The Atom and ""Quantized Energy of Electrons™
¢ Recall the basic atomic structure:
e Positive charged nucleus of protons and neutrons
e Electrons in set orbitals around the core
e QOuter electrons are the valence electrons, control conduction.
e Electrons can only exist in "quantized" energy unites,
e ie: electron may occupy only specific "quantum energy levels."
e Each orbital represents one of those "quantum energy levels"
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Fig. 2.2 Schematic representation of an isolated Si atom.



The Band Theory: the Basis of Semiconductors
e conductive behaviour of a material dependent

electrons beign altered by presence of
crystal structure of atoms through which e’s move.

Simplified Case:

e Consider each atom to have given up an electron,

e get a "sea of electrons" with a periodic structure of atoms.
e Material confines the e’s within a given volume:
the crystal structure.

e confined volume creates "quantize energy levels"
for the electrons within the "electron sea.”

e three dimensional nature of the crystal structure of atoms
creates certain number of "states"

e Each electron can exist at a given energy level
e Called "Density of states": D(E) per unite volume.

D(E) ="

where n is the number of electrons per cc.
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Density and Fermi Distribution

e number of states vary with the energy level,
e At absolute zero temperature (T = 0 Kelvin)
e the electrons fill up density of states
level is number of states equal to number of electrons
¢ Point called the "Fermi Energy level" EF.
e At higher temperatures some electrons above Fermi level

Fermi Distribution

e Above absolute zero the presence of heat adds energy
e some electrons occupy higher energy states.
e Changes the distribution D(E) by multiplying
by the "Fermi Function", which depends on the Fermi level:

D(EYF(ER) = D(EY ——————
1 + exp( FJ

kT

Where kB = Boltzmann’s Constant = 1.3805){10—23 J/K
= 8.617x10™ eV/K
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The Creation of Energy Bands
Simplified Case:

e Again consider each atom giving up an electron,
"sea of electrons" with a periodic structure of atoms.
e The atoms become positive ion cores
e produce a periodic electric field behaviour
e a periodic "potential energy distribution”
(energy with potential for doing work on the charges near it).

Simple linear example
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Fig. 6=16. Types of energy levels in a linear crystal lattice.




Energy Bands and the Band Gap

e periodic field change the "quantize energy levels”

for the "electron sea."
e three dimensional position of the crystal structure of atoms

creates first distorts the density of states, D(E).
e effect is to create "bands" of allowed energy states.
e For certain crystal structure/atom combinations some of
those bands are separated by "energy band gaps";
e Band Gaps are forbidden energy levels: no electrons can exist.
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Conductors, Insulators and Semiconductors

e What determines conductor, insulator and semiconductor?
e position of the "Fermi Energy" level within those bands
and the size of the "band gap: Eg
e The lower band level is called the "Valance Band"
e The upper band level is called the "Conduction Band"
e NOTE: In electronics to draw the band structures
as the straight lines.
e At T = 0 K here are some types of structures
e Good conductors: Copper, Sodium:
many empty states below Eg
e Modest conductors: No bandgap
(Conductance & valence overlap)
e Insulators: Full Valance band: large Eg
e Semiconductors: Valance filled but Eg small
EF within the band gap.
small band gap: relatively easy to move electrons
from the valance to the conduction band.
e conduction only occurs when there are empty states
at adjacent energy levels.

PRI B Empty band Empty band
Empty band PR ety overlaps

Empty band
valence band mpty ban

70777 R ) Foﬁl

Furbidden I , . : / /// %{ . Forbidden .

m¢ -- Full valance :l il F’
s e |

: band ¥
g i band e
Full states I ] i !

Figure 4.3 Simplified energy band diagrams for conductors, insulators, and semiconductors.
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Semiconductors and the Band Gap

e Width of the Band Gap in terms of electron volts,
e energy an electron gains by being accelerated
through a one volt electric field.
Typical Semiconductor band gaps
Germanium 0.67 eV
Silicon 1.11 eV
GaAs 1.40 eV
Diamond 5.60 eV
e NOTE: as the T increases, the band gap tends to change,
usually becoming smaller in most materials.
e Usually use relative position in band diagrams, setting:
e The Valance Band Edge Ev =0
e The Conduction Band Edge Ec = Eg
e measure the energies (eV) because
most useful when doing the calculations on real devices.
e 1 eV = 1.609x10"” Joules
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Fig. 2.8 Explanation of the distinction between (a) insulators, (b) semiconductors, and
(c) metals using the energy band model.



