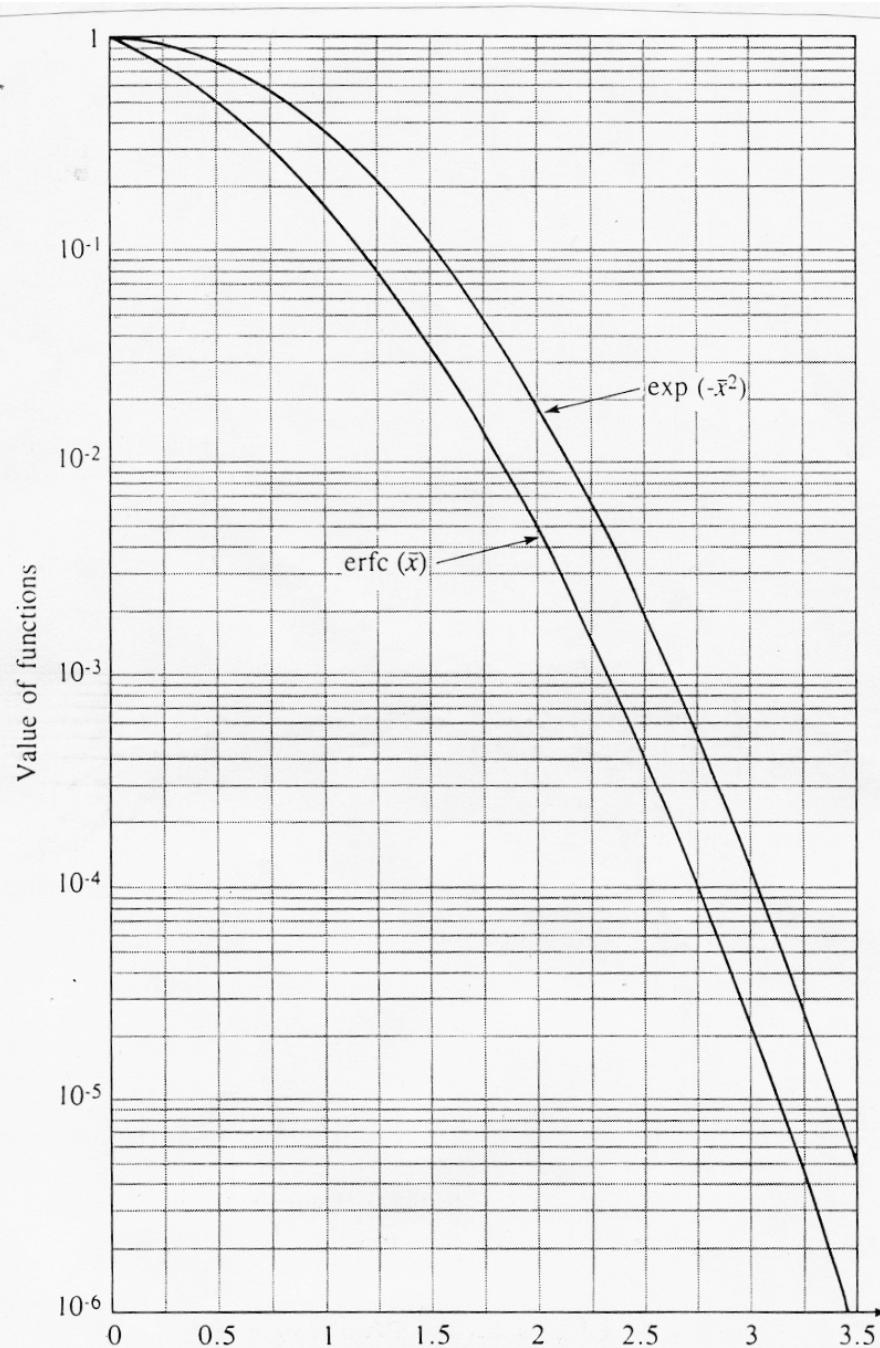



Fig. 5.4 Calculated temperature increases at various depths (z) below the surface of a semi-infinite copper block when irradiated with a constant heat pulse of 10^{10} Wm^{-2}

