Mirror Example
e Consider a concave mirror radius r = -10 cm then
r -10
2
e Now consider a 1 cm candle s = 15 cm from the vertex
e Where 1s the image
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S 15
e Thus image is inverted and half size of object
e What if candle is at 10 cm (radius of curvature)
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Image is at object position (10 cm) inverted and same size (1 cm)
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Parallel-ray method for graphically locating the image formed by a concave
mirror. )



Graphic Method of Solving Optics
¢ Graphic method is useful in thinking about what happens
e Use some scale (graph paper good)
e Place mirror on axis line and mark radius C & focal F points
¢ Draw line from object top Q to mirror parallel to axis (ray 4)
e Hits vertex line at T
e Then direct ray from T through focus point F (ray 5) and beyond
e Now direct ray from object top Q through radius C (ray 8)
e This intersects ray 5 at image Q’ (point 9)
e This correctly shows both position and magnification of object
e This really shows how the light rays are travelling
e Eg Ray through the focal point F (ray 6) becomes parallel (ray 7)
e Intersects ray 5 again at image Q’
¢ Can use graphics to solve exactly
¢ But often sketch this to see if optic paths make sense
¢ Graphics method also assumes parallax assumption
e Graphics very good with multi mirror/lens combination
e Formulas harder to see what is going on there.
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Parallel-ray method for graphically locating the image formed by a concave
mirror. )



Objects at less than Focal Length Position & Convex Mirrors
e Now consider object at 2.5 cm (smaller than =5 cm)

LIV S S —0.2 s'=L=—5cm m=—S—=—_—5—2

s f s 5 25 -0.2 s 25
¢ Image appears to be behind the mirror by 5 cm
e Image is virtual — light is expanding from mirror
e Image is erect and twice object size
¢ Do not see image if place something at image position
e With graphical method must project C & F lines to right side
e Shows size of image there
e For convex mirrors (r is +) F & C on right side of mirror
e Again ray from object parallel to axis hits mirror (ray 1 below)
e Now draw ray through focus F on right (ray 1)
¢ Then extend to other side of mirror also
¢ 2™ ray from object now through C on left (r+) or right (r-)
e Interception point is where virtual image is
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Mirror Coatings
e Classic mirrors use metallic coatings
e Most optics mirrors front surface mirror
e Regular mirrors back surface (coating on glass)
¢ Problem for optics (reflection both from glass & metal surface)
e Mirrors wavelength range depends on the coating
¢ Aluminum (Al) most common now: 90-92% reflective in optical
e Often coated for protection with transparent film (aluminium oxide)
e Silver (Ag) mirrors higher reflection 95-99% but poor in UV range
e Silver coatings must be recoated or fail in 6 months
e Gold (Au) mirrors for IR systems but poor <550 nm (yellow)
e For lasers Al mirrors problem is ~8% absorption
e Film gets damaged by laser energy absorbed
e Typical limit 50 W/cm? CW, 10 mJ/cm? for 10 nsec pulse
e Need to watch cleaning as they scratch easily
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Mirror Substrates
Pyrex
e Typical substrate pyrex: BK7
e Low deformation with heating (expansion coefficient 87x107)
e Good surface polish
e Typical size: 1 inch diameter, 0.5 inch thick
e Must be platinum free

e Price of substrate ~$100

Glass-Ceramic materials

e ¢g Newport's Zerodur

e designed for low thermal expansion

e Used were there must be not thermal changes

e Price of Substrate ~$130

Fused Silica (Quartz)

e High thermal stability (thermal expansion coef 6x107)
e Extremely good polishing characteristics

e 3 times price of Pyrex
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Optical Interference
e Wave nature of light results in optical interference
¢ Consider two plane wave sources of same wavelength
e Waves are Coherent: ie waves stay with same phase
e Where wave peaks/troughs add get constructive interfrence
ec.g. Waves A & B below
e Where peaks/troughs opposite get destructive interference
ec.g. Waves A & C below
e Where waves cancel get nulls — areas with no waves
e Where add get crests: high intensity (bright) areas
e Many optical effects created by this.
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Wavelength and Coatings
¢ Consider a thin dielectric film n, <<n,
e [nverting reflection from low index n, to a high n.
e Non-Inverting reflection from high index n. to low
¢ Thus interference is going to depend on what you reflect from

Less hiore
Denze Denze

Incidert Pulze
Less More
Denze ﬁ Denze

Reflected Pulze Transmitted Pulze



Inference in Thin Films
e Consider film of thickness

nt=

A
4
where t is the film thickness
e Result is a /2 wavelength path
¢ Consider a high index n. between two lower index n, and ns
e First surface: inverting reflection from low index n, to a high nc
e Back surface: Non-Inverting reflection from high index n. to low
e Result is constructive interference
e This is what happens in soap films
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Wedge Interference
e [lluminate with a monochromatic light source (e.g. laser)
¢ Bottom surface: inverting reflection from low index n, to a high nc
¢ Front surface: Non-Inverting reflection from high index n. to low
e Goes through destructive interference when

(2j+1)a
4

=

e Where j 1s an integer >=0

e Creates parallel lines of bright and nulls space by A/2
e [f measure horizontal distance between nulls get slope
e Non-parallel lines show defects << A (~10’s nm)

Beam-splitter

Spacer




Soap Bubbles
e In soap bubbles film changes thickness from thin (top)
e to thick bottom
e Thickness few wavelengths
e As wavelengths go through constructive interference
see that colour

.t = 2j+1)a
4
e Where j is an integer >=0
e Get a spectrum as each colour hits max while others decline

e Wide spaced colours at top as thickness changes slowly there
e Towards bottom thick area get overlap of interference




