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Abstract 

While the bending sequence planning has been intensively studied, design of the 

motion path of a sheet metal part in the bending operation tends to be ignored by researchers.  

Because during the bending operation, the space for maneuvering a sheet metal part is very 

small, collisions between the part and bending tools are likely to occur. When a robot is used 

to handle the part, the role of an automatic path-planning tool becomes more significant.  In 

this study, an evolutionary path-planning approach for robot-assisted handling of sheet metal 

parts in bending is firstly proposed and implemented. The proposed approach globally 

searches the motion path space to identify feasible paths. Collision detection algorithms 

based on segment intersection are used to check if the generated paths are feasible or 

infeasible. This method can automatically design feasible handling operations for a robot. 

Simulation examples on a simple “V” shaped part and a part with multiple bents demonstrate 

that the approach is efficient and practical.      
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Introduction 

            With the development of the manufacturing automation technology, the sheet metal 

fabrication applies CNC equipment such as a CNC press brake [1] (see Fig.1), which enhances 

the productivity for small batch manufacturing. In such a system, a programmed robot is 

often used to handle materials and/or parts during the sheet metal bending process [2] (see Fig 

2).    

In the robot-assisted sheet metal bending, the most difficult task is to plan the bending 

sequence[3]. A feasible bending sequence should ensure that the robot grasps the sheet metal 

part and moves it to a dedicated position without any collision with tools between the 

bending operations or during the feeding operations[4].  Many researchers focused on the 

bending sequence planning problem and proposed some methods and algorithms to generate 

an “optimal” sequence[3-7], but few people have studied the problem of sheet metal part’s path 

of motion in the environment of a bending machine. In fact, the path planning of the sheet 

metal part should be one of the components in bending sequence planning since it can be 

applied to detect the feasibility of bending operations. Eyal and Thomas [8] did the early work 

on the sheet metal part’s motion in 1994. They proposed a local search method based on the 

configuration space and a potential function to generate the motion path by combining special 

heuristics with the recognition of critical features of the sheet metal component. Their local 

search method, however, did not check the collision in the whole workspace between the 

sheet metal part and bending tools, therefore the method might fail to find feasible paths for 

some parts with complex shape. 

           Similar to other motion planning problems, such as the robot motion planning, the path 

planning of sheet metal parts is computationally expensive. It is in fact a NP problem[8]. 

Recent advances in machine intelligence have led to the application of modern heuristics, 

such as evolutionary algorithms, to solve the motion-planning problem. Due to their parallel, 
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global and stochastical search mechanism, evolutionary algorithms are expected to improve 

the efficiency for a motion planner. For example, Page et al. [9] applied traditional genetic 

algorithms without utilizing domain-specific knowledge to develop a robot path plan. Xiao et 

al. [10] presented an evolutionary planner/navigator (EP/N) for path planning and navigation 

that incorporates domain-specific knowledge to deal with different optimization criteria. 

Hocaoglu and Sanderson [11] proposed a multi-resolution representation for a multi-

dimensional path. Based on this approach they developed an evolutionary computation 

method for the multi-path planning and multi-dimensional planning. However, such robot 

motion planners cannot be directly applied to design the path of the sheet metal part in the 

bending operation, because these proposed robot motion planners do not consider the 

collision of the handled object with the bending machine but only the robot itself within the 

environment. Moreover, the moving space of sheet metal part with multi-bent profiles is 

comparatively small, thus collision is a critical issue in designing the motion path of the sheet 

metal part.  

          In this paper, an evolutionary path planning approach for the robot-assisted sheet metal 

handling is firstly presented. The collision detection is performed by using the simple 

segment intersection algorithm[12]. Several evolutionary operators are also set up for this 

problem. Test examples demonstrate that this approach is efficient and practical. 

 

Sheet Metal Part Path Planning Problem 

         During the robot-assisted sheet metal bending process, the sheet metal part, which 

attaches to a robot, should be able to move freely in a constrained manufacturing 

environment. This environment is constrained by the bending machine stroke, the top tool 

(punch), the bottom tool  (die), and the robot (see Fig.3). The sheet metal part path planning 

problem can be stated as follows[8]: “Given a sheet metal part, bending machine and robot, it 
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is desired to find a feasible trajectory for the robot controlled part to undergo during the entire 

bending operation”. 

