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The presence of black-box functions in engineering design, which are usually computation-intensive, demands efficient
global optimization methods. This article proposes a new global optimization method for black-box functions. The
global optimization method is based on a novel mode-pursuing sampling method that systematically generates more
sample points in the neighborhood of the function mode while statistically covering the entire search space. Quadratic
regression is performed to detect the region containing the global optimum. The sampling and detection process iterates
until the global optimum is obtained. Through intensive testing, this method is found to be effective, efficient, robust,
and applicable to both continuous and discontinuous functions. It supports simultaneous computation and applies to
both unconstrained and constrained optimization problems. Because it does not call any existing global optimization
tool, it can be used as a standalone global optimization method for inexpensive problems as well. Limitations of the
method are also identified and discussed.

Keywords: Global optimization; Simultaneous computation; Constrained optimization; Black-box function,
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INTRODUCTION

In today’s engineering design, as computer modeling capabilities increase dramatically, product
behaviors are modeled and analyzed using finite element analysis (FEA) and computational
fluid dynamics (CFD) techniques. These analysis and simulation processes are usually com-
putationally expensive. Design optimization based on these computation-intensive processes
is challenging in several respects.

• Firstly, the overall optimization time should be acceptable to an increasingly impatient
manufacturing industry. The optimization time relates to two issues: the total number of
expensive function evaluations and the amount of simultaneous computation. The term
simultaneous computation is carefully chosen to be distinct from parallel computation.
Simultaneous computation means the possibility of having multiple simultaneous computing
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420 L. WANG et al.

processes, not necessarily involving interactions between these computing processes, which
is the characteristic of parallel computation.

• Secondly, for FEA or CFD, an explicit expression of optimization objective and constraint
function with respect to design variables is not available. Also, gradients computed from
these processes are usually unreliable or expensive [1]. To a design engineer, these processes
are like a black-box, i.e. only the input and output can be obtained without a priori knowledge
about the function.

• Thirdly, a global design optimum is always preferred to a local optimum if the computation
cost is acceptable.

Numerous global optimization methods can be found in the literature. A recent survey is
given in Ref. [2]. However, few of them are suitable for the above expensive black-box function
problems. Current global optimization methods can be classified into two groups: deterministic
and stochastic. Deterministic methods require a priori knowledge of the optimization function,
e.g. its shape, expression, gradient, and so on. Thus, they are not directly applicable to black-
box functions. Most stochastic methods such as simulated annealing, genetic algorithms, tabu
search, multistart (including clustering), and many others, require a large number of function
evaluations even for a simple 2-dimensional design problem, though they do not demand a
priori knowledge of the objective function. In addition, most of these methods are not developed
to maximize the amount of simultaneous computation. Therefore, most existing stochastic
methods are not efficient in saving the total optimization time for expensive functions.

In the emerging area of metamodeling-based optimization, methods have been developed
to address the computational efficiency problem. These methods are based on the idea of
sampling in the design space, building approximation models from samples, and then per-
forming optimization on the approximation function. Research focuses on developing better
sampling strategies, approximation models, or methods dealing with the sampling, modeling,
and optimization as a whole. Detailed surveys on research in this direction can be found in the
third author’s previous work [3, 4]. Metamodeling-based optimization methods entail many
attractive ideas for optimizing expensive black-box problems, such as the idea of sampling and
approximation. However, in general these methods rely on the structure of the approximation
model. Furthermore, the choice of the best approximation model is problem dependent. So
far, few methods have been developed for global optimization. One successful development is
in Refs. [5, 6], where the authors apply a Bayesian method to estimate a kriging model, and
to gradually identify points in the space to update the model and perform the optimization.
Their method, however, presumes a continuous objective function and a correlation struc-
ture between sample points. Identification of a new point requires a complicated optimization
process; moreover, construction of the kriging model usually requires a global optimization
process.

The third author of this paper and his colleagues have developed a number of global
optimization strategies for expensive black-box functions [3, 4, 7]. These methods focus on
strategies to gradually reduce the search space. In the reduced region, an existing global
optimization method is applied on the approximation model to locate the optimum. In this
article, a new global optimization method for expensive black-box functions is proposed,
assuming the design space cannot be confidently reduced. In contrast to the methods in
Refs. [5, 6], this method does not assume any properties of the black-box function; it works
for both continuous and discontinuous functions, and it does not call any existing global
optimization process or tool in its optimization process.

Before the global optimization strategy is discussed, a new mode-pursuing sampling (MPS)
method is introduced, as it forms the core of the proposed global optimization method.
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MODE-PURSUING SAMPLING 421

MODE-PURSUING SAMPLING METHOD

This section introduces the so-called MPS algorithm. It is an extension of the random-
discretization based sampling method of Fu andWang [8], which is a general-purpose algorithm
to draw a random sample from any given multivariate probability distribution. This algorithm
only requires knowledge of the probability density function up to a normalizing constant.
This sampling method has been successfully implemented in many high-dimensional random
sampling and numerical integration problems. This section will first describe the proposed
MPS algorithm, which will be elaborated and explained with a sampling example. Then, the
properties of the MPS method will be given and proved.

