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ABSTRACT 

Modern engineering design often involves 
computation-intensive simulation processes and multiple 
objectives.  Engineers prefer an efficient optimization 
method that can provide them insights into the problem, 
yield multiple good or optimal design solutions, and 
assist decision-making.  This work proposed a rough-set 
based method that can systematically identify regions 
(or subspaces) from the original design space for 
multiple objectives. In the smaller regions, any design 
solution (point) very likely satisfies multiple design goals. 
Engineers can pick many design solutions from or 
continue to search in those regions.  Robust design 
optimization (RDO) problems can be formulated as a bi-
objective optimization problem and thus in this work 
RDO is considered a special case of multi-objective 
optimization (MOO). Examples show that the regions 
can be efficiently identified.  Pareto-optimal frontiers 
generated from the regions are identical with those 
generated from the original design space, which 
indicates that important design information can be 
captured by only these regions (subspaces). 
Advantages and limitations of the proposed method are 
discussed. 

Keywords: Rough Set, multi-objective 
optimization, robust design optimization, space 
reduction, engineering design 

INTRODUCTION 

In modern design, it is common to deal with 
optimization problems with multiple objectives.  For 
example, concurrent engineering design requires the 
optimization from many product life-cycle aspects such 
as performance, manufacturing, assembly, 
maintenance, and recycling.  Multi-objective optimization 
(MOO) has been an intensively studied topic [1].  
Normally, multiple objectives are aggregated into one 

objective either by the weighted-sum method, deviation 
sum method, preference function, or utility function.  
Other multi-objective optimization methods include the 
constrain-oriented method and the mini-max formulation 
strategy.  The constraint-oriented method treats all but 
one objective as constraints. By controlling the upper 
bounds of the objectives, the Pareto set can be 
obtained.  The mini-max strategy minimizes the 
maximum relative deviation of the objective function from 
its minimum objective function value. In addition to the 
above-mentioned deterministic approaches, genetic 
algorithms (GA) have been successfully applied in 
solving multiple objective functions.  Robust design 
optimization (RDO) looks for a minimum of the objective 
function that is insensitive to the variation of design 
variables.  It is found that the RDO can be normally 
formulated as a bi-objective robust design (BORD) 
problem [2] by minimizing simultaneously the mean and 
variance of the objective function with respect to design 
variables.  Therefore, in this work, RDO is considered as 
one of the special cases of the MOO problems. 

In industry, computer aided design and analysis 
(CAD/CAE) tools are extensively used for design 
evaluation and simulation.  The process of using these 
tools, such as finite element analysis (FEA) and 
computational fluid dynamics (CFD) tools, are often 
computation-intensive. Because such processes could 
provide engineers very accurate prediction of product 
behavior, they are expected to be integrated with 
optimization to search for the design optimum. The 
problem is that these processes are not transparent to 
the optimizer; there is no explicit and clean objective 
function.  Gradient information of such function is too 
expensive to obtain or is unreliable [3].  Also, the 
objective / constraint functions as well as design 
variables can be both discontinuous and continuous.  
The field of optimization provides us many quantitative 
and systematic search strategies that can help tackle the 
concurrent design problem [4]. However, there are 
several limitations of classic optimization methods that 



hinder the direct application of these methods in modern 
engineering design.  First, classic optimization methods 
are based on explicitly formulated and / or cheap-to-
compute models, while engineering design involves 
implicit and expensive-to-compute models.  Second, 
classic methods only provide a single solution, while 
engineers prefer multiple design alternatives.  Third, the 
classic optimization process is sequential, non-
transparent, and provides nearly no sights to engineers. 
Lastly, to apply the optimization methods, high-level 
expertise on optimization is also required for engineers.  
Therefore, there is a gap between the capability of 
classic optimization and the demand of modern 
engineering design.  Furthermore, from a design 
engineer’s perspective, multiple good solutions are 
always preferred than a single optimum solution since in 
the real practice the obtained optimum might not be 
feasible.  Also, engineers would prefer a decision 
support tool based on optimization and no high-level 
optimization skills is required to use such a tool.  Such a 
decision support tool should be able to give the 
engineers more insights to the design problem, and 
“explain” intuitively why the suggested solutions are 
good (or optimal). Ideally, the suggested solution should 
be robust, reliable, and globally optimal. Current 
metamodeling-based optimization approaches aim to 
approximate the computation-intensive processes with 
explicit and simple models.  The major difficulty is the 
so-called “curse of size”, i.e., with the increase of the 
number of design variables, the number of sample 
points needed to construct a good approximation model 
increases exponentially [5].  The traditional method is to 
reduce the dimensionality of the problem [6].  Recent 
trend seems to aim at reducing the size of the search 
space by searching for feasible or attractive regions [7-
11]. 

