The PN Junction Diode
¢ PN junction diode is the basis of all semiconductor devices.
e Consider a block of P doped semiconductor,
e Attach it to block of N type,
e Forms an "abrupt"” or "metallurgical™ junction.
e Diffusion of electrons from N side, holes from P side Majority
Carriers diffuse into minority region
e This sets up and electric field within the junction
e Result is a one directional, diode like 1/V curve
e How is this obtained?
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Photolithography method
e Grow an glass (oxide) on wafer (heat silicon in steam or air)
e Use photolithography to define (pattern) an area
e Etch away glass to create opening
e Use diffusion or lon Implantion to create junction
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Potential Energy and Band Bending

* Energy band diagrams show change in E with position
* Electric fields in some areas my "bend" the bands
* Potential Energy (PE) shown by this
relative to reference energy Eref
* Change in partical position changes PE to Kinetic Energy
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PE and Voltages
e Related PE to the electrostatic potential (V) by

PE=—qV=E,—E,;

_ (B¢ — Eref)
q
e Definition V related to the Electric field by the gradient
E=-VV
e Thus
g 1dE..

q dx



PN Junction Diode

e For an abrupt junction

e (a) initially diffusion forces: cause holes near junction
to diffuse from the P material to the N type,

e while electrons diffuse from the N type to the P.

e depletes the carriers in junction area,

e called the "depletion region" or the "Space Charge Layer"

¢ (b) injected excess minority carriers from the diffusion current
(hole in the N type, electrons in the P type)

e minority carrier decays due to the recombination lifetime

e (c) diffusion leaves neg ion cores in P type near junction,
positive ion cores in the N type.

e ions create an E field which balances out the diffusion forces.

e E field is a reflection of the difference
in the Fermi Energy levels between the P and N.
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E field in the PN junction
® Build up of charge can be related to E field by

® where € ( = permitivity of free space = 8.854x107 14
® £ 1 is the relative dielectric constant
€r=11.9 for silicon

(also called € g, K or Kt in some books)  (book uses e
The total charge at any point is

p=q(p—n+ND—NA)



PN Charge Density, Carriers & E Field
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Fig. 2.5 Depletion approximation to the step junction.



The Unbiased diode

e difference in the doping levels generates
a difference in the Fermi on the P and N region.
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e unbiased condition Fermi energy must be at same potential

throughout the device,

e thus the potential energy levels must change
so that the EFN matches the EFp.

e This creates a potential energy barrier called:
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Fig. 2.4 A p-n junction energy band diagram at thermal equilibrium.



Built in Potential Barrier
e Since the minority holes in the N region are

2
nj

Pn=7_
e this gives the "Boltzmann relationship"

knT
_"B In Pp0
q Pno

Yo

e Similarly for the electrons

kBT nno

= In
Yo q n,50

e where the zero subscript on carriers represents

the densities well away from the junction.
e Note: book uses Vbi for potential; most others use ¥
e This built in potential creates a voltage barrier

to the flow of current in the diode.
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Fig. 2.3 Depletion region electrostatics.



Example of Potential Barrier

e Example: For Np = 10" and NA = 17
what is the potential barrier height at 300 K in silicon

15,414
Yo =0.0259 In| — 210 1= 0.52 v
[1.5X10']

e This represents the voltage barrier that must be overcome
before the diode can be "turned on".

e Thus the Fermi energies appear as the fundamental
characteristic of operation of the PN diode.



Depletion Approximation

e diffusion of carriers sweeps the charges out
of "Space Charge Layer" (SCL)
e making a depleted region.
e approximation is made that since there are few carriers
there 1s no recombination in the Space Charge Layer.
e Thus only the ionic cores are present
¢ SCL extends from -xp to Xp
e Assume dopant level much greater than intrinsic level
e (a) Thus on P side

NA>np p=—gNy —prSO
e (b) Thus on N side
Np>p, pP=qNp 0<x<-x,

e (c) Charge density is zero in bulk (outside SCL)
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E field in the Space Charge Layer

e the requirement that net charge be the same on
either side junctions requires:

qxpN A =9x,Np
e Which reduces to the important depletion relationship
xpN A =Xx,Np

e E field created by charges can be though of as the field
between the two charged parallel plates of a capacitor
e then for the space charge layer the E field is linear:

0 9N, _‘fN_D
E(x)_ASrSO 87'80( £.£0 (x+xn)

e where A = the area of the junction
€ (0 = permittivity of free space = 8. 85x10"1* F/cm
€ r 1s the relative dielectric constant
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Width of E field in the Space Charge Layer

e For points within the space charge layer
since the potential (voltage) across the junction is given by

X

0 n
Vo = | EG) dx + | B(x) dx

e Since

e Hence

2 2
B gN AYp N gNpx,
 2egy 28,8
e Substituting in the charge balance

Np
xp =xn N—A

Yo

2 2 2
gNpx,  gNpx,

Yo = +
07 2e80N, 28,8
e Solving for the N side width

1

B |:28r801|fo N A 2
g |Np(Ny +Np)




Width of the Space Charge Layer
e Solving for the P side width by subsititution
|

n= q NA(NA + ND)

® Then let the width of the space charge layer be W]

WCl:x

) p+xn

and solve for

1
2e,£0Wy (Ngy +Np |2
WSCz:xp+xn= NN
9 AND
e Note the charges separated by a distance creates an

effective capacitance
¢ C varies with the dopant level and junction width.




Example Width of Space Charge Layer
e Example: for NA = 10! and Np = 104 cm™
e then find the width of the space charge layer.
e As before
10151014

[1.5X1019)

Yo =0.0259 ln[ ZJZ 052V

e Then the widths are

1
. 2€,£0V) Np 2

|
14 5 2
_1211.88.85X10 "7 0.52 10 _ —4
X, = 19 14,15 1 =2.5X10 " cm
1.6X10 10°7°(10° "+ 10" )

X, = 2.5microns

N 14
B D -4 10 )
Xp =Xy, -—NA =2.5x10 —1 015 0.25microns

1
—14 k5 14 \[2

[ _
5 1.6x1071° 1091014

Wscl = =2.Tmicrons



Voltage within Space Charge Layer

¢ For points within the space charge layer,
since the potential (voltage) across the junction is given by

Y n gN x2 qNDx2
Vo= | Edx+ | Edx=""2P 7D
2e.£ 28,,30

X, 0

e | et the width of the space charge layer be Wgcl. Since

e Thus substituting into the potential equation gives

1
Np 2e,80y (Ng +Np |2
Wscl—xp+xn—xn[l+N—A]—[ . NN,

e Note the existence of such charges separated by a distance
creates an effective capacitance
e C varies with the dopant level and junction width.



Example of E field within the junction

e Example: for NA = 10" and ND = 10'* cm™ then
(a) find the width of the space charge layer.

(b) calculate the electric field at the junction

e (a) As before

10151014

Yo =0.0259 In 0= 052V
1.5X10

14 15, 1014\
W, =| 118 885X10 = 0.52 {10 = 1(1)4 2 73K10°% cm = 2.7 pm
1.6X10™ 1010

e (b) At the junction (x = 0) then

1% —4
2 sel  _ 2.73X10 _ 2.48X10_4
" Np 104
[l 1+
7R
- 19 (14
E©) = Ly =121 1 7%10 = 3.79%10% Vi
€re0 1.05X10

e The electric field is strong in the junction.



Currents in the unbiased PN diode

e There must be no current flowing without an applied voltage.

¢ Thus currents must balance in each region.
e The junction electric field creates a drift field of holes
and electrons that exactly compensates the diffusion current.

e Thus in both regions:
Jd?‘{ft:_‘]diﬁc but Jdn-ﬁio

e In the Energy diagram electrons in N type conduction band
above P type conduction band have no barrier to overcome

e These can move across the depletion region.
¢ Holes in P type valance band below the N type valance band
have no barrier to overcome

e move across the depletion region.
e These are the energy states that drift and diffuse

across the barriers.
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Applying bias to the PN junction

e When you apply a voltage VA to the diode

e Voltage across Space Charge Layer different

e First there is contact potentials at metal contacts
e VN on N side, Vp on P side

e When no voltage applied (no current flows)

l|I=VD=VN+ VP

where VD = applied junction voltage (Book uses Vj)

Depletion region
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(a) Thermal equilibrium Vj =¥ (b) Forward bias VA >0, Vj. = Vbi = VA

Fig. 2.6 Junction potential: (a) thermal equilibrium, V; = V,;; (b) forward bias V, > 0,
Vi = Vi — Va.