Energy States and Absolute Zero

e Absolute Zero (T = 0 K):
NOT the temperature where all motion ceases!

e clectrons still circle the nucleus of an atom at absolute zero.
Why?

e Energy only emitted from atom, when the electrons jump
from a higher energy state to lower state.

e Energy absorbed from the environment by the atom
e’s jump from a lower state to a higher state (excited) state.

e Absolute Zero: point where all the electrons in
lowest possible energy states.

e For an atom with "N" electrons, the "N" lowest energy orbitals
are all filled.

e Thus no energy can be radiated from the atom
because no lower states to make a transition ("jump") to.

e lowest energy that causes a change in the system causes
transition from the "Nth" lowest states, to the "N+1th" state.
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Fig. 6-20. Density of energy states of Fig. 6-21. Distribution of free _e]ectrons
free electrons in a solid. among energy states in the conduction band.



Creation of Current Carriers in Semiconductors.

e For current to flow must have adjacent energy states
into which the electrons (carriers) can move.
e Voltage applied to semiconductor sets up an electric field
e E field causes the electrons to gain energy,
e moves them to a higher energy state.

Two way conduction can occur:
e ecxciting electrons into energy states in the conduction band.

e Jots of adjacent energy states for electrons to enter.

e removing electrons from energy states in the valance band,
e leaving a "hole" in the valance band.
e Adjacent states filled with electrons

can then move their electrons into those "hole" states.
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Electrons as Negative Charge Carriers

e electron elevated by energy conduction band

e no longer bound to its atom: floating "free"
like the "sea of electrons” in metals.

e electrons bound to an atom do not act as carriers

e Free electrons act as mobile negative charges.

e application of an electric field (E)
electron moves opposite direction to E "field vector"
because the E field goes from + charge to - charge.

e density of free electrgns (n) per unite volume
n measured in cm'?’

e symbol "n" stands for "Negative"

e density of atoms in silicon 5.00){1022 per cm’>

e Common values for nin Si 10" to 10 cm_3

o electrons = mobile~charges

L
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Hole’s as Positive Carriers

e Hole is an absence of electron compared
to crystal in the ground state.

e Hole an empty "bubble" in a sea of electrons.

e Each time an electron moves in to fill the bubble,
it leaves behind a new hole

e E field applied e bound to an adjacent atom
moves opposite to E direction, and fills hole.

e leaves a hole at that atom,
effectively moving hole in field direction

e Bound e’s filling holes, while bubble ripples on

Motion of
bound electron



Hole’s as Positive Carriers

e Energy band diagram a "hole" an unfilled state
below the Valance band edge Ev.

e Thus a hole acts as a mobile positive charge.

e density of mobile holes (p) per unite volume 18:
p measured in cm’

e symbol "p" stands for "Positive"

e Common values for p in Si are 1019 t0 101 cm™
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Effective mass

e Crystal fields changes the effective mass of charges
e When E field applied to charge then

dv
F= —-qE>— m,* g
e where mp* = effective mass of electron
® mp™ = effective mass of hole 21
e where mQ = rest mass of electron = 9.11x10 ™" kg
e hole and electron effective mass are different
e Effective masses changes with materials
e Masses are different in different crystal directions
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Figure 2.9 An electron moving in response to an applied electric field (a) within a vacuum, and
(b) within a semiconductor crystal.



Increase the temperature:

e By Fermi distribution, as T increases
electrons in the conduction band must increase
while spaces appear in the valance band.

e This is called the intrinsic carrier level.

n=[DE) — |z
E, 14 exp( kBTF]
E, B, _ 1
p =D, (EX1 ~ FERNME = [D(E) 1 =75 | dE
o oo 1
L o exp( kBT ]_

e Why does a 1-F(EF) factor appear for the hole?
e Fermi function calculates the number of electrons present.
e Want the empty places left by electrons not being there.
e An important number to remember:
at room temperature (20 C) kBT = 0.025 eV = 25 meV.
e This is the spread of the Fermi function at that temperature.