To address the need for multiple solutions and 
the efficiency for optimization, this research proposes a 
design space reduction method for multi-objective 
optimization (MOO) and robust design optimization 
problems (RDO).  The authors’ previous research 
applied the rough set for space exploration and global 
optimization [12].  Such a method established a mapping 
from a given function value to the attractive design 
space, i.e., regions (or subspaces) in the original design 
space can be identified so that points in the subspaces 
lead to function values equal to or lower than the given 
function value.  Based on the previous research, goals 
of objectives are used first to identify attractive design 
regions for each individual objective so that its goal can 
be achieved.  If there is no common design subspaces 
among all attractive subspaces, it is most likely that the 
goals could not be simultaneously satisfied and goals 
are to be adjusted. Otherwise, further search can 
concentrate on the common subspace to increase the 
optimization efficiency.  Following sections will briefly 
review the rough set approach for the identification of 
attractive spaces.  Then the strategy for space reduction 
on MOO problems will be described.  RDO, as a special 
case of MOO, will be briefly discussed.  Test examples 
and results are then explained and discussed. 

APPLICATION OF ROUGH SET FOR 
ATTRACTIVE SPACE IDENTIFICATION 

Our previous work [12] documented in detail the 
related theory of rough set and how it was applied to 
identify attractive design spaces. In this work, a brief 
review is given in order to introduce some associated 
new concepts for the ease of understanding this work.  
Assume that we have a function to be optimized as 
shown in Equation 1.  This function is in fact well known 
as the six-hump camel back problem as it has six local 
optima in the given design space [13].  For simplicity, 
this problem is referred as SC problem in later sections. 
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First a decision system is constructed as in 
Table 1.  Where a1 and a2 refer to x1 and x2 respectively; 
u’s are sample points (or objects); d is the decision value 
according to a given criteria dt (for this case, if the 
function value of the point ui is larger than dt = -0.5, it is 
coded as ‘1’, otherwise the decision is ‘0’.). 

Table 1 Example of an information (decision) system. 

S a1 a2 d 
u1 1.158705 -1.372335 1 
u2 -0.225895 -0.763139 0 
u3 0.414520 -0.553701 1 
u4 -1.080601 1.612387 1 
u5 1.831858 -0.093501 1 
u6 -0.876749 -1.934921 1 
u7 -1.972033 -1.043081 1 
u8 0.198583 1.895447 1 
u9 0.661393 -0.973502 1 
u10 -0.225895 -1.572636 1 
u11 -0.061620 0.873131 0 

 

Table 2 a set of cuts for the decision system defined in Table 1 

A Cuts 
-0.5505 a1 
0.0685 

a2 -1.472 
 

The rough set tool can automatically find some 
values of a1 and a2, which are called cuts that can 
discern the points according to their decision values.  
The results for the SC problem are shown in Table 2 and 
Figure 1; detail procedures for obtaining the results are 
in Ref. [12].  As shown in Figure 1, the circle dots 
indicate the two points whose decision is ‘0’.  The 
generated cuts separate these two points from the rest 
of points whose decision is ‘1’.  Then the rough set 
approach will name each partition of a1 and a2 based on 
the cuts with zero and integer numbers.  For example, 
all the points falling in the upper right rectangle in Figure 



1 will be represented by a single object u1 with a1=2 and 
a2 =1.  Thus Table 1 is simplified to Table 3.  

 

 

 

 

 

 

 

Figure 1 A geometrical representation of data partition and 
cuts. 

Table 3 A simplified decision system. 

S* a1 a2 d 

1u  
2 1 1 

2u  
1 1 0 

3u  
0 1 1 

4u  
0 0 1 

5u  
1 0 1 

 

By sorting the simplified decision table, the 
rough set method can yield Table 4, the rules of the 
decision system.  For the SC problem, the rule (a1= 1) & 
(a2 = 1) ⇒ (d = 0) leads to a reduced design space a1=[-
0.5505, 0.0685] and a2=[-1.472, 2] after translating the 
rules back to its original decision system.  We know that 
in the reduced space all the so-far obtained sample 
points are attractive, i.e., their function values are equal 
to or lower than the threshold dt. 

