Laser Heat Processing: Advantages

e Laser radiation very "clean"
no containments with other materials
e Working atmosphere can be controlled as needed
e Lasers can be focused to small spots
very localized heating at very high power
e Careful control of heating power

e Beam easy to direct into hard to access points
Can pass beam through glass to isolated areas

e Energy generally deposited near the surface
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General Heat Flow
e Laser heating is just like other heat flow problems
e For the time being assume heat source
note that this is not always possible for laser
e Heat flows by Fourier Law of Heat Conduction

Q= —kAG—T =—KAVT
OX

where Q = heat generated: Watts (some books use H)

k = Thermal conductivity W/m°C or W/cm°C or W/m°K

heat flow per unit area per unite distance

A = cross sectional area

T = temperature in °C

z = depth into the material
e This is actually the definition of thermal conductivity
¢ Note this assumes steady state conditions
e laser heating stabilizes in 10712 to 107" sec

Thus assume steady state conditions




Thermal Values of Materials
e Thermal Conductivity changes with temperature
Hence k may change with position

Specific Heat

e When heat enters a volume temperature change depends
Specific Heat C of material, J/kg/°’K

e Specific Heat determine how much heat needed to raise
temperature of unit mass one degree C.

Density

e Density of material p Kg/m®

Latent Heats

e Latent heats give the energy required for a phase change
units of J/’kg

e [; Latent Heat of Fusion: energy for melting

e [, Latent Heat of Vaporization: energy to vaporize
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Basic Heat Flow Differential Equations
e let g be the energy deposited per unit volume
(use H in some books) W/m’
e Consider heat flowing through a volume
e Then: energy at left face
= change 1n internal energy + energy out right face

e Then energy per unit time in left face (Fourier’s law)

X — _kAﬁ
OX
e Thermal Conductivity k in W/m/°K
e [f uniform k, steady state get Newton’s Law of Cooling

< AX
e Hence can calculate heat loss if know thermal conductivity
" F 9.CONDUCTIVITY-DIFFUSIVITY| '(sjc}'iﬁ‘/msk; YAE o ]
[ COMTOURS : VOLUME SPECIFIC HEAT (1 /m? K] of 7 mm’/ ]
L MEABS-3| P iy ]
S/ ot
z HIGH VOLUME / g
1
EDUE SPECIFIC HEAT "
2
<
i
-
>0k
= f Ve
St /
a s
Z s
Q i 8
(8] LV} - .
a! P P — .
< £ ENGINEERING = 3
T(O) é E PchEﬁ/s z P //(:_._ |
?e S 1
- R -
/f —{; =C ,/
0.1: o .
P LOW VOLUME ]
7 SPECIFIC_HEAT 1
- Lfe E
il I EEET] 105| i1 1381 i
107 107 10°¢ [ i B

THERMAL DIFFUSIVITY, a (m%/s)

Silver-

Copper .

Aluminum-.
Cast Iron
Carbon Steel
Stainless




Thermal Values of Materials
e Thermal Conductivity changes significantly with materials
e Inverse of thermal conductivity like resistance in electric circuit
e Newton heat flow means slope of conductive varies as 1/k

AT _
A X

_ O

KA

¢ In construction use R values, which are 1/k but in British units
hr-ft°F/BTU
e Higher the R the less heat flow

Table 5.1
Thermal Thermal Specific heat Melting Boiling Latent heat of
conductivityt(K)  diffusivity (x) capacity (C) Density(p)  point(T,)  point(T,) vaporization(L,)

Material Wm=TK™ 1) (m?s~')(107%  (Jkg 'K} tkg m™=3) (K} (K) (Jkg=')(106)
Aluminum 238 97.3 903 2710 932 2720 10.90
Copper 400 116.3 385 8960 1356 2855 4,75
Iron 82 23.2 449 7870 1810 3160 6.80
Mild steel 45 13.6 420 7 860 1700
Stainless steel
(304) 16 4.45 460 7818 1700
Nickel 90 22.8 444 8900 1726 3110 6.47
Silver 418 169 235 10500 1234 2466 2.31
Alumina
(ceramic) 29 9.54 800 3800 2300
Perspex 0.2 0.11 1500 1190 350
Silicon 170 103 707 2330 1680 2628 10.6
tMeasured at 300 K, values fairly strongly temperature dependent.
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Basic Heat Flow Differential Equations
e Now consider 1 dimensional heat flowing through a volume
¢ In the general case there q deposited and q generated within
e Then: energy at left face + heat generated
= change in internal energy + energy out right face
e Energy per unit time in left face