Comparison of Normalized Gaussian & ERFC

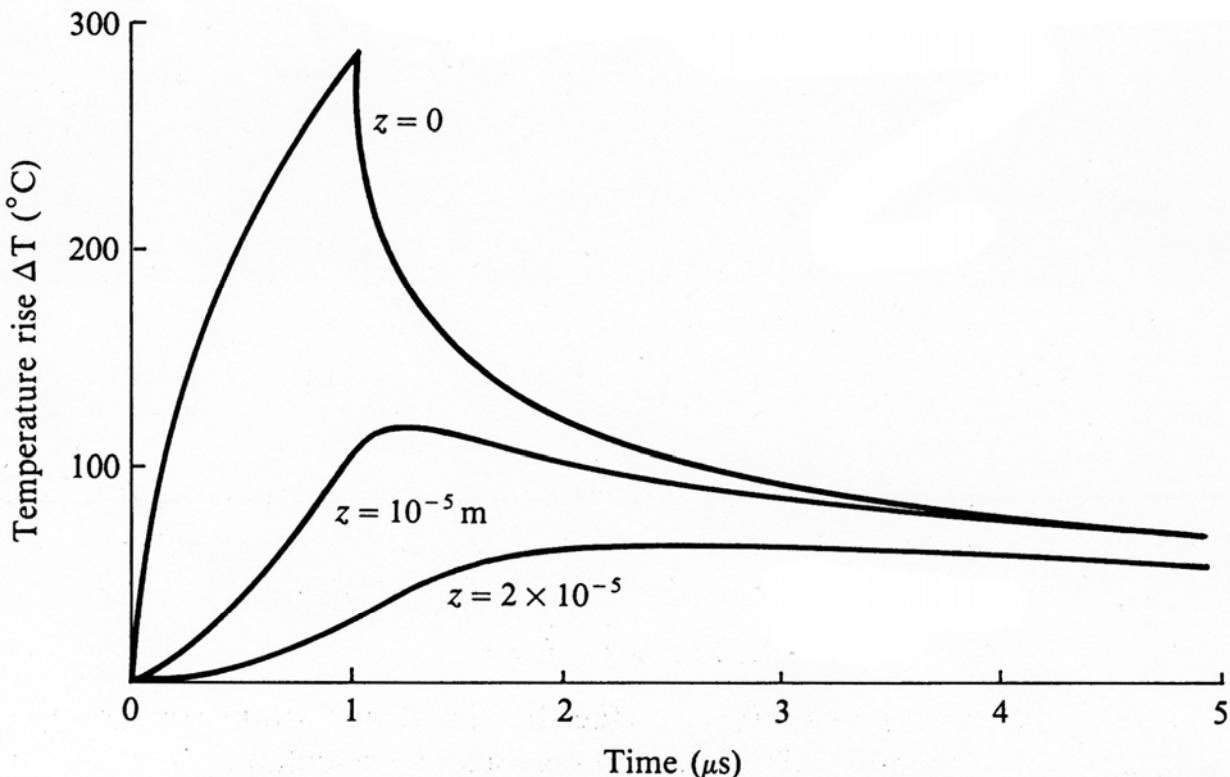
- $\text{erfc}(x)$ much steeper than Gaussian
- For erfc use plot for $x < 3.5$, asymptotic formula for > 3.5
- Use for getting inverse of erfc
- Use asymptotic eqn for inverse values of $\text{erfc}(x) < 10^{-6}$

$$x = \frac{x}{2\sqrt{Dt}}$$

Normalized distance from surface, \bar{x}

Fig. 4.4 A graph comparing the Gaussian and complementary error function (erfc) profiles. We will use this curve to evaluate the erfc and its inverse.

Temperature Change with Finite Time Laser Pulse


- If have a square pulse of duration t_p
- Then for $t < t_p$ follow the previous formula
- For Time greater than the pulse

$$\Delta T(z,t)_{t>t_p} = \delta T(z,t) - \delta T(z,t-t_p)$$

- e.g. Consider Cooper with $H = 10^{10} \text{ W/m}^2$ for $t_p = 10^{-6} \text{ sec}$
- From table $\alpha = 1.16 \times 10^{-4} \text{ m}^2/\text{s}$
- T rises highest at surface ($z=0$) and changes fastest
- At pulse end heat has diffused about L

$$L \approx \sqrt{4\alpha t} \approx \sqrt{4(1.16 \times 10^{-4})(10^{-6})} = 2.15 \times 10^{-5} \text{ m}$$

- At depth peak T occurs much later, and lower values

Fig. 5.4 Calculated temperature increases at various depths (z) below the surface of a semi-infinite copper block when irradiated with a constant heat pulse of 10^{10} W m^{-2} for a time of $1 \mu\text{s}$.

Laser Focused into a Spot

- If laser focused into uniform spot radius a then formula changes to (by Carslaw & Jaeger, 1959)

$$\Delta T(z, t) = \frac{2H}{k} \sqrt{\alpha t} \left\{ ierfc \left[\frac{z}{2\sqrt{\alpha t}} \right] - ierfc \left[\frac{\sqrt{z^2 + a^2}}{2\sqrt{\alpha t}} \right] \right\}$$

- Term on right caused by sideways diffusion
- At the centre of the spot ($z = 0$)

$$\Delta T(z, t) = \frac{2H}{k} \sqrt{\alpha t} \left\{ \frac{1}{\sqrt{\pi}} - ierfc \left[\frac{a}{2\sqrt{\alpha t}} \right] \right\}$$

- This gives same as uniform heating if

$$ierfc \left[\frac{a}{2\sqrt{\alpha t}} \right] \ll 1$$

- This is true for $ierfc(>1)$ thus

$$t < \frac{a^2}{4\alpha}$$

- eg for Copper with $a = 1$ mm and $\alpha = 1.16 \times 10^{-4}$ m²/s,

$$t < \frac{(10^{-3})^2}{4(1.16 \times 10^{-4})} \quad or \quad t < 2.16 \times 10^{-3} \text{ s}$$