Algorithm of the MPS Method

Suppose we are given a d-dimensional probability density function g(x) with compact support
S(g) ⊂ �d . Fu and Wang’s algorithm [8] consists of three steps. In the first step, the discretiza-
tion step, a discrete space SN(g) is generated consisting of N uniformly distributed base points
in S(g). Usually N is large and should be larger if the dimension of g(x), d, is higher. These
uniform base points may be generated using either deterministic or stochastic procedures. In
the second step, the contourization step, the base points of SN(g) are grouped into K contours
{E1, E2, . . . , EK} with equal size according to the relative height of the function g(x). For
example, the first contour E1 contains the [N/K] points having the highest function values
among all base points, whereas the last contour EK contains the [N/K] points having the lowest
function values. Also in this step, a discrete distribution {P1, P2, . . . , PK} over the K contours
is constructed, which is proportional to the average function values of the contours. Finally,
a sample is drawn from the set of all base points SN(g) according to the discrete distribution
{P1, P2, . . . , PK} and the discrete uniform distribution within each contour. As has been shown
in Fu and Wang [8], the sample drawn according to their algorithm is independent and has an
asymptotic distribution g(x). The approximation gets better for larger values of Nand K .

This paper incorporates Fu and Wang’s algorithm as a component of a new sampling method
for optimization problems. Following the convention of engineering optimization, we refer to
the minimum as the function mode.

Concretely, we wish to minimize an n-dimensional black-box function f (x) over a compact
set S(f ) ⊂ �n. To simplify notation, assume that S(f ) = [a, b]n, where −∞ < a < b < ∞
are known, and f (x) is positive on S(f ) and continuous in a neighborhood of the global
minimum. In general, if f (x) is negative for some x ∈ S(f ), then we can always add a positive
number to f (x), so that it becomes positive on S(f ). Note that minimizing f (x) is equivalent
to maximizing −f (x). The proposed MPS algorithm consists of the following four steps:

Step 1 Generate m initial points x(1), x(2), . . . , x(m) that are uniformly distributed on S(f )

(m is usually small).

Step 2 Use the m function values f (x(1)), f (x(2)), . . . , f (x(m)) to fit a linear spline function

f̂ (x) =
m∑

i=1

αi‖x − x(i)‖ (1)

such that f̂ (x(i)) = f (x(i)), i = 1, 2, . . . , m, where ‖·‖ stands for the Euclidean norm.

Step 3 Define g(x) = c0 − f̂ (x), where c0 is any constant such that c0 ≥ f̂ (x), for all x in
S(f). Since g(x) is non-negative on S(f), it can be viewed as a probability density function, up
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422 L. WANG et al.

to a normalizing constant, whose modes are located at those x(i)s where the function values
are the lowest among {f (x(i))}. Then apply the sampling algorithm of Fu and Wang [8] to
draw a random sample x(m+1), x(m+2), . . . , x(2m) from S(f) according to g(x). These sample
points have the tendency to concentrate about the maximum of g(x), which corresponds to the
minimum of f̂ (x).

Step 4 Combine the sample points obtained in Step 3 with the initial points in Step 1 to form
the set x(1), x(2), . . . , x(2m) and repeat Steps 2–3 until a certain stopping criterion is met, which
will be discussed later.

Remark In Step 2 above, a linear spline function is used to fit the expensive points because:

1. The linear spline function, or radial basis function (RBF), is the simplest function that passes
through all the expensive points;

2. The linear spline function also prevents unnecessary ‘curvature’ added to the unknown
surface, in contrast to other models such as kriging;

3. Moreover, it preserves the minimum among the expensive points, i.e. min f̂ (x) =
min{f (x(i)), i = 1, . . . , m} due to linearity.

This algorithm is illustrated with a sampling example.

A Sampling Example For ease of understanding, the MPS method is illustrated with the
well-known six-hump camel-back (SC) problem [9]. The mathematical expression of SC is

fSC(x) = 4x2
1 − 21

10
x4

1 + 1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2 , (x1, x2) ∈ [−2, 2]2 (2)

A contour plot of the SC function is shown in Figure 1, where the H’s represent local optima.
H2 and H5 are two global optima at points (−0.090, 0.713) and (0.090, −0.713), respectively,
with an equal function value fmin = −1.032.

In the first step of the MPS algorithm, we start with m = 6 initial random
points x(1), x(2), . . . , x(6) ∈ [−2, 2]2. Then f̂ (x) is computed by fitting Eq. (1) to

FIGURE 1 Contour plot of the SC function.
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MODE-PURSUING SAMPLING 423

f (x(1)), f (x(2)), . . . , f (x(6)). Further, the function g(x) is obtained by using the maximum of
{f (x(i)), i = 1, . . . , 6} as c0.

Now we apply Fu and Wang’s algorithm to draw a sample as follows. First, N = 104

uniformly distributed base points are generated to form SN(g), the discretized version of the
sample space [−2, 2]2. Note that the base points in SN(g) are cheap points, in contrast to the
original m = 6 expensive points used to build f̂ (x). Further, without loss of generality, suppose
the points in SN(g) are sorted in ascending order of the values of function f̂ (x). The sequence
of corresponding function values of f̂ (x) is plotted in Figure 2(a), whereas the function g(x)

is plotted in Figure 2(b).
According to Fu and Wang’s [8] method, the ordered 104 base points are grouped into

K = 102 contours {E1, E2, . . . , E100}, with each having N/K = 100 points. For example, the
first contour E1 contains the 100 points at which the values of function f̂ (x) are the lowest,
whereas the last contour E100 contains the 100 points at which the values of f̂ (x) are the highest.
Let g̃(i) be the average of g(x) over Ei , i = 1, 2, . . . , 100. The function g̃(i), i = 1, 2, . . . , 100
is plotted in Figure 2(c) and its cumulative distribution function G(i) is displayed in Figure 2(d).

Finally, m = 6 contours are drawn with replacement according to distribution {G(i)} and,
if the contour Ei occurs mi > 0 times in these draws, then mi points are randomly drawn from
Ei . All such points form the new sample x(m+1), x(m+2), . . . , x(2m).