           In this study, we simplify the path planning problem for the sheet metal part as a Two- 

Dimensional (2D) problem, and assume the robot has enough degrees of freedom (DOFs) to 

handle the part.  

 

Collision Detection 

           Collision detection plays an important role in the path-planning problem. When robot 

drags the sheet metal part from one location to another, we should ensure that there is no 

collision between the moving part and tools during the motion. Therefore collision detection 

algorithms are applied. A lot of collision detection algorithms in literatures can be used[11]. In 

the present study, since we simplify the problem as a 2D problem, so the sheet metal part and 

tools can be respectively considered as a group of many 2D line segments. A simple collision 

detection algorithm based on segment intersection[12] is developed to check the collisions. 

If we view a motion path as line segments defined by many node points along the path, 

at each motion node the segments of the sheet metal part should not intersect with the line 

segments of tools. If there is an intersection detected, the current motion node is thus 

infeasible; otherwise, the node is feasible.  Therefore for a path consisting of many nodes, if 

all nodes along a candidate path are feasible, the path is thus feasible; otherwise, the path is 

infeasible. The collision detection algorithm is given as below. 

Collision_detection algorithm: 

Preparation model/file: the sheet metal part model, punch model, and die model 

Input: a path (presented by a sequence of points) 

Output: if the path is feasible or infeasible 

BEGIN:        
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       1) N      � the number of nodes on a given path; 

2) Bool � a Boolean number initialized as 0; 

3)   While (n < N) do 

        4)       C_Part(P) � the configuration of sheet metal part at node P; 

       5)        If ( intersection between C_Part(P) with tools)  

6)   Bool � Bool+1; 

7) EndWhile; 

       8) Output Bool; � Bool=0 indicates a feasible path; otherwise an infeasible path 

END 

            In the proposed evolutionary path planning approach, the above collision detection 

algorithm is developed to check if the nodes on a path are feasible or infeasible, and search 

for feasible paths.  As the search for a feasible path is challenging and computationally 

intensive, a special evolutionary algorithm is designed and implemented in this study. 

  

Evolutionary Path Planning 

An evolutionary algorithm normally consists of three important components: the 

encoding scheme, fitness function, and evolutionary operators.  The encoding scheme and 

fitness function transform a real physical problem to the “language” of an evolutionary 

algorithm.  The evolutionary operators mainly influence the efficiency and convergence of 

the algorithm.  Following sections will describe the three components of the proposed 

evolutionary approach for the sheet metal path-planning problem. 

 
Encoding Scheme 

            In current study, a “real” scheme is used to form chromosomes[10]. A chromosome is 

defined as an ordered list of path nodes as shown in Fig 4.  Each node of a path, i.e. gene of a 

chromosome, is presented by the “real” x and y coordinates at the node, its rotation angle θ, 
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which denotes the rotation of the sheet metal part with respect to a fixed global coordinate 

system, and a Boolean variable b, which indicates if the given node is feasible or not.  At 

each node on the path (motion node) defined by (x, y, �), collision detection will be 

performed. If no collision between the sheet metal part and bending tools, this node is 

denoted to be feasible, otherwise, it is infeasible. 

 
Fitness Function 

  To measure the feasibility of a given path, each path will be assigned a “fitness” 

value.  For the sheet metal part path-planning problem, the fitness value of path P is defined 

by Eq. (1). 

            Fitness = fea_N(P) / N(P)     (1) 

where  fea_N(P) is the number of feasible nodes of path P; N(P) is the total number of nodes 

of path P. 

             Thus, the fitness value of a candidate path should be 1.0 if the path is feasible; for 

any infeasible path, its fitness value is between 0.0 and 1.0. 

 Having setting up the coding scheme and fitting function, the goal is to search for 

feasible paths having a fitness value equal to 1 through evolutionary operations. 

 
Evolutionary Operators 

            Several evolutionary operators are set up, which include one reproduction, one 

crossover operator and four mutation operators. These operators manipulate the genetic 

material, gene, in the encoded path representation. Their features are described 

below[10,11,13,14]. 