Nk
OX

e Energy out of right face of x+dx is

qx+dx — qx qX dX =-A k 6T a (k aT )dX
OX OX 8x OX

e Energy generated within the element per unite volume & time

Ogen = JAdx

e Change (loss) in internal energy due to heating of material

oT
qmternal - pCAa_dX

qx

le— x —> dx [«—




Basic Heat Flow Differential Equations
e Thus writing the energy balance

Ox *+ Qgen = Uinternal T Ax+ax

—kAﬂ+qux: pCAﬁdX— A kaT + g (k dl jdx
OX ot OX OX\ ' OX

e Combining gives heat flow DE

o(, 0T oT
— | k—[+4=pC—
ax( 8xj a=r ot

e [f assume thermal conductivity constant with position then

o'T q_1aT
x> k a ot
e where a. Thermal Diffusivity in m?/s
k
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o Thermal Diffusivity
e Thermal Diffusivity gives T rise caused by an applied heat pulse
or how rapidly heat diffuses through the material
e High thermal diffusivity: low surface temperature rise
deep penetration of heat pulse
e Low thermal diffusivity: high surface temperature rise

Table 5.1
Thermal Thermal Specific heat Melting Boiling Latent heat of
conductivity t(K) diffusivity (x) capacity (C) Density(p)  point{Tmy) point(T,) vaporization(L,)
Material fWm™1K™1) (m?s™7)(10°%)  (Jkg~'K™') kg m=3) K} K) (J kg~ ')(105)
Aluminum 238 97.3 903 2710 932 2720 10.90
Copper 400 116.3 385 8960 1356 2855 4,75
Iron 82 23.2 449 7870 1810 3160 6.80
Mild steel 45 13.6 420 7 860 1700
Stainless steel
(304) 16 4.45 460 7818 1700
Nickel 90 22.8 444 8900 1726 3110 6.47
Silver 418 169 235 10500 1234 2466 2.31
Alumina
(ceramic) 29 9.54 800 3800 2300
Perspex 0.2 0.11 1500 1190 350
Silicon 170 103 707 2330 1680 2628 10.6

tMeasured at 300 K, values fairly strongly temperature dependent.

e In three dimensional the heat flow DE becomes

q_10o1

K a ot

e Use V? for coordinate system that notes symmetry of problem
e For Cartesian

VT +

o°'T o'T o°T
+ +
ox* oy’ oz’
e Often useful to use cylindrical coordinates for laser
e Example laser spots are circularly symmetric
e As angle 0 is often uniform reduces from 3D to 2D problem values
e Reduces to a problem in radius r and depth z

¢ But must use proper cylindrical polar equations to get right

) O’T 10T o°T 10T
VT =—F+——+ S+
or ror oz r- o6

e Generally use angular symmetric conditions so 0 term eliminated

VT =




Temperature Change for Uniform Illumination
e Assume that the surface is uniformly illuminated by the laser
e Energy absorbed at the surface in a very small depth

H=I(1-R)
where R = reflectivity
I = light intensity
e The heat 1 Dim DE has been solved for depth z and time t
(by Carslaw & Jaeger, 1959)

AT(z,t):%\/aierfc{

Z
2 Jat }
e The ierfc 1s the integral of the complementary error function
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Figure 12-1 Ratio of temperature T at depth z to the surface temperature T, versus z/V4kt
for uniform, constant irradiance.



Error Function Related Equations
e Heat flow equations are related to the Error Function erf

erf(x):% [e=ds
0

e This is the integral of a Gaussian between 0 and x
e The Complementary Error Function erfc

erfc(x)=1-erf (x)
e crfc is the error function but integred from x to infinity
e The ierfc is related to the error function by

i X 1
ierfc(x) = | erfc(s)ds = ——expl— x? |- x[1 — erf (x
()= fertets)es = -exp- ) x1-erf 1)
e ierfc(1) = 0.05 and is falling rapidly
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Useful Error Function erfc(x) Approximations
e Error function erf(x), Complementary Error Function erfc(x) are

erf (x) :%jeszds
0

2 % 2
erfc(x)=1—-erf(x\)=——|e° ds
(X) (0= j
e erf(x) hard to find but easy to approximate with

erf(x)=1- (alt +a,t’ + a3t3)e‘X2

t=

where p=0.47047
1+ px

ar = 0.3480242, a, =-0.0958798, a3 = 0.7478556
e See Abramowitz & Segun (Handbook of Mathematical Functions)

e Error on this is < 2.5x107 for all x (<2% error for x << 5.5)
e We are using complementary error function

erfc(x) = 1 - erf(x) erfc(0) =1 erfc(e0) =0

e Asymptotic approximation

{1—i} as X—
X

e For x>3.5 this has <1% error (use plot page following for x<3.5)
e Excel & Quatropro spreadsheet have erf and erfc built in.