As can be seen from Figure 2(d), the contours from E80 to E100 (corresponding to high f̂

values) have lower selection probabilities for further sampling than other contours, since the
G curve is relatively flat in this area. However, such a probability for each contour is always
larger than zero. On the other hand, it is generally desired to increase the probability of the
first few contours as they correspond to low f̂ values. To better control the sampling process,
a speed control factor is introduced, which will be discussed later in the Speed Control Factor
subsection. Figure 2(e) shows {Ĝ(i)}, which is obtained by applying the speed control factor
to {G(i)} in Figure 2(d). From Figure 2(e), it can be seen that the first few contours have high
selection probabilities for next-step sampling, while the contours from E40 to E100 have low

FIGURE 2 A screen shot of ranked point distribution of f̂ , g, g̃, G, and Ĝ functions for the SC problem.
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424 L. WANG et al.

probabilities. This curve shows an aggressive sampling step, as many more new sample points
are close to the current minimum of f (x) as compared to the sampling based on Figure 2(d).

The whole procedure is repeated eight times, so that a total of 48 sample points are generated.
Figure 3 shows these 48 sample points, where the circles indicate attractive design points having
a function value less than −0.5. Even with only 48 sample points, many attractive points have
already shown up around H2 and H5. It can also be seen that points spread out in the design
space with a high density around the function mode H2 (global minimum).

Properties of the MPS Method

From the above construction, it is easy to see that this sampling procedure has the following
two properties: firstly, every point in S(f ) has a positive probability of being drawn, so that
the probability of excluding the global optimum is zero; and secondly, as the iteration process
continues, more and more sample points will concentrate around the modes of function g(x),
which in turn pursue the modes of function f (x). Thus, the algorithm automatically pursues
the modes of f (x). It can be proved that by neglecting the stopping criterion in Step 4, the
method can identify the global optimum of f (x).

Suppose the stopping rule in Step 4 is not applied, so that the sampling algorithm iterates
to infinity. For any integer k > 0, the minimum function value obtained after the kth iteration
is:

fk = min{f (x(i)), i = 1, 2, . . . , km}

The following theorem shows that, under fairly general conditions, the sequence fk converges
to the global minimum, as k increases to infinity.

FIGURE 3 Sample points of the SC problem generated by the MPS method, where ‘o’ indicates a function value
less than −0.5; and H2 and H5 are the locations of two global optima.
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MODE-PURSUING SAMPLING 425

THEOREM 1 Suppose an objective function f (x) is continuous in a neighborhood of its
global minimum on a compact subset S(f ) ⊂ �n. Then, as k → ∞, fk converges to the
global minimum f0 = infx∈S(f ) f (x).

Proof Suppose the global minimum is attained at x0 ∈ S(f ), so that f (x0) = f0. By con-
struction, the set of all sampled points is extended by m new points after each iteration. It
follows that the sequence {fk} is non-increasing. Since f (x) is continuous in a neighborhood
of the global minimum, for any ε > 0, there exists δ > 0, such that 0 < f (x) − f (x0) < ε, for
all ‖x − x0‖ < δ. Because in each iteration the density g(x) is positive on S(f ), there exists
an integer K > 0, such that after the Kth iteration, a point satisfying ‖x1 − x0‖ < δ can be
sampled, which implies that 0 < f (x1) − f (x0) < ε. It follows that 0 < fk − f0 < ε for all
k > K . The proof is completed. �

In summary, MPS applies to general black-box functions, which can be either continuous
or discontinuous across the entire design space. If the objective function is continuous in a
neighborhood of the global optimum, then the MPS systematically converges to the global
optimum.

GLOBAL OPTIMIZATION STRATEGY

From the above sections, it can be seen that the MPS method has the property of statistically
sampling more points near the minimum (mode) while still covering the entire design space.
For the purpose of optimization, one may iterate this sampling procedure until a maximum
number of function evaluations has been reached. Such an approach is a legitimate global
optimization method. However, such a crude approach can be slow to converge, when f (x)

is relatively flat around the global optimum. In such cases, more ‘intelligence’ needs to be
built in. A natural method, as seen in some existing global optimization methods, is to use a
threshold of sample density or similar measures to shrink the design space to a small area, in
which a local optimization can be performed. No matter what measure is used, whether it is
a sample density or a hyper-sphere with fixed diameter, it would be too difficult to decide the
value of the measure, and be too rigid as it is to be applied to all types of problems. On the other
hand, the idea of integrating a global technique with a local technique has been recognized as
a plausible approach in designing a global optimization method [10]. In this article, a special
approach is designed to guide the optimization process towards identifying an attractive local
area without using a rigid measure.

Concept of the Strategy

As the MPS progresses, more sample points will be generated around the current minimum
point, with chances of finding a better minimum. If a better point is found, the mode shifts
to the new point and more sample points will be generated about that point. If the current
minimum point is the global optimum, more and more points are generated in the small region
that contains the optimum, with a small chance that this point can be exactly reached. On
the other hand, according to Taylor’s theorem, any smooth function can be locally, accurately
approximated by a quadratic function (QF). Therefore, a good fit of a quadratic model to the
points in a sufficiently small neighborhood of the current minimum is an indication that the
‘valley’containing the global minimum may have been reached. Given such a quadratic model,
local optimization can be performed without expensive function evaluation to locate the global
minimum.
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426 L. WANG et al.