Applying bias to the PN junction

e If current flows there is resistive losses in diode as well
VD - VN+ VP— VA+I(RN+RP
e The effective potential at the junction 18
V=vp-Vp

e As the diode is forward biased, the potential barrier shrinks
e as it is reversed biased the barrier grows larger.



Applied Bias and SCL Width in PN junction

e From the Possion solution to the junction width

can just substitute the new potential into the junction
e the widths and potentials of the space charge layer to be:
e Thus on the p side

—prSO
1
| 2820(¥p — VD) Np 2
P q N,(N4+Np)
gN
V(x) = e 4 (xp + Jc)2
gN
E(x)=— %(x +Xx,)



Applied Bias and SCL Width in PN junction
e On the N side of the SCL

0<x<x,
1
gN
V) = (Wo — Vp) — 5, r?o(x” ~ 2

Ex) = Zi\g; (xn —x)

e The combined SCL width changes as
1

W e 2e.£0(Wo—Vp) [Ny +Np |2
scl — q NAND

e as forward bias applied: space charge layer becomes smaller,

e while as the reverse is applied it becomes larger.

e thus capacitance of diode changes with the applied bias,
decreasing with reverse bias.



Real Changes in Junction width for applied Voltages
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Forward Applied Bias and PN junction

e When VD >0 and VD <y 0

e SCL width is reduced on both sides

e E field is reduced by the added potential
e Potential barrier height is reduced

e Thus easier for carriers to move acrnce
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Reverse Applied Bias and PN junction

e When VD < 0

e SCL width is increased on both sides

e E field is increased by the added potential
¢ Potential barrier height is heighened

e Thus harder for carriers to move across
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Applied Bias and PN junction
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Applied Bias PN Energy Diagrams

Electron energy

Hole energy

Fig. 3.3 Energy band diagram for forward bias and at thermal equilibrium.
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Applying Forward bias to the PN junction

e apply a voltage to the diode: drift current increases

e more holes are carried from P region into the N region,

e where they become minority carriers

e similarly electrons go from major carriers in N region
to minority carriers in the P region.

® Thus you are injecting minority carrier into each region.
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e Any large diode is a photodiode

Photodiode and light

e Light creates electron hole pairs as it is absorbed
e The E field at junction separates the charges
e Holes (p) go in direction of E field

e ¢’s (n) opposite E field

e Result is charge builds up on the junction
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Generation and the Reverse Current
e Previously assumed no generation in the Space Charge Layer
¢ Within space charge layer the temperature electron-hole pairs
e \WWhen reverse biased diode very few carriers in the junction,
e Thus carriers generated within the junction dominate.
e Generated carriers swept out of junction by the electric field
e Holes pulled to the N side and electrons to the P
e There recombine with the majority carriers
e Create an additional current
e Called the "Recombination/Generation current")
e Same recombination behaviour as in bulk
e Generation rate of these carriers is given by:

oM
27,

e 1o IS the effective lifetime
e Average of the electron and hole lifetimes.

Z'n+Tp

T, =

2




Total Recombination/Generated Current in Junction
e Thus total recombination/generated current in junction is
e Amount generated within the space charge layer
e Times the charge of the carriers g, and the junction area A:
gAN.
IRG = 22’I Wscl
e Recall as reverse bias is increased
e space charge layer width W, becomes larger
e Hence recombination/generation current becomes more important.
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Fig. 4.8 Recombination as an additional current to the ideal diode in the depletion region under
forward bias.



Diode Equation with RG
e Diode equation now becomes:

qVp qVp,
| =|1_e |~ e -1
|: S Xp( kBTj+ " Xp(ZkBTj :|

e Forward biased diode the Irc term can often be neglected

e For silicon it is actually the dominate factor at room temperature
e Hence reverse leakage is much higher than expect

e Thus cannot measure reverse current and stick in diode equation
¢ Note as temperature drops closer to ideal
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Fig. 4.1 Reverse-biased deviations from ideal.



Forward Bias Deviation from Ideal Diode Equation
In practice in silicon shows some modification from the ideal

| = |{exp(%j —1}
nkgT
Where 1 is the ideality factor

Measure of how ideal the diode is
For modern silicon n ranges from 1.0 to 1.06 for 5 decades of |

In/

Slope _4
Sy

Ideal when n = 1

10 (measured)

Iy

Fig. 4.7 Forward bias deviations from the ideal.
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