Table 4 Rules for the decision system. 

(a1 = 2) ⇒ (d = 1) 
(a1 = 0) ⇒ (d = 1) 
(a1= 1) & (a2 = 1) ⇒ (d = 0) 
(a2 = 0) ⇒ (d = 1) 

 

In the authors’ previous work [12], sample points 
are generated iteratively in the original design space 
until an overlapping coefficient, C, is larger than 0.65.  
The final obtained design space is considered the 
attractive space.  The definitions of attractive space and 
C are given below. 

Given the design variable x (x1, x2, …, xm) and 
its value range X, the objective function f(x) (f1(x), f2(x), 

…, fn(x)) and its local optima fmin(x), the constraint 
function g(x) (g1(x), g2(x), …, gk(x)), and the decision 
threshold dt, we introduce a number of definitions.  A 
design space is defined as Sd = (x, f(x)) = {X ∈ R | ∀ x ∈ 
X, f(x) ∈ R}. An attractive space is Sa = (x, f(x), g(x), dt) = 
{X ∈ R | ∀ x ∈ X, f(x) ≤ dt and g(x) ≤ 0 } within which any 
x makes the value of the objective function f(x) equal to 
or less than a given decision threshold dt and satisfies 
the constraints g(x) ≤ 0.  
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 are the attractive design 

spaces obtained through the i-th and (i+1)-th samplings 
respectively, we define an overlap coefficient C as 
following: 
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a. Contour of the original SC function 

 

 

 

 

 

 

 

 

b. A representation of space partition when dt = -0.5 

 

b. A representation of space partition when dt = -0.5 
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c. A representation of space partition when dt = 0 

 

 

 

 

 

 

 

d. The final converged space with dt = -0.5 

Figure 2 Comparison of space partitions with the contour of 
the SC function. 

Where, the Vol( ) function means the volume of the 
space, which is defined as the product of ranges along 
each x component direction. When the number of 
samples or objects increases to the infinity, the two 
attractive design spaces 

ia
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Assuming that }...{
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 are the attractive design 

spaces obtained through the i-th and (i+1)-th samplings 
respectively, we define an overlap coefficient C as 
following: 

)(

)(

)1(

)1(

+

+

∪

∩
=

ii

ii

aa

aa

SSVol

SSVol
C                        Equation 2 

Figure 2 d shows the final converged space by using the 
iterative sampling along with the stopping criterion 
C≥ 0.65 with dt = -0.5.  

SPACE REDUCTION FOR MULTI-OBJECTIVE 
OPTIMIZATION 

For engineering design, engineers often have 
enough insights to know the least achievable goal for 
each objective.  Or, goals are sometimes given by the 
management to the engineers, for example, cost of the 
product, performance ranges, and so on.  The 
competitor’s product specifications can also function as 
goals for a new product development.  Let’s assume a 
goal for each objective is known in advance. For 
consistency with the rough set theory, we denote the 
goal for the objective fi as if

td , i = 1, …, m.  By applying 
the aforementioned method, for thi∀ objective function, 
the attractive space if

aS  can be identified with a given 
goal if

td .  Define the intersection of all the attractive 
spaces af

aS  as 

ma f
a

f
a

f
a

f
a SSSS ∩∩∩= L21   Equation 4 

Lemma: For a multi-objective optimization problem with 
objective functions f1, f2, … fm and their corresponding 
goals mf

t
f
t

f
t ddd ,,, 21 L , if 0≠af

aS , then af
aS  is the 

attractive space for the given multi-objective optimization 
problem. Otherwise, the given multi-objective 
optimization problem is not solvable unless goals 

mf
t

f
t

f
t ddd ,,, 21 L  are revised. 

The attractive space af
aS  can then be used in 

lieu of the original design space for further exploration 
and optimization.  Because the computation of each if

aS  
needs only a limited number of function evaluations [12], 
the overall expenses for computing af

aS  is the sum of 
the cost for all of the if

aS , i = 1, …, m. 