An n-dimensional generic quadratic model is usually expressed by

y = β0 +
n∑

i=1

βixi +
n∑

i=1

βiix
2
i +

∑
i<j

n∑
j=1

βij xixj (3)

where βi, βii , and βij represent regression coefficients; xi, (i = 1, . . . , n) are design variables;
and y is the response. Note that this model follows the standard formula used in response
surface methodology (RSM) [11]. To assess the model’s goodness of fit, usually the coefficient
of determination

R2 =
∑n

i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

(4)

is used, where ŷi are the fitted function values; yi are the function values at the sample points;
and ȳ is the mean of yi . In general, 0 ≤ R2 ≤ 1 and the closer the R2 value to 1, the better the
modeling accuracy [11].

Now the question is how to determine the ‘neighborhood’of the current minimum for model
fitting. First, to fit the quadratic model in Eq. (3), at least (n + 1)(n + 2)/2 points are needed to
obtain the estimates of the same number of coefficients. But if exactly (n + 1)(n + 2)/2 points
are used to fit the model, then R2 will reach its maximum value of 1, making it impossible
to evaluate the fitting accuracy. In order to avoid this situation, and at the same time to keep
the number of function evaluations low, we propose to use (n + 1)(n + 2)/2 + 1 points to
fit the quadratic model at the beginning of the sampling procedure. Along with the iteration
of the sampling procedure, there will be enough points that are close to the current minimum.
These points will determine a sub-region (a hyper-box), which is defined by the minimum and
the maximum of each coordinate. At the beginning of the sampling procedure, the size of this
sub-region will be almost the same as the original design space, because the total number of
points generated to that point is small and sparse. If the objective function f (x) is quadratic,
a perfect fit will be obtained and the global optimum can be quickly secured. If f (x) is multi-
modal, quadratic model fitting will not be perfect; even if by chance it fits well, it is not likely
to pass the model validation stage (to be discussed later). In this case, the MPS process will
concentrate less on the current optimum but instead spread out more in the rest of the space
by tuning a speed control factor r (to be discussed later). As the optimization process iterates,
and more and more points are generated, the sub-region will shrink gradually to a small region
containing the global optimum. As one can see, in the proposed method, the size of the sub-
region adapts to the complexity of the objective function, although it is almost the same as
the original space at the beginning of the sampling procedure. In this way, a rigid measure of
identifying the local area, such as a sample density or a hyper-sphere with fixed diameter, is
avoided.

Quadratic Model Detection

In this article, a QF within a sub-region is detected by a two-stage approach. At the first stage,
(n + 1)(n + 2)/2 + 1 points are used to fit a quadratic model and the R2 value is obtained. If R2

is not close to 1, it means that the function values are highly polynomial. If R2 is close to 1, then
a second stage testing is used. At the second stage, [n/2] new expensive points are randomly
generated within the sub-region, where [n/2] stands for the integer part of n/2. Then the
quadratic model is fitted again using these new points and the previous (n + 1)(n + 2)/2 + 1
points combined. If the new R2

new is close to 1, and if all predicted values are close to their
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MODE-PURSUING SAMPLING 427

corresponding function values, then it is most likely that the function is locally quadratic.
Precisely, the criterion for second stage testing is

1 − R2
new < εR

and

Diff = max

{
|f (i)

m − f (i)|, i = 1, . . . , j ≡ (n + 1)(n + 2)

2
+ 1 +

[n

2

]}
< εd (5)

where fm is the fitted quadratic model of f, the objective function; εR and εd are small positive
numbers for the two criteria, respectively. In practice, εR is often taken to be 10−5. It is difficult,
however, to select εd because it is problem dependent. This article defines εd as

εd = cd [max(f (i)) − min(f (i))] (6)

where cd is a constant in the interval [0, 1] and is to be specified by the user. Generally, the
smaller the cd , the more accurate result one will get and the more function evaluations are
needed. In this article, the default value of cd is 10−2. Note that the second stage testing is
necessary because R2 can be close to 1 even though the function may not be quadratic, due to
the fact that only (n + 1)(n + 2)/2 + 1 points are used in model fitting.

Algorithm of the Proposed Method

The flowchart of the algorithm is shown in Figure 4. Detailed description of the algorithm is
given below. The speed control factor r is discussed in the next section.

FIGURE 4 Flowchart of the proposed global optimization method.
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428 L. WANG et al.

Description of the Algorithm

Input: n: the number of design variables; x: design variable vector; f (x): black-box objective
function.
Output: x∗: the obtained optimum; f (x∗): the function value at x∗; nit: the number of opti-
mization iterations; nfe: the number of expensive function evaluations.

BEGIN:

1) Randomly sample [(n + 1)(n + 2)/2 + 1 − np] points, where, np is an arbitrary integer;
usually set as np = n.

2) Sample np points using the MPS procedure; after which [(n + 1)(n + 2)/2 + 1] points are
available, enough to fit a quadratic model.

3) Find [(n + 1)(n + 2)/2 + 1] points around the current mode, along with the sub-region
defined by these points.

4) In the sub-region, fit a quadratic model to the [(n + 1)(n + 2)/2 + 1] points and compute
the R2 value.

5) If 1 − R2 < εR , then generate [n/2] expensive points within the sub-region; fit the quadratic
model again using all points in the sub-region and compute the R2

new and Diff values; add
the new points to the point set;
Else update the speed control factor r and go back to Step 2.

6) If 1 − R2
new < εR and Diff < εd , then perform local optimization on the fitted quadratic

model to find the optimum x∗
t .

7) If x∗
t is in the sub-region, then the program stops with all the outputs and x∗ = x∗

t ; Else
obtain its function value and add this point (x∗

t , f (x∗
t )) and the points generated in Step 5

to the original set of expensive points, update the speed factor r and go back to Step 2.