Density of States functions

e Real shape of bands is very complex
e Different for different materials
and different directions
e Actually have "heavy holes & electrons" in some directions
e Note Si, GE are "indirect bandgap”
minimum of Conduction is not opposite Valance band peak

e GaAs is direct bandgap

e Si
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Fig. 5 Energy-band structures of Ge, Si, and GaAs, where E; is the energy bandgap.
Plus (+) signs indicate holes in the valence bands and minus (-) signs indicate electrons
in the conduction bands. (After Chelikowsky and Cohen, Ref. 17.)



Density of States Approximation
e Near the band edges D(E) has parabolic shape
e Shape is function of effective masses
e Thus Conduction density of states (E Ec )is
1
m, #[2m E—EQ "
°h’

e Thus Valance density of states (E Ey )is

D(E) =gE)=

1
my2m(E, ~ E)I”

D (E)=g,(E)= 55

Figure 2.14 General energy dependence of g.(E)and g, (E) near 11_1e band edges. g.(E) and g, (E)
are the density of states in the conduction and valence bands, respectively.



Fermi and Number of carriers

e As Fermi Energy moves in band ratio of n to p moves
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Figure 2.16 Carrier distributions (not drawn to scale) in the respective bands when the Fermi level
is positioned (a) above midgap, (b) near midgap, and (c) below midgap. Also shown in each case are
coordinated sketches of the energy band diagram, density of states, and the occupancy factors (the
Fermi function and one minus the Fermi function).



Density of States

e From the equations the effective density of states:
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e For Silicon1 9at 300 K:
Nc = 2.8x10° 7 cm
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Figure 2.15 Energy dependence of the Fermi function. (a) T — 0 K; (b) generalized T> 0K plot
with the energy coordinate expressed in kT units.
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Figure 2.19 Definition of degenerate/nondegenerate semiconductors.



Intrinsic Semiconductor

e For an intrinsic semiconductor under steady state conditions:
n=p=n i

e Where nj is the intrinsic carrier densuy

e For Silicon at T=300 K nj = 1.5x10' ¢

e The Fermi Energy EF lies near the band gap centre,

e point where number of electrons in conduction band equals
the number of holes in the valance band.

e Free electrons are always falling into holes,
thus filling states in the valance band
(and removing electrons from the conduction),

E(. EL‘ EL‘
Eg
————————————— E; s e et e e -
Eg
— E, E, E,
Intrinsic n-type p-type

Figure 2.18 *“At a glance™ representation of intrinsic (left), n- type (middle), and p-type (right)
semiconductor materials using the energy band diagram.



Laser Beam Interactions with Solids
e In absorbing materials photons deposit energy

_he
A

where h = Plank’s constant = 6.63 x 10°%* J s
c = speed of light
e Also photons also transfer momentum p

E =hv

pzz

e Note: when light reflects from a mirror
momentum transfer is doubled

e eg momentum transferred from Nd:YAG laser photon
hitting a mirror (A= 1.06 microns)

_h_2(6.6x107*)
-1 1.06x10°®

e Not very much but Sunlight 1 KW/m? for 1 sec
has 5x10** photons: force of 6.25x10° N/m?

e Proposed for Solar Light Sails in space (get that force/sg m of sail)
small acceleration but very large velocity over time.

=1.25x10"*"kg m/ s

e Russian Cosmos 1 solar sail
Failed to reach 500 km orbit June 2005




Absorbing Solids
e Beam absorbed as it enters the material
e For uniform material follows Beer Lambert law

I(z)=1,exp(—az)
where o = B = absorption coefficient (cm™)
z = depth into material
e Absorption coefficient dependent on
wavelength, material & intensity
e High powers can get multiphoton effects
e Rayleigh scattering, Brillouin scattering, Raman scattering
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Fig. 2.1. The phase and amplitude of an electromagnetit ray striking an air/solid
interface and undergoing reflection and transmission.