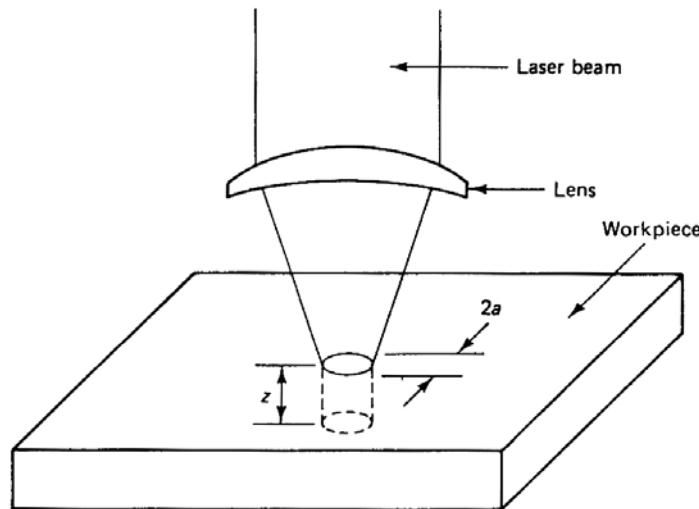
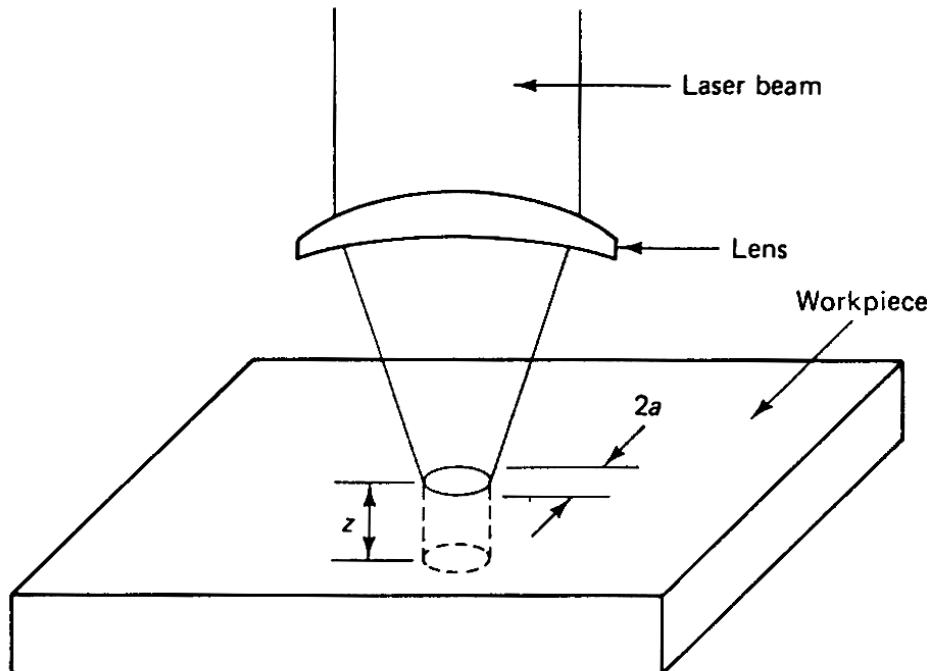


Figure 12-2 Laser beam focused on a workpiece.

Laser Focused into a Spot


- As t goes to infinity (very long times) it can be shown

$$\Delta T(z, t) = \frac{H}{k} \left[\sqrt{z^2 + a^2} - z \right]$$

- Thus for finite spot temperature reaches a limit
- Highest surface temp

$$\Delta T(0, \infty) = \frac{Ha}{k}$$

- Effects of beam Gaussian distribution is not that different
- Choose set diameter to FWHM with same total power
- In practice as thermal conductivity k , reflectance R , thermal diffusivity α all vary with temperature
- Thus tend to use numerical simulations for real details

Figure 12-2 Laser beam focused on a workpiece.

Example Focused Laser Spot Calculation

Example 5.1 Estimated temperature rise during a heat pulse

Suppose a heat pulse of duration t_p falls onto a metal surface. We may estimate the depth (L_p) to which the heat will diffuse in a time t_p by using Eq. (5.3); thus

$$L_p = 2\sqrt{\alpha t_p}$$

Considering a unit cross-sectional area of the material, the heated volume is $L_p \times 1$ and the total amount of heat deposited during the pulse is Ht_p , where H is the (constant) heat flow per unit area during the pulse. Assuming that the heat is uniformly deposited throughout the heated volume, the average temperature rise is Ht_p/mC , where m is the mass of the heated volume. Now $m = L_p \rho$, where ρ is the material density, and we may replace ρC by K/α . Thus the final result for the average temperature rise is