ALGORITHM Often
if

aS  obtained by using the rough 
set tool consists of more than one region in the original 
design space.  These regions could be overlapping with 
each other.  In addition, if

aS , i =1, …, m overlaps with 
each other if ma f

a
f
a

f
a

f
a SSSS ∩∩∩= L21  is not empty.  

To calculate the common spaces, the following algorithm 
is applied for any two 1f

aS  and 2f
aS  among if

aS , i =1, …, 
m. 

Common space search algorithm  

Input: 1f
aS  and 2f

aS  (each is expressed as a matrix with 
many possibly overlapping subspaces; every two 
columns represent a subspace). 

Output: The common spaces of 1f
aS  and 2f

aS , 
)( 21 f

a
f
a SSVol ∩ , )( 1f

aSVol , and )( 2f
aSVol  

BEGIN: 

1) Sort out all the cuts on xj, j = 1, …, n  in  1f
aS  and 

2f
aS  from low to high. n is the number of design 
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variables; every two neighboring cuts define an 
interval of xj. 

2) Set )( 21 f
a

f
a SSVol ∩  = )( 1f

aSVol = )( 2f
aSVol = 0 

3) For ( the first interval of x1, the second interval of x1, 
… , the last interval of x1) 

 For (the first interval of x2, the second interval x2, … 
, the last interval of x2) 

    … 

For (the first interval of xn, the second interval xn, 
… , the last interval of xn) 

Obtain Sc, which is the sub-space defined by 
the intervals of each x component 

If Sc ⊂ 1f
aS , then 

)( 1f
aSVol  = )( 1f

aSVol + Vol(Sc) 

If Sc ⊂
2f

aS , then 

)( 2f
aSVol  = )( 2f

aSVol +   Vol(Sc) 

If Sc ⊂ 1f
aS  AND Sc ⊂ 2f

aS , then            
)( 21 f

a
f
a SSVol ∩  = )( 21 f

a
f
a SSVol ∩ + Vol(Sc) 

Output Sc  

Else continue 

          End 

        … 

      End 

    End 

END 

This algorithm identifies the common spaces 
and calculates the volume of the common spaces.  It 
can also be used to calculate the overlapping coefficient 
C between subspaces, defined by Eq. 3.  

ROBUST DESIGN OPTIMIZATION 
FORMULATION 

A standard engineering optimization problem is 
normally formulated as the following: 
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Where f(x) is the objective function and gj(x) is the j-th 
constraint function; x, xL and xU are vectors of design 
variables, their lower bounds and upper bounds, 
respectively.  If the design variable x follows a statistical 
distribution, a robust design problem can be stated as a 
bi-objective robust design (BORD) problem as the 
following [2] (the worst case scenario for constraints): 
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Where fµ and fσ are the mean and standard deviation 
of the objective function f(x), respectively.  Their values 
can be obtained through Monte Carlo simulation or the 
first order Taylor expansion if the design deviation of xi is 
small.  When using Taylor expansions, fµ and fσ can 
be represented by the following equations [14]: 
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Where ix
σ  is the standard deviation of the i-th x 

component. 

From Eq. 6 and 7, the robust design problem 
becomes a special multi-objective optimization problem.  
The following section will use two examples to further 
illustrate the proposed method.  

TEST EXAMPLE I 

The first test problem is taken from Ref. [2].  The 
original mathematical problem is formulated below: 
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The associated BORD problem can be then formulated 
using Eq. 6.  
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Where the size of variation x∆ =1.0 ( 121 =∆=∆ xx ) 
and the penalty factor k is taken as 1.0.  The ideal 
solutions are obtained as 



)45074.600000.2(* =
fu

x for 10464.5* =fµ  and 
)99187.450559.3(* =

f
x σ for 416796.0* =fσ .  

By considering the standard deviation for both x as 
x∆ /3 and using Eq. 7, we have 
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The Pareto-optimal frontier for the BORD 
problem is illustrated by Figure 3, which is identical to 
that depicted by Chen et al. [2].  The design points that 
correspond to the Pareto set points are found as shown 
in Figure 4.  Figure 3 and Figure 4 are generated from 
the original space.  New plots will be created in the 
reduced space to evaluate the impact of the space 
reduction to potential design information loss. 

 

 

 

 

 

 

 

 

 

 

Figure 3 The Pareto-optimal frontier for Problem I (the circles 
indicate points in the Pareto set.) 

 

 

 

 

 

 

 

 

Figure 4 The Pareto design points enclosed by circles. 