 

Reproduction: It uses the roulette wheel method to generate mating pool from the 

previous generation[14]. That is, the higher the fitness value, the more likely the chromosome 
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being selected to the mating pool.  Sometimes, in order to increase the likelihood of the 

chromosome with a higher fitness value being selected, a linear fitness-scaling scheme is 

usually applied, which was suggested by Goldberg[13] .   

 

As shown in Fig.5, in this fitness-scaling scheme, the paths in the pool are firstly 

classified into two groups by the average fitness value of the population. The average fitness 

uavg is mapped to fa, and the maximum original fitness umax is mapped to fb. If the original 

fitness is smaller than uavg, it is linearly mapped to [0, fa]. If the original fitness is greater than 

uavg, it is linearly mapped to [fa, fb]. Thus, the new fitness function is defined as: 

 

where u is the original fitness. The fa and fb should be selected to be adaptable to the problem 

at hand.  As one can see from Fig. 5, via the scaling, the difference between the original 

fitness value zero to uavg is shortened to [0, fa]; while the difference between uavg and umax is 

increased to [fa, fb].  Since such a difference represents the likelihood of selection, thus the 

chromosomes having a fitting value larger than uavg will have a larger chance of being 

selected after the scaling.  The scaling constants, fa and fb, can also be understood as 

“greediness” control factors.  If the scaling effect is strong, the evolutionary algorithm might 

converge quicker at an increased risk of missing the global optimum.  On the other hand, if 

the scaling effect is weak, the probability of reaching the global optimum is higher but the 

convergence speed might be too slow.  Thus there is always a trade-off between the 

convergence speed and the accuracy of the final solution.  In our testing examples we set 

fa=0.5 and fb=3.5 (See Section Implementation and Testing). 
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Uniform crossover: This operator selects two parent chromosomes (paths) based on 

the crossover probability. For a selected pair of paths, a template of equal length whose 

position value is “1” or “0” is randomly generated.  Starting from the first position on the 

template, if the position value is “1”, the two children will inherit the gene from the two 

parents, respectively; if the position value is “0”, then the first child will receive the 

corresponding gene from the second parent and the second child will receive the gene from 

the first parent.  The process continues until all the genes of the parents have been processed. 

For example, as shown in Fig.6 A), by using the generated template, the parent1 (i.e. Path: 

P1P2P3P4P5) and parent2(i.e. path: Q1Q2Q3Q4Q5) yield two children, Path: Q1P2P3Q4P5 and 

path:P1Q2Q3P4Q5.  The 2nd, 3rd, and fifth genes are directly inherited from its corresponding 

parent; but the 1st and fourth genes are switched, so comes the name “crossover”. 

 

Inversion mutator: It’s a reordering operator applied to the genes of a chromosome. 

This operator reverses the order of genes between two randomly chosen positions within the 

selected chromosome based on a given inversion probability. For example, in Fig.6 B), the 

path: P1P2P3P4P5P6 is changed into P1P5P4P3P2P6 by inversing the nodes between Position 2 

and Position 5. 

 

Flipping mutator: It operates on the infeasible node (gene) in the selected path. It flips 

the node Pk with respect to the line segment Pk-1 Pk+1. For example, in Fig.6 C), the node P4 in 

Path P1P2P3P4P5P6 is flipped into P’
4 with respect to P3P5, thus generating a new path P1P2P3 

P’
4 P5P6.  

 

Perturb_1 mutator: It perturbs the randomly selected infeasible node (gene) in the 

selected path by a small amount based on a given operation probability. For example, in Fig.6 
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D), perturbing the node P4 in path P1P2P3P4P5P6 with a small amount generates the new path 

P1P2P3 P’
4 P5P6. This operator is helpful to gradually make the path smooth during the 

evolutionary process. 

 

Perturb_2 mutator: It perturbs the infeasible node (gene) in the selected path by a 

large amount. As shown in Fig.6 E), this operator gives the candidate node a larger perturbing 

amount.  This operator enables a relatively big adjustment on an infeasible node, thus 

improves the algorithms’ speed of convergence.  

 
Evolutionary Path Planning Algorithm 

             The evolutionary path-planning algorithm for sheet metal parts in a constrained 

workspace uses a “real” path representation and incorporates traditional genetic algorithm 

with the proposed evolutionary operators and evaluation method.  