$$\Delta T = \frac{Ht_p \alpha}{L_p K} = \frac{H}{2K} \sqrt{(t_p \alpha)}.$$

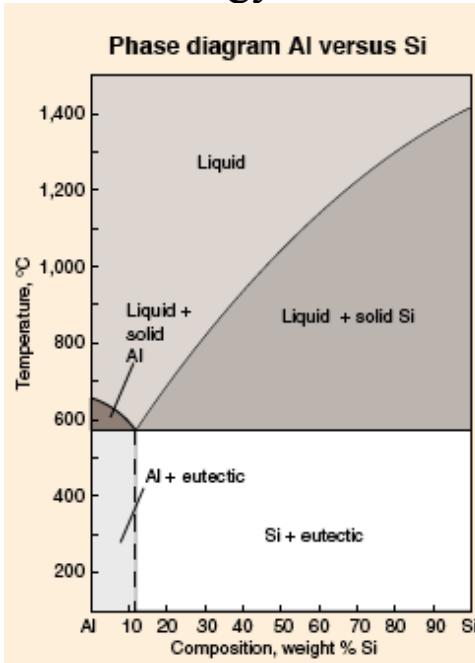
We may apply this to the situation dealt with in Fig. 5.4. Substituting $H = 10^{10} \text{ W m}^{-2}$, $t_p = 10^{-6} \text{ s}$, $K = 385 \text{ W m}^{-1} \text{ K}^{-1}$, $\alpha = 10^{-4} \text{ m}^2 \text{ s}^{-1}$ gives

$$\Delta T = 135^\circ \text{C}.$$

We see that this result is in reasonable agreement with the more exact analysis illustrated in Fig. 5.4.

Phase Changes and Energy Balance

- Energy Balance:
Energy in = Energy to raise temp + heat flow
- Note: a rough rule of thumb if near steady state
half the energy goes into heat flow
so energy required is twice that to raise temperature
- As heating increase will get melting of the surface
- Eventually also get vaporization point
- All requires energy to heat
- In general the specific heat of the material changes
 C_s = specific heat of solid
 C_l = specific heat of liquid phase
 L_f = Latent Heat of Fusion: energy for melting
 L_v = Latent Heat of Vaporization: energy to vaporize
- Energy required to melt a unite volume of material


$$E_m = \rho [C_s(T_m - T) + L_f]$$

where T_m is the melting point,

T the starting temp.

ρ = density of material

- Note: this does not include energy lost to heat flow

Phase Changes and Energy Balance

- When vaporization occurs

$$E_v = \rho [C_s(T_m - T) + C_v(T_v - T_m) + L_f + L_v]$$

- Generally true that heat capacity does not change much with T

$$C_m \approx C_v \approx C$$

- Generally Latent heat of vapourization >heat of fusion

$$L_f < L_v$$

- Vapourization temperature is much > base or melting

$$T < T_m < T_v$$

- Energy input required is approximately

$$E_v \approx \rho (CT_v + L_v)$$

Table 5.1

Material	Thermal conductivity [†] (K) (W m ⁻¹ K ⁻¹)	Thermal diffusivity (x) (m ² s ⁻¹) (10 ⁻⁶)	Specific heat capacity (C) (J kg ⁻¹ K ⁻¹)	Density(ρ) (kg m ⁻³)	Melting point(T _m) (K)	Boiling point(T _v) (K)	Latent heat of vaporization(L _v) (J kg ⁻¹) (10 ⁶)
Aluminum	238	97.3	903	2 710	932	2 720	10.90
Copper	400	116.3	385	8 960	1 356	2 855	4.75
Iron	82	23.2	449	7 870	1 810	3 160	6.80
Mild steel	45	13.6	420	7 860	1 700		
Stainless steel (304)	16	4.45	460	7 818	1 700		
Nickel	90	22.8	444	8 900	1 726	3 110	6.47
Silver	418	169	235	10 500	1 234	2 466	2.31
Alumina (ceramic)	29	9.54	800	3 800	2 300		
Perspex	0.2	0.11	1 500	1 190	350		
Silicon	170	103	707	2 330	1 680	2 628	10.6

[†]Measured at 300 K, values fairly strongly temperature dependent.

Melting Depths

- Consider light pulse on surface
- Will get melting to some depth
- Eventually also raise surface to vaporization point
- This is the laser welding situation
- Can estimate the depth of melt front after some time t
- Recall temperature distribution

$$\Delta T(z, t) = \frac{2H}{k} \sqrt{\alpha t} \operatorname{erfc} \left[\frac{z}{2\sqrt{\alpha t}} \right]$$

- Ratio of the Temperatures changes with depth are

$$\frac{\Delta T(z, t)}{\Delta T(0, t)} = \sqrt{\pi} \operatorname{erfc} \left[\frac{z}{2\sqrt{\alpha t}} \right]$$

- Eventually surface raises to vaporization point
- It cannot rise higher without vapourization thus stays at T_v
- Hence can calculate the melt pool depth with this.

