Vaporization Cutting

- Laser heats surface to vaporization
- Forms keyhole
- Now light highly absorbed in hole (light reflects until absorbed)
- Vapor from boiling stabilizes molten walls
- Material ejected from hole can form Dross at bottom and top
- In materials that do not melt, just vapor escapes eg Wood, carbon, some plastics

Figure 13-16 Kerf produced by laser cutting.

Vaporization Cutting Formulas

• Recall the velocity of melt front formulas

$$v_s = \frac{H}{\rho(CT_v + L_v)}$$

- where H is power density absorbed per square area
- and the temperature at the surface from the uniform illumination formulas for vaporization point

$$T(0,t) = \frac{2H}{k} \sqrt{\frac{\alpha t}{\pi}}$$

Thus the time for vaporization is

$$t_{v} = \frac{\pi}{\alpha} \left[\frac{T_{v}k}{2H} \right]^{2}$$

Vaporization Cutting Values

• If we had a 2 KW laser focused to 0.2 mm Then average power is

$$H = \frac{2000}{\pi r^2} = 6.3 \times 10^{10} \ Wm^{-2}$$

 \bullet Can estimate v_s and t_v

Table 3.3.	Material properties and penetration speeds, V, and time to vaporise, Tv, for a beam of power density $6.3 \times E10 \text{ W/m2}$ (4,5).								
	Material Properties							Process properties	
Material	ρ	Lf	LV	Cp	Tm	Τv	к	v	tv
	kg/m3	kJ/kg	kJ/kg	J/kgC	с	С	W/mK	m/s	μз
Tungsten	19300	185	4020	140	3410	5930	164	0.64	3
Aluminium	2700	397	9492	900	660	2450	226	1.9	0.6
Iron	7870	275	6362	460	1536	3000	50	1.0	0.3
Titanium	4510	437	9000	519	1668	3260	19	1.2	0.09
Stainless steel (304)	8030	~300	6500	500	1450	3000	20	0.97	0.4

Fusion Cutting: Melt and Blow

• Once melt is formed

use gas flow to blow away materials

• Do not need to vaporize,

thus power reduced by factor of about 10

Fig. 3.7. Interactions at the cutting front.

Fusion Melting Estimates

• Can use the heat balance type relationship

$$H = wt_c V_c \rho \left[C_s (T_m - T) + L_f + m' L_V \right]$$

H = effective power input from laser

$$C_s$$
 = specific heat of solid phase

- L_f = Latent Heat of Fusion: energy for melting
- $L_v =$ Latent Heat of Vaporization: energy to vaporize
- m' = fraction of the melt vaporized
- T_m = is the melting point, T starting temp.
- t_c = material thicknes
- w = width of cut (kerf)
- ρ = density of material
- Rearranging for a common cutting parameter

$$f_{m} = \frac{H}{t_{c}V_{C}} = w\rho \left[C_{s}(T_{m} - T) + L_{f} + m'L_{V}\right] \quad Jm^{-2}$$

- \bullet f_m is generally a function of cutting speed and gas velocity
- Note there is a small cooling effect caused by the gas flow

Fig. 3.3. Volume melted and removed during cutting.

Table 3.4	Average severance energies for CW CO2 laser cutting found experimentally from a variety of sources (principally 8,9).				
	Lower Value	Higher Value	Average		
Material	P/Vt J/mm2	P/Vt J/mm2	P/Vt J/mm2		
Mild Steel + O2	4	13	5.7		
Mild Steel + N2	7	22	10		
Stainless Steel + O2	3	10	5		
Stainless Steel + Ar	8	20	13		
Titanium + O2	1	5	3		
Titanium + Ar	11 18		14		
Aluminium + O2			14		
Copper + O2			30		
Brass + O2			22		
Zirconium + O2			1.7		
Acrylic Sheet	1	3	1.2		
Polythene	2.7	8	5		
Polypropylene	1.7	6.2	3		
Polystyrene	1.6	3.5	2.5		
Nylon	1.5	5	2.5		
ABS	1.4	4	2.3		
Polycarbonate	1.4	4	2.3		
PVC	1	2.5	2		
Formica	51	85	71		
Phenolic Resin			2.7		
Fibre Glass(epoxy)			3.2		
Wood: Pine(yellow)			23		
Oak			26		
Mahogany			24		
Chipboard	45	76	59		
Fibreboard			50		
Hardboard			23		
Plywood	20	65	31		
Glass			20		
Alumina	15	25	20		
Silica			120		
Ceramic Tile			19		
Leather			2.5		
Cardboard	0.2	1.7	0.5		
Carpet (auto)			0.5		
Asbestos Cement			5.0		
N.B. These figures do not apply to Nd-YAG pulse cutting where the mechanism is different: for example for mild steel Nd-YAG values are between 15-200J/mm2					

Fusion Cutting CO₂ & Materials

Reactive Fusion Cutting

- When gas used reacts with gas (usually oxygen) burn reaction adds energy to effect
- Steel typically 60% added
- Titanium 90% added
- However can chemically change work face eg titanium gets brittle from oxygen

Fig. 3.22. A High Pressure Ring Nozzle used for "Clean Cut" Technique (27).

Cutting Speed vs Power

Fig. 3.4. P/t vs V for mild steel.

Fig. 3.5. P/t vs V for stainless steel.

Fig. 3.6. P/t vs V for titanium.