MINIMIZATION OF FUNCTION MEAN The goal was 
pre-set as */ ff µµ =10.  The history of space reduction 
by using the proposed method is recorded in Table 5.   
As one can see, the process terminates after three 
iterations with the reduced space x1∈ [2 5.3660] and 
x2∈ [2 9]. The total number of function evaluations is 18. 

Table 5 the record of the space reduction for the mean 
function when dt = 10. 

 

MINIMIZATION OF VARIANCE The goal was also 
set as 

*/ ff σσ =10. The history of space reduction is 
recorded in Table 6.  For the variance minimization, two 
regions A and B are generated with 32 function 
evaluations after 4 iterations, as shown in the last row of 
Table 6.  The two regions are defined by Space A: 
x1∈ [2.8980   4.2430]  & x2∈ [3.9695   5.8280] and 
Space B:  x1∈ [2   4.2430]  & x2∈ [5.8280   9]. 

Table 6 the record of the space reduction for the variance 
function when dt = 10. 

 

COMMON SPACE The intersection of the space 
x1∈ [2  5.3660] and x2∈ [2   9] from the minimization of 
the function mean and the two spaces from the 
minimization of variance includes two regions, Space  A: 
x1∈ [2.8980   4.2430]  & x2∈ [3.9695   5.8280], and 
Space B: x1∈ [2   4.2430] &  x2∈ [5.8280   9].  Space A 
and B are depicted in Figure 5.  The volume of the 
reduced space is 19.62% of the original design space.  

Iteration Reduced Space 
Cumulative # 
of Function 
Evaluations 

Overlapping 
Coefficient C 

1 x1∈ [2.9305  5.2580] 
x2∈ [2   9] 

6 N/A 

2 x1∈ [2.6730  5.5515] 
x2∈ [2   9] 

12 0.8086 

3 x1∈ [2  5.3660] 
x2∈ [2   9] 

18 0.6623 

Iteration Reduced Space Cumulative # 
of Function 
Evaluations 

Overlapping 
Coefficient C 

1 x1∈ [2   4.749]  
x2∈ [2.870   9] 

8 N/A 

2 a. 
x1∈ [4.0365  4.3120]  
x2∈ [2   9] 
b. 
x1∈ [2   4.0365]  
x2∈ [5.3285   9] 

14 0.6322 

3 a. 
x1∈ [3.5365  4.4375]  
x2∈ [2   9] 
b. 
x1∈ [2   3.5265]  
x2∈ [5.3390   9] 

23 0.7858 

4 a. 
x1∈ [2.8980  4.2430]  
x2∈ [3.9695  5.8280] 
b. 
x1∈ [2   4.2430]  
x2∈ [5.8280   9] 

32 0.6825 

Normalized mean value (
*/ ff µµ ) 

Normalized 
mean value 
( */ ff σσ ) 

x2 

x1



 

 

 

 

 

 

 

 

 

 

Figure 5 The reduced design space for Problem 1. 

RESULT EVALUATION For the reduced space, we 
need to evaluate if the reduced space fail to capture 
most, if not all, of the Pareto-optimal points.  This is 
examined from the performance space as well as the 
design space.  If the new spaces are used to search for 
the Pareto points, we obtain Figure 6 and Figure 7.  
Comparing Figure 6 and Figure 7 with Figure 3, one can 
see that the space reduction didn’t loose potential 
Pareto-optimal points from the performance space. 
Design points in Space A can lead to a part of the 
Pareto-optimal frontier; and design points in Space B 
can lead to the rest part of the Pareto-optimal frontier.  In 
other word, design points in Spaces A and B can lead to 
a Pareto-optimal frontier which is identical with Figure 3. 
Moreover, the method clearly points out that both Space 
A and Space B can lead to Pareto solutions.  The space 
reduction was accomplished with only 40 function 
evaluations in total for both functions.  From the design 
solution perspective, one can see that all of the Pareto 
points in Figure 4 are included within the reduced design 
space shown in Figure 5. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 The Pareto-optimal frontier searched within Space A 
(circled points). 

 

 

 

 

 

 

 

 

 

Figure 7 The Pareto-optimal frontier searched within Space B 
(circled points). 