Single Crystal Silicon
e Absorption Coefficient very wavelength dependent
e Argon light 514 nm o =11200/cm
e Nd:Yag light 1060 nm oo = 280/cm
e Hence Green light absorbed within a micron
1.06 micron penetrates many microns

e \Very temperature dependent
e Note: polycrystalline silicon much higher absorption

> at 1.06 microns o = 20,000/cm
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Absorption Index
e Absorbing materials have a complex index of refraction

: C
n.=n-—ik V=—
n

c

where n = real index of refraction
k = absorption index or extinction coefficient
e The Electric field then becomes

Et,2) = iAEOexp[j(— ot + ””CZH

C

E(t,z)=E, exp(i{a)t — a)_nzD exp(— a)_kzj
C A

e The k can be related to the absorption coefficient by

_Ark
A

where wavelength is the vacuum value

(04

Table 2.2. The optical functions of ¢-Si (n and R, €
together with the optical absorption coefficient «,

and €,)
and the

calculated normal-incidence reflectivity R at several wave-
lengths. Also shown are the parameters relevant to the empiri-

cal fit to «(T) [2.10,11]
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Illuminating the semiconductor
e Absorption moves electrons into the conduction band
e If photon energy is greater than the band gap.
e |_eaves a hole in the valance band.
e Called creating an "electron hole pair".
e Carriers in both bands are mobile, free to move
e Energy of the light in eV use the following: Photon energy
E_hye hc _ 1.240 oV

where h = Plank’s constant = 6.63 x 10°%* J s
¢ = speed of light
where A = light wavelength in microns
e Example: for silicon E; =1.12 eV
e Makes light of 1.1 microns the longest wavelength absorbed
Near infra red: red 0.75 microns, green light is 0.5 microns.
Example: for GaAs E; =1.45¢eV,
e ) =0.855 microns longest wavelength absorbed
e Almost visible red
e ). = creation of electron hole pairs from absorbed light
e The process by which solar cells operate.
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Optical Absorption and Crystal Momentum
Energy band density diagrams plot Energy vertical
Horizontal axis is "Crystal Momentum™ k
This is the momentum carried by a phonon
Phonons are acoustic bundles with momentum
Both photons and phonons have momentum
L
27

For the phonon this is the momentum

where ¢ = the velocity of light (sound) in the crystal
and o = the angular frequency of the phonon

w = 24
For the phonon f is the sound frequency

C is the velocity of sound in the crystal
The two momentums add vector wise in an interaction

Photon w

K Phonon @

Figure 2 Inelastic scattering of a photon of wave-
vector k, with the production of a phonon of wave-
vector K. The scattered photon has wavevector k'.

Figure 3 Selection rule diagram for the process of
Fig. 2. If k = K, the triangle is isosceles. The base of
Photon w the triangle is K = 2k sin ¢.




Optical Absorption and Band Structure

Direct band gap semiconductors
Adbsorb and emit photons directly
More efficient at light adsorption and emission
eg GaAs Silicon is "indirect band gap" semiconductor
Indirect bandgap Semiconductors
Requires a Crystal momentum k change before light absorption.
k = acoustical energy to be present in the crystal
Only "direct band gap" materials can become light emitting diodes,
Direct band gap make the most efficient solar cells

but indirect work as well

CONDUCTION BAND

5

0 k
Fig. 26 Optical transitions: (a) and (b) direct transitions; (c) indirect transition involving
phonons.



Ilumination of a Semiconductor

e if a N type semiconductor is illuminated by light,
create excess holes and electrons
e when the light is turned off the holes will decay as:

iy o'y
dt N dt B Th

e Solving this 1st order DE get the exponential solution
e boundry conditions: at t=0, p’n added, at infinity, p=pn0,

, t
Py =Pnot+ P n€XP(— ?)
h

Apn“) =

Figure 3.25 _Solution to Sample Problem No. 1. Photogeneration-induced increase in the excess
hole concentration as a function of time.



Quasi Fermi Levels

e With injection number of carrier changes from intrinsic
e Define a "Quasi Fermi level" to represent this

e Different for holes and electrons

e Using the Fermi level equations from before

"n

n;

EF—EI=kBTln

e Thus the n quasi Fermi 1s
Fy=E;+kgT1 i
=g Trpd 0,

l

e Thus the p quasi Fermi is
_ Pn
Fp—Ei+kBTln ",

¢ This becomes important in devices
e Can see that quasi Fermi changes for the illumination case
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Figure 3.28 Sample use of quasi-Fermi levels. Energy band description of the situation inside the
semiconductor of Sample Problem No. 1 under (a) equilibrium conditions and (b) nonequilibrium
conditions (# > 7).
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