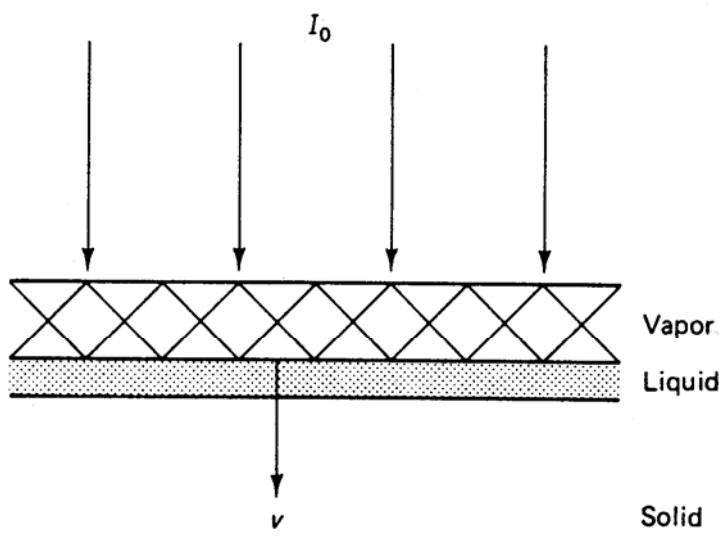


Figure 12-3 Vapor front propagation in a solid.

Melt Depth Estimate

- Estimate the depth of melt front for that after some time t
- Bottom of melt is at melting point,
- Top at vapourization point
- Assume base temperature is near 0°C (ie ~room temp)

$$\Delta T(z, t) = T_m \quad \Delta T(0, t) = T_v$$

$$\frac{T_m}{T_v} = \sqrt{\pi} \operatorname{erfc} \left[\frac{z}{2\sqrt{\alpha t}} \right]$$

- Recall that at the surface

$$\Delta T(0, t) = \frac{2H}{k} \sqrt{\frac{\alpha t}{\pi}}$$

- Thus time can be eliminate by solving for

$$T_v \frac{k \sqrt{\pi}}{2H} = \sqrt{\alpha t}$$

- Depth of melt is given by

$$\operatorname{erfc} \left[\frac{z_m H}{T_v k \sqrt{\pi}} \right] = \frac{T_m}{T_v \sqrt{\pi}}$$

- Note: for a given material $H z_m$ is fixed
- Thus large welding depths given by low heat intensities applied for long time
provided that there is sufficient energy in the beam