END

Speed Control Factor

The speed control factor r adjusts the ‘greediness’of the MPS procedure (see Fig. 5). Referring
to Figure 2, recall that {G(i), i = 1, 2, . . . , K} denotes the cumulative distribution based on
the average heights {g̃(i), i = 1, 2, . . . , K}, which is the discrete distribution {P1, P2, . . . , PK}
in the algorithm of Fu and Wang [8]. Note that G(i) ∈ [0, 1]. Define Gmin = min{G(i)} and
Gmax = max{G(i)}. It is easy to see that Gmax = 1, while Gmin is the probability of sampling the

FIGURE 5 A screen shot of G(i)1/r curves for the SC problem.

D
ow

nl
oa

de
d 

by
 [

Si
m

on
 F

ra
se

r 
U

ni
ve

rs
ity

] 
at

 1
6:

08
 2

3 
Fe

br
ua

ry
 2

01
6 



MODE-PURSUING SAMPLING 429

points around the current mode of f̂ (x). For each i = 2, . . . , K , the differenceG(i) − G(i − 1)

represents the probability of sampling the points whose function values are between g̃(i − 1)

and g̃(i). As one can see from Figure 2, by increasing the value of Gmin one can force the MPS
to generate more ‘local’ points around the current mode; and by decreasing Gmin to generate
more ‘exploratory’ points in other area of the design space. Thus, a speed control factor r can
be introduced to allow the user to adjust the balance between ‘local’ and ‘exploratory’ points
and, thus, to tune the ‘greediness’of the MPS process. In this article, the tuning is done through
the transformation Ĝ(i) = G(i)1/r , i = 1, 2, . . . , K . The sampling in the next iteration is then
based on the Ĝ-curve instead of the G-curve. Theoretically, r ∈ [1, ∞]. If r = 1, then the
original discrete distribution is used. A higher r > 1 increases the probability of sampling
around the current mode and decreases the chance of spreading out in the design space. Figure
5 is a screen shot of G1/r -curves for the SC problem, where the curve becomes flatter as r
increases. It can also be seen that the factor r controls the speed of the MPS process: when r = 1,
the original discrete distribution is used and the convergence speed does not change, while
the convergence speed of the MPS process increases as r increases. During the optimization
process, however, r does not increase monotonically, because it updates dynamically from
iteration to iteration.

The next question is how to adjust the value of the speed control factor in practice. Generally
speaking, if a function is detected to be complex (non-quadratic), then r should be reduced to
generate more ‘exploratory’ points; otherwise, r should be increased to generate more ‘local’
points. In practice, a value of Gmin = 0.75 represents a very aggressive sampling scheme and,
therefore, this value is chosen as a reference point to determine rmax. Given the values of g(i), we
can compute the actual Gmin. By setting G

1/rmax
min = 0.75 gives rmax = log Gmin/ log(0.75).

Therefore, the range of the speed control factor is determined as r ∈ [1, log Gmin/ log(0.75)].
In this article, the information R2 is used to guide the ‘greediness’of the MPS. In many practical
problems, fitting the model Eq. (3) with only [(n + 1)(n + 2)/2 + 1] sample points usually
results in a R2 ∈ (0.8, 1]. Therefore, we propose to set r = 1 to allow more ‘exploratory’points
when R2 ≤ 0.8. When R2 ∈ (0.8, 1], we propose to determine the r–R2 relationship using an
elliptical curve, as shown in Figure 6. The origin of the ellipse is (0.8, rmax), with the length
of the short axis 0.2 and the long axis rmax − 1. The origin of the ellipse and the long axis are
automatically adjusted by the value of Gmin calculated from f̂ (x), which is obtained from the
available expensive sample points. Figure 6 shows the r–R2 curve of the last iteration in the SC
example. Thus, the value of r is controlled by the value of R2 from the previous iteration. It
is easy to see that the speed control factor does not undermine the global sampling property
of the MPS strategy. This can be seen from Figure 2(e) and Figure 5, where G(i)1/r → 1
as r → ∞.

FIGURE 6 The last r–R2 curve for the SC problem.
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430 L. WANG et al.

Note that there is a risk associated with using R2 as a feedback for speed control of the
MPS. Since the sampling process controlled by factor r tends to be more aggressive, the
optimization process may converge to a local optimum before enough exploratory points have
been generated. It would be ideal to have an indicator of whether the current mode is the global
optimum or not. Such an indicator will be theoretically better than R2. However, without
knowing the global optimum or properties of the expensive function a priori, it is difficult
to develop such an indicator. The R2 value only provides a necessary condition for a global
optimum, not a sufficient condition. A similar use of R2 is found in Ref. [12]. Nevertheless,
the proposed method works well for most of the test problems. It also maintains the possibility
of mode shifting because even with aggressive sampling, new exploratory sample points will
still be generated.

CONSTRAINED OPTIMIZATION PROBLEMS

The algorithm of the proposed method in the previous section applies to unconstrained opti-
mization problems. For constrained optimization problems, we only consider the problems
with inexpensive constraints. Specifically, we are interested in the problem

Minimize f (x) (7)

Subject to gk(x) ≤ 0, k = 1, . . . , q (8)

where f (x) is the expensive objective function and gk(x) are the inexpensive equality or
inequality constraints, which may include variable bounds. Metamodeling for constrained
optimization problems has been studied in the literature [3, 13, 14].