Must activate analysis toolpack & solver first

but become inaccurate for x>5.4 — then use asymptotic

e Matlab & maple OK for higher x’s
e For x > 5.4 then 1erfc(x) becomes

e
2x%\1

e Especially useful for approx. solving for x when have ierfc value

lerfc(x) —> as X—w



Temperature Rise for Uniform lHlumination
e From DE solution since ierfc is small for x>1
e Thus find that T rise is small when

- >1
2. Jat

2° > 4at
e Heat will diffuse a depth L in time of order

L2
t=—
Ao
e Change 1n surface temperature with time

substitute z = 0 and note

e Hence small rise when

ierfc(0)= %

e Thus surface temperature change is:
AT(0t)= ZTH\/H ierfc[0] = ZTH at
T

e Thus temp increases with \/at

300
z=0
S
= -
= 200
2
=
&
=
s
2 100}
| z=10"%*m
=
/:2>< 0%
1 1 1 1 1
0 1 2 3 4 5

Time (ps)

Fig. 5.4 Calculated temperature increases at various depths (z) below the sur-

face of a semi-infinite copper block when irradiated with a constant
heat pulse of 10'"° Wm~2 -



Comparison of Normalized Gaussian & ERFC
e crfc(x) much steeper than Gaussian
e For erfc use plot for x<3.5, asymptotic formula for > 3.5
e Use for getting inverse of erfc
e Use asymptotic eqn for inverse values of erfc(x)<10¢
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Temperature Change with Finite Time Laser Pulse
e [f have a square pulse of duration t,
e The for t <t, follow the previous formula
e For Time greater than the pulse

AT(Z,t)e, =6T(2,1)-6T(zt - 1,)

e e¢g. Consider Cooper with H = 10! W/m? for t, = 10 sec
e From table o = 1.16x10™* m?/s

¢ T rises highest at surface (z=0) and changes fastest
e At pulse end heat has diffused about L

L~ JAat ~/4(1.16 X107 )(107° ) = 2.15x10° m
e At depth peak T occurs much later, and lower values
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Fig. 5.4 Calculated temperature increases at various depths (z) below the sur-

face of a semi-infinite copper block when irradiated with a constant
heat pulse of 10'© Wm~2 for a time of 1 us.



Laser Focused into a Spot

e [f laser focused into uniform spot radius a
then formula changes to (by Carslaw & Jaeger, 1959)

AT(z,t)= Tﬁ{ierfc{zﬁ} — ierfc{;i/ifz}}
a a

e Term on right caused by sideways diffusion
e At the centre of the spot (z=0)

AT(z1)= %M{%— ierfc{%}}
/A (04

e This gives same as uniform heating if

lerfc a <<1
2.Jat

e This is true for ierfc(>1) thus

aZ

t<—
do

e eg for Copper with a =1 mm and o = 1.16x10* m?%/s,
(10°]

< — or t<2.16x107°s
4(1.16x10™)
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Figure 12-2 Laser beam focused on a workpiece.




Laser Focused into a Spot
e As t goes to infinity (very long times) it can be shown

AT(z,t)=% Jz? +a’ —z]

¢ Thus for finite spot temperature reaches a limit
e Highest surface temp

e Effects of beam Gaussian distribution is not that different

e Choose set diameter to FWHM with same total power

e [n practice as thermal conductivity k, reflectance R,
thermal diffusivity a all vary with temperature

e Thus tend to use numerical simulations for real details
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Figure 12-2 Laser beam focused on a workpiece.