Example of Melting Calculations

- What is the heat flow required for weld depth of 0.1 mm in copper

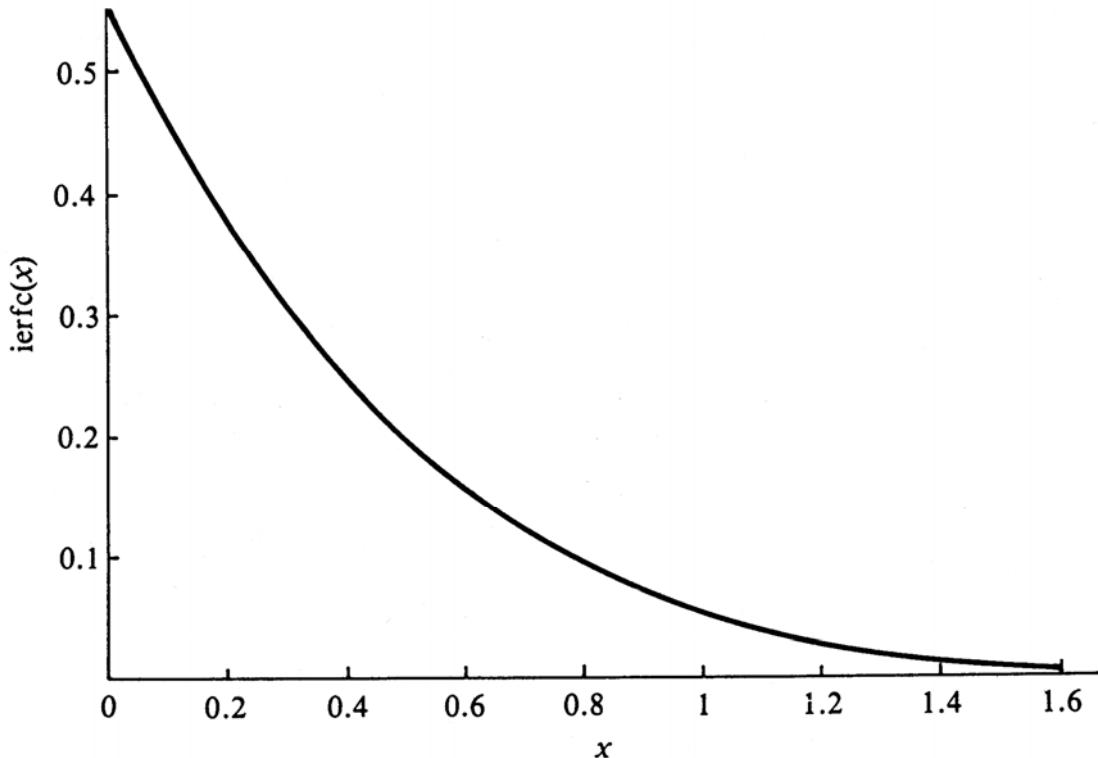
- From the table for copper

$$T_m = 1060 \text{ } ^\circ\text{C}$$

$$T_v = 2570 \text{ } ^\circ\text{C}$$

$$K = 400 \text{ W/m}^\circ\text{C}$$

- Thus


$$ierfc\left[\frac{z_m H}{T_v k \sqrt{\pi}}\right] = \frac{T_m}{T_v \sqrt{\pi}} = \frac{1060}{2570 \sqrt{\pi}} = 0.232$$

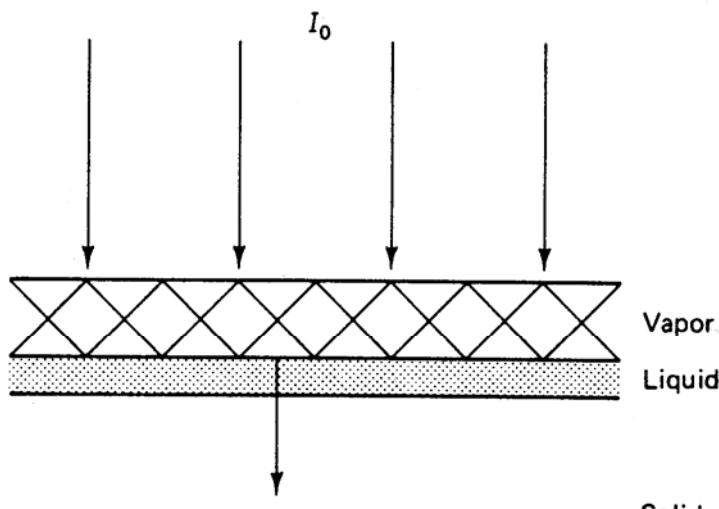
- From the graph or calculation

$$ierfc(x=0.44) = 0.232$$

- Thus

$$H = \frac{T_v k \sqrt{\pi}(x)}{z_m} = \frac{400(2570)\sqrt{\pi}(0.44)}{0.0001} = 8 \times 10^9 \text{ W/m}^2$$

Vaporization of Material


- When material removed by vaporization
- Get a melt front and a heated front
- liquid front moves with velocity v_s
- From the heat balance,
assume that all power goes into heating
- Then the melt front should be

$$H \approx v_s \rho (CT_v + L_v)$$

where H is power density per square area

- Note this is the minimum power value
- Good rule of thumb is actual power required twice this loss about the same by heat flow to substrate
- Can calculate depth d_v of holes by knowing laser pulse duration t_p and front velocity

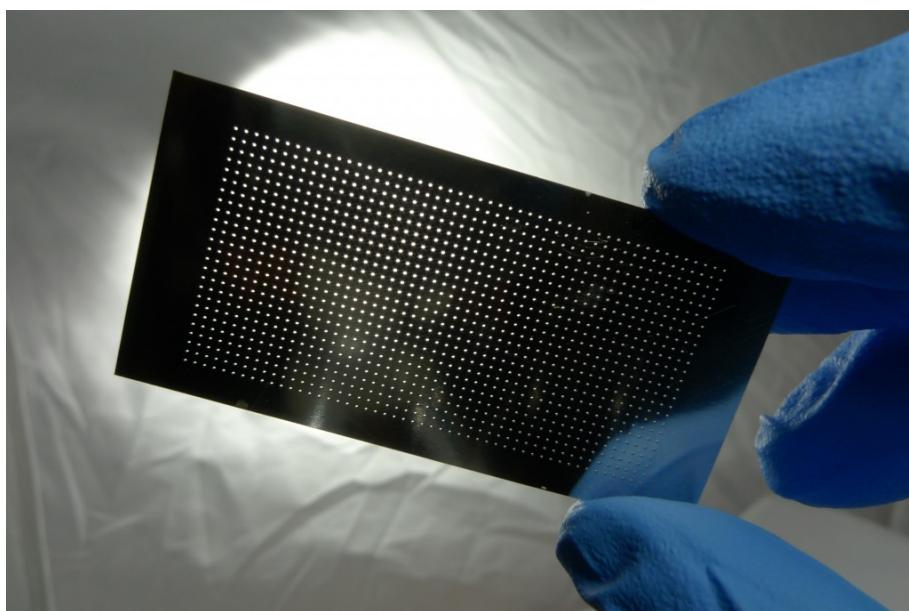
$$d_v = v_s t_p$$

Figure 12-3 Vapor front propagation in a solid.