With minor modifications, the optimization procedure of the previous sections for the uncon-
strained problems applies to the constrained problem Eqs. (7) and (8) as well. The flowchart
for the constrained problem is the same as that in Figure 4. The modifications are:

1. In all sampling steps, including ‘Initial random sampling [(n + 1)(n + 2)/2 + 1 − np]
points’, ‘MPS of np points’ and ‘Randomly generate [n/2] points’, all points that do not
satisfy the constraints of Eq. (8) are discarded before evaluating the objective function.

2. In the step ‘Perform local optimization’, the constraints gk(x) are included in the
optimization.

In this article, the MatlabTM Optimization Toolbox is used for the constrained local
optimization.

TESTS OF THE APPROACH

The proposed method has been tested on a number of well-known test problems. They are
described as follows:

(1) A simple QF with n = 2:

fQF = (x1 + 1)2 + (x2 − 1)2, x1, x2 ∈ [−3, 3] (9)

(2) Six-hump camel-back function (SC) with n = 2, as defined by Eq. (1).
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MODE-PURSUING SAMPLING 431

(3) Golden-Price function (GP) with n = 2:

fGP(x1, x2) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2 )]

∗[30 + (2x1 − 3x2)
2(18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2 )]

(10)

where, x1, x2 ∈ [−2, 2].
(4) Hartman function (HN) with n = 6:

fHN(x) = −
4∑

i=1

ci exp


−

n∑
j=1

αij(xj − pij)
2


, xi ∈ [0, 1], i = 1, . . . , n (11)

where

i αij, j = 1, . . . , 6 ci

1 10 3 17 3.5 1.7 8 1
2 0.05 10 17 0.1 8 14 1.2
3 3 3.5 1.7 10 17 8 3
4 17 8 0.05 10 0.1 14 3.2

i pij, j = 1, . . . , 6

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

(5) A function of 16 variables (F16) with n = 16:

fF16(x) =
16∑
i=1

16∑
j=1

aij(x
2
i + xi + 1)(x2

j + xj + 1), i, j = 1, 2, . . . , 16, (12)

[aij]row 1–8 =




1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1

0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0

0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1

0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0




,
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432 L. WANG et al.

[aij]row 9–16 =




0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




.

(6) Griewank function (GN) with n = 2:

fGN(x) =
n∑

i=1

x2
i

200
−

n∏
i=1

cos

(
xi√
i

)
+ 1, x1, x2 ∈ [−100, 100] (13)

For each problem, 10 runs are carried out to reduce random variation in the numerical
results. The average (arithmetic mean) number of function evaluations, nfe, and the number of
iterations, nit, are used as an indication of the time and resources required in the computation.
The medians are also given for reference. For the solution, the minimum and the maximum
for the 10 runs are recorded, along with the average. The results are summarized in Table I.

As can be seen from Table I, the proposed method successfully captures the global optimum
for all test problems except for GN. The total number of function evaluations is modest. Over
the 10 runs for each case, the range of the minimum objective function value is very small.
Variations among the nfe and nit are also small, as shown by the average and median of these
numbers. This indicates that the proposed method is very robust, though being random in
nature. The only exception is GN: although in some runs the results are very good (obtained
f = 0.003 with 9 function evaluations), the overall performance is not stable, as demonstrated
by the large solution variation and differences between the average and median nfe and nit
numbers. As a matter of fact, function GN has 500 local optima in the design space and,
hence, the optimization process tends to be trapped in one of these local optima, as is shown
in Table II. Apparently this happened because the MPS process was terminated prematurely
when there were not enough ‘exploratory’ points to present the entire design space. To confirm

TABLE I Summary of test results on the proposed method.

Minimum nfe nit

Analytical Range of
Function n Space mininum variation Median Average Median Average Median

QF 2 xi∈[−3 3] 0 [0, 0] 0 9.6 8 1.4 1
SC 2 xi∈[−2 2] −1.032 [−1.031, −1.014] −1.030 37.8 30.5 9 7
GP 2 xi∈[−2 2] 3.000 [3.000, 3.216] 3.005 138 134 32.9 34
HN 6 xi∈[0 1] −3.322 [−3.322, −3.148] −3.305 592.1 576 49.6 47
F16 16 xi∈[−1 0] 25.875 [25.880, 25.915] 25.885 254.8 250 3.8 3.5
GN 2 xi∈[−100 100] 0 [0.003, 1.367] 0.1469 371 43 123.8 12
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MODE-PURSUING SAMPLING 433

TABLE II Optimization results on GN by applying the MPS method
alone.

Run No. x∗ f ∗ nfe nit

1 (0.0000, −0.0070) 0 149 45
2 (0.0005, 0.00047) 0 1742 756
3 (0.0010, 0.0135) 0 1241 315
4 (0.0017, −0.0044) 0 1475 714
5 (0.0000, −0.0001) 0 390 173
6 (−0.0020, 0.0004) 0 1846 627
7 (0.0014, 0.0005) 0 2015 990
8 (0.0057, 0.0045) 0 218 93
9 (0.0058, −0.0070) 0 59 17

10 (−0.0003, −0.0005) 0 1291 627

this speculation and also to provide an example for Theorem 1, the GN problem is solved by
applying the MPS method alone with a stopping criterion of |f − 0| < 1e − 3, since we know
the analytical minimum is zero. In other words, we let the MPS process continue until the
analytical minimum is found. The results are summarized in Table II, where x∗ stands for the
optimum point and f ∗ is the obtained function minimum.

As can be seen from Table II, the global optimum is obtained for all runs. The number of
function evaluations, however, differs dramatically. The test on GN confirms the theoretical
result of Theorem 1 that the proposed MPS procedure converges systematically to the global
optimum. The overall optimization strategy, which is based on the MPS method, might converge
prematurely for problems having a large quantity of local optima such as GN.