Example Focused Laser Spot Calculation
Example 5.1 Estimated temperature rise during a heat puise

Suppose a heat pulse of duration ¢, falls onto a metal surface. We
may estimate the depth (L,) to which the heat will diffuse in a time
t, by using Eq. {5.3); thus

Lo = 2 [lxt,)

Considering a unit cross-sectional area of the material, the heated
volume is L, X 1 and the total amount of heat deposited during the
pulse is Ht,, where H is the (constant) heat flow per unit area dur-
ing the pulse. Assuming that the heat is uniformly deposited
throughout the heated volume, the average temperature rise is
Ht,/mC, where m is the mass of the heated volume. Now m = L,p,
where p is the material density, and we may replace pC by K/
Thus the final result for the average temperature rise is

Htox -;iJ(tpﬂf).

LK 2K
We may apply this to the situation dealt with in Fig. 5.4. -
Substituting H=10"Wm~-2, {,=10"%s, K=385Wm~1K"1,
x=10"*m?s~ gives

AT =

AT=135°C.

We see that this result is in reasonable agreement with the more
exact analysis illustrated in Fig. 5.4,



Phase Changes and Energy Balance
e Energy Balance:

Energy in = Energy to raise temp + heat flow

e Note: a rough rule of thumb if near steady state

half the energy goes into heat flow

so energy required is twice that to raise temperature
¢ As heating increase will get melting of the surface
e Eventually also get vaporization point
e All requires energy to heat
e In general the specific heat of the material changes

Cs = specific heat of solid

Ci = specific heat of liquid phase

L¢= Latent Heat of Fusion: energy for melting

L, = Latent Heat of Vaporization: energy to vaporize
e Energy required to melt a unite volume of material

E, =p[C.(T,-T)+L,|

where Tr, 1s the melting point,
T the starting temp.

p = density of material
e Note: this does not include energy lost to heat flow

Phase diagram Al versus Si

14001 -]

1,200

=]
(=1
=]

[ Liguid +

Liquid + solid Si
| =olid

Tempemtures, “C
(=]
(=1
=]

600

I Al + sutectic
400

| 5i + sutectic
200 I

T I S T S T T S T
Al 10 20 30 40 &0 B0 TO 80 90 Si
Composition, weight % Si




Phase Changes and Energy Balance
e When vaporization occurs

E,=p|C/(T,-T)+C,(T,-T,)+L; +L,]

e Generally true that heat capacity does not change much with T
C,=C,=C

e Generally Latent heat of vapourization >heat of fusion
L <L,
e Vapourization temperature i1s much > base or melting
T<Tn<Ty
e Energy input required is approximately

E,~p(CT,+L,)

Table 5.1
Thermal Thermal Specific heat Melting Boiling Latent heat of
conductivity t(K) diffusivity (x) capacity (C) Density(p]  point{Tm) point(T,) vaporization(L,)
Material fWm™1K™1) {m?s™1)(107°) (Jkg 'K™1) kg m=3) K) (K) (J kg~ ')(105)
Aluminum 238 97.3 903 2710 932 2720 10.90
Copper 400 116.3 385 8960 1356 2855 4,75
Iron 82 23.2 449 7870 1810 3160 6.80
Mild steel 45 13.6 420 7 860 1700
Stainless steel
(304) 16 4.45 460 7818 1700
Nickel 90 22.8 444 8900 1726 3110 6.47
Silver 418 169 235 10500 1234 2466 2.31
Alumina
(ceramic) 29 9.54 800 3800 2300
Perspex 0.2 0.11 1500 1190 350
Silicon 170 103 707 2330 1680 2628 10.6

tMeasured at 300 K, values fairly strongly temperature dependent.



Melting Depths
e Consider light pulse on surface
e Will get melting to some depth
e Eventually also raise surface to vaporization point
e This is the laser welding situation
e Can estimate the depth of melt front after some time t
e Recall temperature distribution

2H : 4
AT(zt)=——-,/at ierfc
(z1) K {21/ at}
e Ratio of the Temperatures changes with depth are

AT(zt) Z’:) =z ierfc{

i

e Eventually surface raises to vaporization point
e [t cannot rise higher without vapourization thus stays at Ty
e Hence can calculate the melt pool depth with this.

v Solid

Figure 12-3 Vapor front propagation in a solid.