Example Depth of Hole with Vaporization

- Heat pulse of $H = 10^{11} \text{ W/m}^2$ and $t = 500 \text{ microsec}$ hits copper. What will be the resulting max hole depth
- From the tables

$T_v = 2570 \text{ }^\circ\text{C}$
 $\rho = 8960 \text{ kg/m}^3$
 $C = 385 \text{ J/kg}^\circ\text{C}$
 $L_v = 4.75 \times 10^6 \text{ J/kg}$


$$d_v = v_s t_p = \frac{H t_p}{\rho (C T_v + L_v)} = \frac{10^{11} (5 \times 10^{-4})}{8960 (385 [2570] + 4.75 \times 10^6)}$$

$$= 0.95 \times 10^{-3} \text{ m} = 0.95 \text{ mm}$$

Table 5.1

Material	Thermal conductivity [†] (K) (W m ⁻¹ K ⁻¹)	Thermal diffusivity (x) (m ² s ⁻¹) (10 ⁻⁶)	Specific heat capacity (C) (J kg ⁻¹ K ⁻¹)	Density(ρ) (kg m ⁻³)	Melting point(T _m) (K)	Boiling point(T _b) (K)	Latent heat of vaporization(L _v) (J kg ⁻¹) (10 ⁶)
Aluminum	238	97.3	903	2 710	932	2 720	10.90
Copper	400	116.3	385	8 960	1 356	2 855	4.75
Iron	82	23.2	449	7 870	1 810	3 160	6.80
Mild steel	45	13.6	420	7 860	1 700		
Stainless steel (304)	16	4.45	460	7 818	1 700		
Nickel	90	22.8	444	8 900	1 726	3 110	6.47
Silver	418	169	235	10 500	1 234	2 466	2.31
Alumina (ceramic)	29	9.54	800	3 800	2 300		
Perspex	0.2	0.11	1 500	1 190	350		
Silicon	170	103	707	2 330	1 680	2 628	10.6

[†]Measured at 300 K, values fairly strongly temperature dependent.

Keyholes and Increased Welding/Cutting Depths

- When the laser forms hole in material
- Beam penetrates to much greater depth
- Creates a large deep melt pool behind moving beam
- Melt fills in hole behind moving beam
- If not true welding limited 1 mm in steel

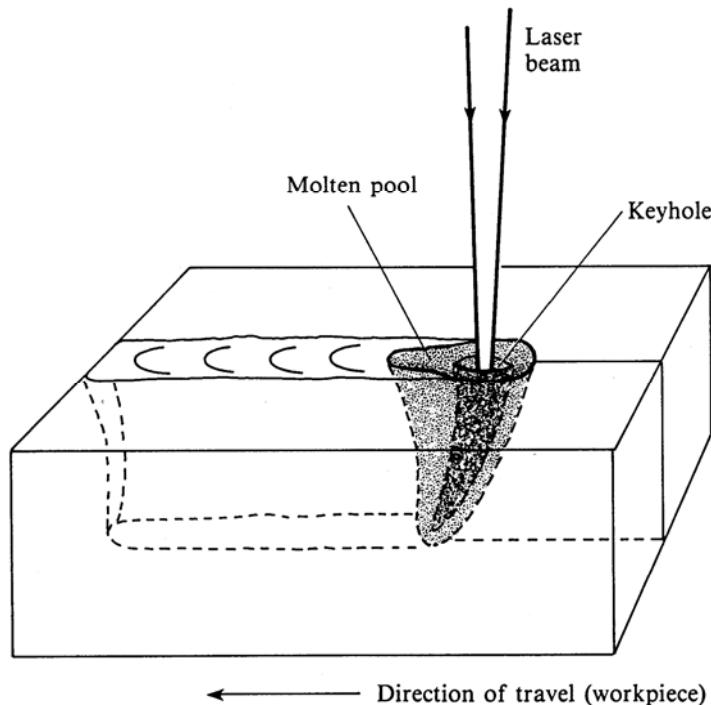
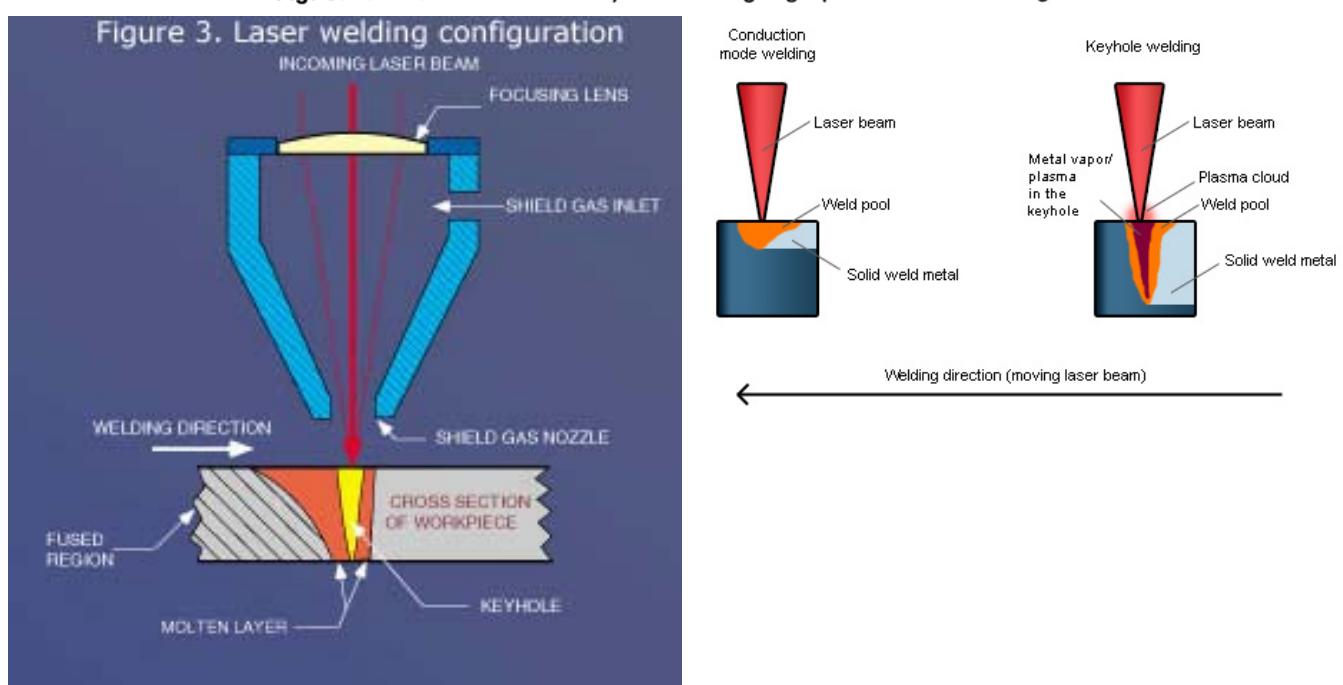