Overall, from both the accuracy and efficiency perspectives, the proposed optimization
method demonstrates satisfactory performance. The solutions are generally robust. In addition,
assuming the availability of computers, the total time needed by the optimization will be
represented by the number of iterations, rather than the number of total function evaluations,
because function evaluations can be done independently and simultaneously at all sample
points. Thus, the proposed method also supports simultaneous computation, which leads to
significant time savings.

DESIGN EXAMPLES AND RESULTS

Two engineering test problems are used to test the utility of the proposed method. Both are
constrained optimization problems. Each problem is described with its corresponding con-
straints, bounds, and objective function. Their objective functions are assumed to be expensive
black-box functions and thus the two design optimization problems are of the form described
by Eqs. (7–8).

Design of a Two-Member Frame

This example has been used in Ref. [15] and is the design of a two-member frame subjected to
the out-of-plane load, P , as is shown in Figure 7. Besides L = 100 inches, there are three design
variables: the frame width (d), height (h), and wall thickness (t), all of which are in inches and
have the following ranges of interest: 2.5 ≤ d ≤ 10, 2.5 ≤ h ≤ 10, and 0.1 ≤ t ≤ 1.0.
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434 L. WANG et al.

FIGURE 7 The two-member frame.

The objective is to minimize the volume of the frame subject to stress constraints and size
limitations. The optimization problem can be written as

Minimize V = 2L(2dt + 2ht − 4t2)

Subject to g1 = (σ 2
1 + 3τ 2)1/2 ≤ 40, 000

g2 = (σ 2
2 + 3τ 2)1/2 ≤ 40, 000

d, h ∈ [2.5, 10] t ∈ [0.11]

(14)

where σ1, σ2, and τ are respectively the bending stresses at point (1) (also point (3)) and (2)
and the torsion stress of each member. They are defined by the following equations:

σ1 = M1h

2I
σ2 = M2h

2I
τ = T

2At

where

M1 = 2EI (−3U1 + U2L)

L2
M2 = 2EI (−3U1 + 2U2L)

L2
T = −GJU3

L

I = 1

12
[dh3 − (d − 2t)(h − 2t)3] J = 2t[(d − t)2(h − t)2]

d + h − 2t
A = (d − t)(h − t)

Given the constants E = 3.0E7 psi, G = 1.154E7 psi and the load P = −10, 000 lbs, the
displacements U1 (vertical displacement at point (2)), U2 (rotation about line (3)–(2)), and U3

(rotation about line (1)–(2)) are calculated by using the finite element method.

EI

L




24 −6L 6L

−6L

(
4L2 + GJ

EI
L2

)
0

6L 0

(
4L2 + GJ

EI
L2

)







U1

U2

U3




=




P

0

0




.

The optimum found in Ref. [15] is V = 703.916 in.3, occurring at: d∗ = 7.798 in, h∗ =
10.00 in, and t∗ = 0.10 in.

Design of a Pressure Vessel

The design of a pressure vessel was first documented in Ref. [16]. The cylindrical pressure
vessel is shown in Figure 8. The shell is made in two halves of rolled steel plate that are joined
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MODE-PURSUING SAMPLING 435

FIGURE 8 Pressure vessel.

by two longitudinal welds. The available rolling equipment limits the length of the shell to
20 ft. The end caps are hemispherical, forged and welded to the shell. All welds are single-
welded butt joints with a backing strip. The material is carbon steel ASME SA 203 grade B.
The pressure vessel should store 750 ft3 of compressed air at a pressure of 3000 psi. There are
four design variables: radius (R) and length (L) of the cylindrical shell, shell thickness (Ts)
and spherical head thickness (Th), all of which are in inches and have the following ranges of
interest: 25 ≤ R ≤ 150, 1.0 ≤ Ts ≤ 1.375, 25 ≤ L ≤ 240, and 0.625 ≤ Th ≤ 1.0.

The design objective is to minimize the total system cost, which is a combination of welding,
material and forming costs. The constraints include theASME boiler and pressure code for wall
thickness Ts and Th, as well as tank volume. The optimization model is therefore formulated as:

Minimize F = 0.6224TsRL + 1.7781ThR
2 + 3.1661T 2

s L + 19.84T 2
s R

Subject to g1 = Ts − 0.0193R ≥ 0

g2 = Th − 0.00954R ≥ 0

g3 = πR2L + 4

3
πR3 − 1.296E6 ≥ 0

R ∈ [25, 150], Ts ∈ [1.0, 1.375], L ∈ [25, 240], Th ∈ [0.625, 1.0]

(15)

The optimum continuous solution is F = 7006.8, occurring at R∗ = 51.814 in., T ∗
s = 1.0 in.,

L∗ = 84.579 in., and T ∗
h = 0.625 in.

Results

For each of the two design problems, 10 runs are executed. For the solution, the minimum
and the maximum of the 10 runs are recorded along with the average. The results are shown
in Table III, where the abbreviations have the same meaning as those in Table I. Because the

TABLE III Summary of test results on the constrained designed problems.

Minimum nfe nit

Analytical Range of
Function n Space mininum variation Median Average Median Average Median

FD 3 [2.5 10] 703.916 [703.947, 703.947] 703.947 20 20 2 2
[2.5 10]
[0.1 1.0]

VD 4 [25 150] 7006.8 [7006.8, 7007.9] 7006.8 44.7 46 6.7 7
[25 240]
[1.0 1.375]
[0.625 1.0]
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obtained optima from the 10 runs for each problem are practically the same as the analytical
optimum, the difference between the analytical solution and the one found by the proposed
method should be due to numerical rounding errors. In addition, the number of function eval-
uations nfe is small for both cases.