Reactive Fusion Cutting Striations

- Reactions create a burn front
- Causes striations in material
- Seen if the cut is slow

Behavior of Materials for Laser Cutting

• Generally break down by reflectivity and organic/inorganic

Table 3.7	Behaviour of Different Materials to Laser Cutting			
Property		Material		
High Reflectivity (Need for Fine Focus)		Gold, Silver, Copper, Aluminium, Brass		
Medium/High Reflectivity		Most metals		
High Melting Point		W, Mo, Cr, Ta, Ti, Zr		
Low Melting Point		Fe, Ni, .Sn, Pb		
High Oxide Melting Point (Dross Problems)		Cr, Al, Zr		
Low Reflectivity		Most non metals		
Organics				
Tendency to char		PVC, Epoxy, Leather, Wood, Rubber, Wool, Cotton		
Less tendency to char		Acrylics, Polythene, Polypropylene, Polycarbonate		
Inorganics				
Tendency to crack		Glass, Natural Stones		
Less tendency to crack		Quartz, Alumina, China, Asbestos, Mica		
See also list of the cuttability of many materials in Industrial Laser Annual Handbook 1990 pp3-6, published Penwell Books, Tulsa, Oklahoma, USA.				

Controlled Fracture and Scribing Controlled Fracture

- Brittle materials vulnerable to thermal stress fracture
- Heat volume: it expands, creates tensile stress
- On cooling may crack
- Crack continue in direction of hot spot
- Mostly applies to insulators eg Sapphire, glass **Scribing**
- Create a cut point in the material
- Forms a local point for stress breakage
- Use either a line of holes or grove

Table 3.5	Controlled Fracture Cutting Rates					
Material	Thickness mm	Spot Diameter mm	Incident Power W	Rate of separation m/s		
99% Al2O3	0.7	0.38	7	0.3		
	1.0	0.38	16	0.08		
Soda Glass	1.0	0.5x12.7	10	0.3		
Sapphire	1.2	0.38	12	0.08		
Quartz (cryst)	0.8	0.38	3	0.61		

Cold Cutting or Laser Dissociation

- Uses Eximer (UV) lasers to cut without melting
- UV photons 3.5 7.9 eV
- Enough energy to break organic molecular bonds
- eg C=H bond 3.5 eV
- Causes material to fall apart
- Does not melt, chare or boil surface
- eg ArF laser will create Ozone in air which shows the molecular effects

Table 9.1 Strengths of some common molecular chemical bonds compared withexcimer laser photon energies.

Eximer Laser Dissociation

- Done either with beam directly or by mask
- Short Laser pulse absorbed in 10 micron depth
- Breaks polymer bonds
- Rapid rise in local pressure as dissociation
- Mini explosions eject material

Fig. 9.1 The short-duration UV excimer laser pulse rapidly breaks chemical bonds in a polymer within a restricted volume to cause a mini-explosion that ejects material.

Eximer Micromachining

- Can carve complex structures into organics, plastics
- Called Photoablation
- Also shape inorganics glasses/crystals like Nd:Yag, quartz difficult (not absorbing)
- Composites: cuts the organic binders easily no wear like blades

Fig. 9.3 40 µm notches machined in a human hair with an ArF excimer laser.

Etching with Eximers

- Each pulse removes materials
- However definite threshold effect
- Also saturation,

because beam does not penetrate

• Many organics just top microns absorbs

Fig. 9.7 Rate for etching polyimide per pulse versus fluence with the three principal excimer lasers.

Fig. 9.8 Rate for etching PET per pulse versus fluence with the three principal excimer lasers.

Threshold Effect in Photoablation

- If too low get cone shaped structures
- Only local dissociations
- High power, smooth sidewalls

Fig. 9.14 Etches in polyimide with a KrF laser (a) just above the etching threshold, showing cone like structures, (b) smooth etching at a fluence ≈ 10 times the threshold for etching.

Corneal Sculpting

- Used to shape the cornea
- Cornea absorbed 193 nm in 4 microns
- Directly ablates cornea materials
- Use a computer controlled shaping pattern
- 50-100 microns cuts for up to 7 diopters change
- Knife Surgery is much rougher
- Cuts may require up to 90% reduction in areas with surgery
- Eximer leaves a very smooth surface
- Current price \$4000 per eye

(b)

Fig. 9.53 Machining with an ArF laser and image projection on to the cornea a mask consisting of (a) a variable circular aperture producing a larger radius for myopia correction, (b) a variable annular aperture producing a smaller radius for hyperopia correction. Similar profiles can be obtained using rotating wedged slit aperture masks or sacrificial masks of variable thickness placed on to the cornea.

Comparison of Diamond Surgery & Laser Eye Surgery

- Diamond cuts are rough
- Laser photoablation is very smooth

Fig. 9.52 Floor of corneal keratectomy cut in the stroma of a human eye with (a) a trephine diamond knife and (b) an ArF excimer laser. Photograph courtesy of Prof. J. Marshall, Institute of Ophthalmology, University of London, UK.

Laser Eye Surgery Systems

• Commercial systems available requiring no laser knowledge

Fig. 9.55 Front view of a myopia-corrected cornea showing variable aperture cuts. The two reflected spots of light are from the ablated region (centre of photo) and the untreated region (left). Since both spots are a similar size the ablated surface is as smooth as the untreated cornea. Photograph courtesy of Taunton Technologies Inc, Monroe, Conn, USA.

Fig. 9.56 Excimer laser ophthalmic system used for refractive surgery. The cornea is machined with 193 nm radiation at a fluence of $\approx 100 \text{ mJ/cm}^2$ in $\approx 30 \text{ s}$ at a repetition rate of 10 pps. Photograph courtesy of Taunton Technologies Inc, Monroe, Conn, USA.