Fig. 5.15 Formation of a 'keyhole' during high-power laser welding.

Keyholes Formulas

- Modeled by Swift, Hook and Gick, 1973
- Assume linear heat source power P (W)
- Note P is total power while H is unreflected power because keyhole absorbs all the power (reflections do not escape)
- Extends into metal depth a
- Moving forward with velocity v (weld speed) in direction y direction across weld is x (centred on the heating point)
- Temperature distribution becomes

$$T = \frac{P}{2\pi ak} \exp\left(\frac{vx}{2\alpha}\right) K_0\left(\frac{v\alpha\sqrt{x^2 + y^2}}{2}\right)$$

- where K_0 is the Bessel function 2nd kind order 0
- Width w of the weld is given by the point where $T = \text{melting}$

$$w \approx 0.484 \frac{\alpha}{v} \frac{P}{akT_m}$$

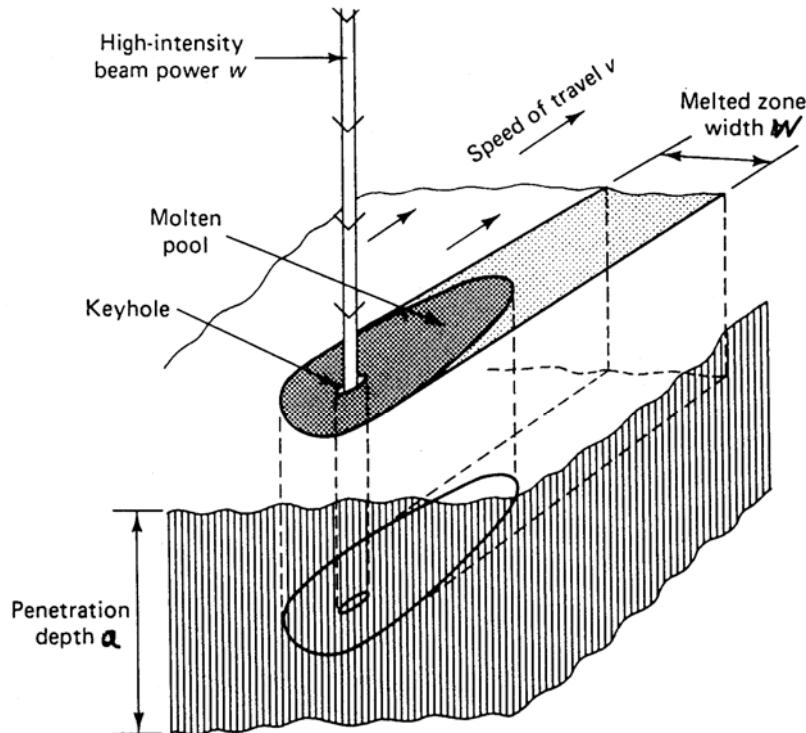


Figure 12-5 Linear heat source model of laser keyholing. (Courtesy of *Optical Engineering* and United Technologies Research Center.)