Melt Depth Estimate
e Estimate the depth of melt front for that after some time t
e Bottom of melt is at melting point,
¢ Top at vapourization point
e Assume base temperature is near 0°C (ie ~room temp)

AT(z,t)=T, AT(0t)=T,

T ] Z
—m — lerfc
T \/; {240&}

v

e Recall that at the surface

AT =21 /%
T

e Thus time can be eliminate by solving for

k/7
T2 _ ot
g — Vet

¢ Depth of melt is given by

jerfc| m A __Tn
Tkz | Tz
e Note: for a given material Hzy, is fixed
e Thus large welding depths given by low heat intensities

applied for long time
provided that there is sufficient energy in the beam



Example of Melting Calculations

e What is the heat flow required for
weld depth of 0.1 mm in copper

e From the table for copper

Tm = 1060 °C
T, = 2570 °C
K = 400 W/m°C
e Thus
. z. H T 1060
ierfc| = =" _ = =0.232
{Tvk&} T,z 257047

e From the graph or calculation
lerfc(x=0.44) = 0.232

e Thus
b T kyz(x) _400257T0WN7(0.44) _ o ov / m?
Z, 0.0001
0.5
0.4
g
T 03

0.2F

0.1




Vaporization of Material
e When material removed by vaporization
e Get a melt front and a heated front
e liquid front moves with velocity v;
e From the heat balance,
assume that all power goes into heating
e Then the melt front should be

H zvsp(CTV+LV)

where H is power density per square area
e Note this is the minimum power value

e Good rule of thumb 1s actual power required twice this
loss about the same by heat flow to substrate

e Can calculate depth d, of holes by knowing
laser pulse duration t, and front velocity

d, =V,

v Solid

Figure 12-3 Vapor front propagation in a solid.



Example Depth of Hole with Vaporization

e Heat pulse of H= 10" W/m? and t = 500 microsec

hits copper. What will be the resulting max hole depth
e From the tables

T, =2570°C

p= 8960 kg/m?

C =385 J/kg°C

L, =4.75x10° J/kg

iy -G 10*(5x10°*)

P T 5 (CT,+ L) 8960(385[2570]+4.75x10°)
=0.95x10"°m =0.95mm

Table 5.1
Thermal Thermal Specific heat Melting Boiling Latent heat of
conductivityT(K)  diffusivity (x) capacity (C) Density(p)  point(T,)  point(T.) vaporization(L,)
Material Wm-TK™1) (m?s~1)({107¢)  (Jkg~'K™') (kg m=3) K] K) (Jkg~')(105)
Aluminum 238 97.3 903 2710 932 2720 10.90
Copper 400 116.3 385 8960 1356 2855 4.75
Iron 82 23.2 449 7870 1810 3160 6.80
Mild steel 45 13.6 420 7860 1700
Stainless steel
(304) 16 4.45 460 7818 1700
Nickel 90 22.8 444 8900 1726 3110 6.47
Silver 418 169 235 10500 1234 2466 2.31
Alumina
{ceramic) 29 9.54 800 3800 2300
Perspex 0.2 0.1 1500 1190 350
Silicon 170 103 707 2330 1680 2628 10.6

tMeasured at 300 K, values fairly strongly temperature dependent.




Keyholes and Increased Welding/Cutting Depths
e When the laser forms hole in material

e Beam penetrates to much greater depth

e Creates a large deep melt pool behind moving beam
e Melt fills in hole behind moving beam

e [f not true welding limited 1 mm 1n steel

Laser
beam

Molten pool

\ /Keyho!e

C C < &
A e
\, 1 ‘53 k:..,...
[ e
| I;‘_“I.
e &
b\' __________________ 4 L,_.,)________- I

<«—  Direction of travel (workpiece)

Fig. 5.15 Formation of a ‘keyhole’ during high-power laser welding.
Figure 3. Laser welding configuration
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Keyholes Formulas
e Modeled by Swift, Hook and Gick, 1973
e Assume linear heat source power P (W)
e Note P is total power while H is unreflected power
because keyhole absorbs all the power (reflections do no escape)
e Extends into metal depth a
e Moving forward with velocity v (weld speed) in direction y
direction across weld is x (centred on the heating point)
e Temperature distribution becomes

2 2
- P exp(VX)KO Vo X +Y

- 2 ak 2a 2

e where Ky 1s the Bessel function 2nd kind order 0
e Width w of the weld is given by the point where T=melting

a P
w~0.484 ————
v akT
\~/r
High-intensity
beam power w | o
(° Melted zone

N Qee"O/' width W
S H

Molten
pool

Keyhole

Penetration
depth @
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Figure 12-5 Linear heat source model of laser keyholing. (Courtesy of Optical Engineering
and United Technologies Research Center.)