             Each individual in the population represents a feasible or infeasible path, along which 

the sheet metal part moves out from the workspace. Each individual path is assigned a fitness 

value by checking the number of the feasible nodes on the path.  

             In the evolutionary loop, a set of paths is selected for generating new paths by 

crossover and mutation. An evolutionary operator is selected on the basis of its probability. 

The crossover operator changes two parent paths into two new offspring paths, while the 

mutator mutates a single path as a new child. The new offspring are added into the existing 

population and evaluated based on their fitness value.  Then the fitness value of each path is 

modified by using the linear scale scheme, and the best ones are chosen as a new population. 

This evolutionary process terminates after a certain number of generations. 

            A high-level description of this algorithm is as follows: 

            Step 1: Randomly generate the initial population having PopSize individuals. 

            Step 2:  Perform the collision detection for candidate paths. 
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            Step 3:  Assign a fitness value for each candidate path. 

            Step 4: If the termination criterion is not satisfied, go to Step 5; otherwise output the 

search results. 

             Step 5: Use the reproduction operator to form a “mating pool”. 

             Step 6: Apply the crossover operator to the selected paths based on the crossover 

probability. 

Step 7: Apply mutation operators to the selected paths based on its operation 

probabilities. 

             Step 8:  Perform the collision detection for the newly generated paths. 

             Step 9:  Assign a fitness value for each new path. 

Step 10: Select the best PopSize individuals from the previous paths and the new 

paths. 

Step 11: Go back to Step 4. 

 
Implementation and Testing 
 
              The proposed algorithm has been implemented with Visual C++ and OpenGL in the 

PC environment. Two cases were studied to test the proposed approach. 

              Case 1: The sheet metal part has a “V” shape, which has to be moved out from a 

constrained workspace. The running parameters are: POPSIZE =90; Max_Iteration=150, the 

probability of crossover is 50%, inversion’s 20%, flipping’s 15%, perturb_1’s 5% and 

perturb_2’s 10%. Each path is defined with 25 nodes. Fig.7 shows one of the obtained 

feasible motion paths. As can be seen from Fig. 7, the “V” shaped part successfully moves 

out the constrained space without collision with the bending tools. Fig.8 gives the 

relationship between the number of generations and the average fitness value of each 

generation during this evolutionary search process. From Fig.8 we can see that, after only 8 

iterations the evolutionary planner successfully finds feasible paths.   
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Case 2: This case is for a sheet metal part with a multiple-bent profile to represent a 

more realistic bending part. . The algorithm uses the same control parameters as in Case 1.  

Fig. 9 depicts one feasible motion path. Again, the path allows the part to be moved out of the 

space without collision with the tools. Fig.10 shows that the proposed algorithm is 

convergent and it takes only 60 iterations to find a feasible path. 

         

From the testing results on Case 1 and 2, it is clear that the presented evolutionary 

path-planning algorithm for sheet metal parts moving in a constrained workspace is efficient 

and can be used to design the path plan for the robot-assisted handling of sheet metal parts. 

 

Conclusion and Future Work 

            This paper proposes a new evolutionary approach to plan the sheet metal part’s 

moving path in a constrained bending workspace. Tests of the approach demonstrate that the 

proposed evolutionary path planner is efficient and practical. It can automatically generate 

feasible paths for robot-assisted handling.   

The future work might incorporate the consideration of the constraints from the robot 

to simultaneously obtain the optimal control law of robot.  The developed method can also be 

incorporated into the bending sequence planning to fully automate the bending and handling 

operations. 
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Fig 1 A CNC press brake[1]. 

 

 

Fig 2 A robot-assisted sheet metal bending system[2]. 
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Fig.3 The constrained environment of the moving sheet metal part. 
 
 

 

 

Fig.4 A chromosome representing a path. 
 
 

 

 

Fig.5   The linear fitness-scaling scheme[13]. 

X1 Y1 �1 b1 X2 Y2 �2 b2 Xn Yn �n bn …
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Fig. 6   Designed evolutionary operators. 
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Fig.7 An obtained feasible motion path of the “V” shaped part. 

 

 

Fig.8 The number of generations vs. the average fitness value for Case 1. 
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Fig.9 An obtained motion path of a multiple-bent sheet metal part. 

 

 

 

Fig.10 The number of generations vs. the average fitness value for Case 2. 