DISCUSSION

As shown in Table I, the proposed method finds the optimum of the QF function with an average
of only 9.6 function evaluations. In fact, it is true that for any n-dimensional QF, the number
of function evaluations needed is between nfel and nfeu, defined as

nfel = (n + 1)(n + 2)

2
+ 1 +

[n

2

]
, nfeu = nfel + 1 + n +

[n

2

]
(16)

nfel is required when the algorithm converges at the first iteration, where [(n + 1)(n + 2)/

2 + 1] is the number of points used in the first quadratic model fitting, and [n/2] is the number
of points generated for model validation. According to the algorithm, the real function value
at the model minimum is obtained if the model minimum is outside the sub-region. Then the
second iteration starts with n new sample points based on the MPS method, and uses another
[n/2] points for model validation. Since the function is quadratic, the model minimum at the
first iteration should be the real optimum. Thus, the process terminates after the second iteration
with the maximum number of function evaluations nfeu = nfel + 1 + n + [n/2]. For n = 2,
nfel = 8 and nfeu = 12, which were exactly observed for the QF function. Generally, it can be
seen by construction that this algorithm requires O(n2) number of sample points. The number
of points can be reduced if the quadratic model in Eq. (3) is further simplified.

The proposed approach shares some similarities with a mature clustering method called the
topographical global optimization (TGO) method in Ref. [17]. The TGO method randomly
generates N sample points in a given space (N is usually big). Then it finds points better than
a set of k prescribed neighboring points. Local optimization is performed from all such points
to find q local optima. It keeps the selected points and re-samples (N–q) points randomly. The
process iterates until a prescribed number of iterations is reached. Our method differs from the
TGO method in the following aspects:

(1) Only one-time random sampling is used. The initial sample size is small. Subsequent
sampling follows the MPS procedure.

(2) Our method only finds the best sample point with its neighboring points.
(3) Our method approximates the local region and performs local optimization only when the

local region is close to quadratic.
(4) Our method stops automatically and no prescribed nit is used.
(5) Our method does not require the user to prescribe N and k.
(6) The overall number of function evaluations is low.

CONCLUSIONS

In this article, a novel MPS method has been developed, which systematically converges to the
global optimum if the objective function is continuous in a neighborhood of the optimum. Based
on MPS, a global optimization method was developed for expensive black-box functions. This
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MODE-PURSUING SAMPLING 437

optimization strategy applies local quadratic fitting to adaptively identify an attractive sub-
region in which local optimization can be performed. The MPS is then adjusted by a speed
control factor to balance the ‘local’ search and global ‘exploration.’ This optimization method
has been tested with both low (n = 2) and high (n = 16) dimensional test problems. It has also
been applied to two constrained design optimization problems. Overall, the proposed method
has been found to have the following advantages:

1. In general, it is an effective and efficient global optimization method for expensive black-
box objective functions, which can be either continuous or discontinuous. The MPS method
converges to the global optimum if the objective function is continuous in a neighborhood
of the global optimum.

2. The method supports simultaneous computation. The extent of simultaneous computation
can be controlled by the parameter np.

3. Although random in nature, the method is robust and requires little parameter tuning. For
a given problem, only one optimization parameter cd might need user specification, which
is however not mandatory.

4. It works for both unconstrained and constrained problems with expensive objective func-
tions and inexpensive constraints.

5. Unlike other metamodeling-based global optimization methods such as in Refs. [3, 4],
it does not call any existing global optimization procedure. Therefore, it can work as a
standalone global optimization method even for inexpensive functions.

Through the test examples, it has also been found that, for problems with a large quantity
of local optima, the proposed optimization method may be trapped in a local optimum. This
is due to the lack of a rigorous indicator of the global optimum. In such a case, the MPS may
be applied alone as it guarantees convergence to the global optimum, as long as the function
is continuous in a neighborhood of the global optimum.
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University, Turku, Finland.

[11] Montgomery, D. (1991) Design and Analysis of Experiments, John Wiley and Sons, New York.
[12] Hacker, K., Eddy, J. and Lewis, K. (2001) Tuning a hybrid optimization algorithm by determining the modality

of the design space. In: ASME 2001 Design Engineering Technical Conferences and Computers and Information
in Engineering Conference, Pittsburgh, PA.

[13] Sasena, M., Papalambros, P. and Goovaerts, P. (2002) Global optimization of problems with disconnected feasible
regions via surrogate modeling. In: 9thAIAA/ISSMO Symposium on MultidisciplinaryAnalysis and Optimization,
Atlanta, Georgia.

[14] Frits, A. P. and Mavris, D. N. (2002) A screening method for customizating designs around non-convergent
region of design spaces. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta,
Georgia.

[15] Arora, J. S. (1989) Introduction to Optimum Design, McGraw-Hill Higher Education, New York.
[16] Wilde, D. (1978) Globally Optimal Design, Wiley, New York.
[17] Törn, A. and Viitanen, S. (1996) Iterative topographical global optimization. State of the Art in Global

Optimization, Ed. C. A. Floudas and P. M. Pardalos, Kluwer Academic Publishers, pp. 353–363.

D
ow

nl
oa

de
d 

by
 [

Si
m

on
 F

ra
se

r 
U

ni
ve

rs
ity

] 
at

 1
6:

08
 2

3 
Fe

br
ua

ry
 2

01
6 