Newton’s Rings
e Now put lens on flat plat and illuminate with monochromatic light
e Get Newton’s Rings: circles of light
¢ Consider a lens of Radius of Curvature R
e et x = distance from center
e et d = distance between lens surface and plate
e Now relationship between these is

x> =R>-(R-d)’ ~2Rd

e Since R>>d
e Thus the mth order maximum occurs when

2d,, =(m+lj/1
2

¢ And the position of the mth bright ring is

B

¢ And the dark rings are at X, =+ mMAR

¢
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Figure 9.23 A standard setup to observe Newton's rings



Quarter Wavelength Anti Reflection Coatings
e Thin dielectric layers on substrate with even higher n
® Ny << n; << ng
¢ Front surface Inverting reflection from low index n, to a high nc
e Back surface: Inverting reflection from high index n. to a high n,
¢ Destructive interference of waves due to added path when

where t 1s the film thickness
e Called Anti-reflection (AR) Coating
e Equal reflections (full compensation) when

e Often put AR coatings on eyeglasses
e Note this is the opposite of soap film where n. is the highest n
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SCHEMATIC REPRESENTATION of a single layer anti- 2 .
reflection coating.



Enhanced Dielectric Mirrors
e [f have multiple layers of alternating high/low index
e Enhanced Reflectance (ER) Coating

i)

where ns = substrate index

ny = high index layer

n; = low index layer (n, << nj << ns << np)

N = total number of layers (even number in mirrors)
e Greater power than metal: 1000 W/cm? CW, 0.5 J/cm? 10nsec pulse
¢ Note: dielectric mirrors transmit wavelengths not reflected
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A SIMPLE QUARTERWAVE STACK.




Broadband ER Mirrors
e Can broaden width of reflectance stack
e Make two stacks tuned to different wavelengths
¢ Alternately modify layer thicknesses to tune

Effective Broadband High Reflection Coating

e

incident
wavelength \,
h’

NOTE: Providing at least one component is totally
reflective then the coating will not transmit
light at that wavelength.

Non-Effective Broadband Antireflection Coating
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NOTE: Unless every component is totally non-reflective,
some reflection losses will occur.

I totally reflective component for A,

[l partially reflective component for \,
|| || totally non-reflective component for )\,

SCHEMATIC MULTICOMPONENT COATINGS with only
one component exactly matched to the incident wavelength, ..



Broadband Dielectric Mirrors
e Important for lasers that emit many wavelengths

eg Argon from 514 nm to 400 nm

e Note: different coatings for 45° or perpendicular

e Mirrors Degrade with organic coats
e Must be cleaned with solvent eg acetone
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Optical Bandpass Filters
e Related to Anti-reflection — multi layer to pass only a narrow band
e . and odd number of layers, Top nj, next n, bottom is n;
e Also called optical notch, laser line or Fabri-Perot (FP) filters
e Used were only want to see a narrow band of light
e More layers higher rejection and narrower line
e Can get up 20 OD rejection of other waveleng
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Lenses & Prism
e Consider light entering a prism
¢ At the plane surface perpendicular light is unrefracted
e Moving from the glass to the slope side
light is bent away from the normal of the slope
e Using Snell's law

nsin(e)=n"sin(¢")
1sin(¢')=1.75sin(30° )= 0.875

@' =arcsin(0.875)=61°

Figure 2.5 A translation into the ray language of Figure 2.3



Prisms & Index of Refraction with Wavelength
e Different wavelengths have different index of refraction
¢ Index change is what makes prism colour spectrum
e Generally higher index at shorter wavelengths
e Most effect if use both sides to get max deviation & long distance
e Angle change 1s ~ only ratio of index change — 1-2%
e Eg BSC glass red 1.5, violet 1.51, assume light leaves at 30°

Red ¢r = arcsin [1.5 sin(60)] = 48.59°
Violet ¢y = arcsin [1.51 sin(60)] = 49.03°

e This 0.43° difference spreads spectrum 7.6 mm at 1 m distance
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FIGURE 9Y

Graphs of the refractive indices of several kinds of optical glass. These are called
dispersion curves.
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Lens
e Lens is like a series of prisms
e Straight through at the centre
e Sharper wedge angles further out
e More focusing further out
e Snell’s law applied to get the lens operation
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Figure 2.6 Rays corresponding to wavefronts incident upon a succession of small prisms



Focal Points

e Two focal points depending on surface & where light comes from
e Primary Focal Points are
e Convex (a) where diverge beam forms parallel light
e Concave surface (b) where light appears to converge

when it is converted into a parallel beam
e Secondary Focal Points
e Convex (c) where parallel beam is focused
e Concave surface (d) where parallel light coming in

appears to diverge from.

FIGURE 3B

The focal points F and F’ and focal lengths f and f’ associated with a single
spherical refracting surface of radius r separating two media of index » and n’.



Types of Lenses
Convex
e (a) Biconvex or equiconvex
e (b) Planoconvex
e (c) positive meniscus
Concave
e (d) biconcave or equiconve
e (¢) Planoconcave
e (f) negative meniscus

¢ Primary and secondary focal points very dependent on type
¢ Planoconvex/Panloconcave easiest to make
e Two surface lenses about twice the price

Converging or positive lenses Diverging or negative lenses

FIGURE 3A
Cross sections of common types of thin lenses.



Fresnel Lens
e Classic lenses are are spherical
¢ Lens with thickness remove are Fresnel lenses
e Cheaper, but can be lower quality
e Reason: diffraction effects at step boundries
e Often made of low cost moulded plastic for that reason
¢ Biggest ones use for large lighting systems
e cg lighthouse lamp optics (made of glass)

Mounting rim

(a) (b) (c) nght house
fresnel 1_3_1_m .

Figure 2.8 Metamorphosis of a succession of prismlets into a Fresnel lens
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