TEST EXAMPLE II 

The second example is a simple beam design 
problem shown in Figure 8.  Taken from Ref. [15], this 
problem is to minimize the vertical deflection of an I-
beam under given loads as well as the cross-section 
area, while simultaneously satisfying the stress 
constraint.  Various parameter values for the problem 
are:  

• Allowable bending stress of the beam = 6 kN/cm2. 
• Young’s Modulus of Elasticity (E) = 2x104 kN/cm2. 
• Maximal bending forces P = 600 kN and Q = 50 kN. 
• Length of the beam (L) = 200 cm. 

The optimization problem can be formulized as below: 

Minimize the Vertical Deflection  
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Minimize the Cross Section Area  
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Normalized 
mean value 
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Now let us assume the objective functions are 
computation-intensive and thus the reduction of the 
number of function evaluations is our concern.  

 
Figure 8 The Beam Design Problem 

 

MINIMIZATION OF THE DEFLECTION With the 
goal being set as f1 = 0.02, the final space was found 
after 6 iterations with 112 function evaluations. For 
simplicity, the iteration history is omitted here. The sub-
spaces found are listed below: 

Space A: 
x1 [73.5385  80],  x2 [36.0035  50],  x3 [0.9  5], x4 [0.9  5] 
Space B: 
x1 [60.027  65.509],  x2 [29.0380  36.0035], x3 [0.9  5], x4 [0.9  5] 
Space C: 
x1 [65.5090  73.5385], x2 [36.0035  50], x3 [0.9  5], x4 [0.9  5] 
Space D: 
x1 [54.6700  60.0270], x2 [36.0035  50], x3 [2.7665  5], x4 [0.9  5] 
Space E: 
x1 [65.5090  80], x2 [29.0380  36.0035], x3 [2.7665  5], x4 [0.9  5] 
Space F: 
x1 [54.6700  65.5090], x2 [36.0035  50],   x3 [0.9  5],  x4 [3.0510  5] 
Space G: 
x1 [73.5385  80],  x2 [10  50],   x3 [0.9  5],  x4 [3.0510  5] 
 

MINIMIZATION OF THE CROSS-SECTION AREA 
The goal for the cross section area is set as f2 = 320.  
The sampling process converges after 4 iterations only 
with 23 function evaluations.  The obtained sub-spaces 
are: 

Space I: 
x1 [36.9375  80],   x2 [23.0050  39.5395],  x3 [0.9  5],  x4 [0.9  3.1140] 
Space II: 
x1 [36.9375  80],   x2 [1108825  23.0050],  x3 [0.9  5],   x4 [3.1140  5] 
Space III: 
x1 [10  80],  x2 [39.5395  50],  x3 [0.9  5],  x4 [0.9  3.1140] 
 

COMMON SPACES The intersection between Spaces 
A~G and Space I~III is calculated by using the algorithm 
described in Section Space Reduction for Multi-objective 
Optimization.  As a result, 41 sub-spaces are generated.  
The total volume of these subspaces is only 8.55% of 
the original design space.  Engineers can pick design 

solutions from these subspaces, which very likely satisfy 
the goals for all the objectives.  If further optimization 
were to be carried out, the number of spaces (and thus 
the optimization processes) would be too large.  Ideally 
the optimal number of subspaces may be identified to 
achieve the best trade-off between the amount of space 
reduction and the number of subspaces, and thus the 
number of optimization processes. In this work for 
simplicity, the minimum hyper-box that encloses all of 
the 41 subspaces is chosen as the recommended 
reduced space for further optimization.  For the beam 
problem, the space is x1: [54.6700   80], x2 [11.8825   
50], x3 [0.9    5] and x4 [0.9    5.].  The volume of this 
space is 34.48% of the original design space. 

RESULT EVALUATION We would like to see if the 
reduced space could still lead to the Pareto-optimal 
frontier, and if not, what is lost.  The Pareto-optimal 
frontier is then identified from both the original design 
space and the recommended reduced space.  The 
generated frontiers are plotted in Figure 9.  As one can 
see from Figure 9, the two frontiers almost coincide with 
each other.  If we apply the goals for the two functions 
f1=0.02 and f2=320 to Figure 9, we can obtain the so-
called attractive Pareto-optimal frontier.  That is to say, 
the points in the attractive Pareto-optimal frontier satisfy 
the goals for all the objectives.  As one can see from 
Figure 9, the two frontiers are almost identical in the 
attractive Pareto-optimal frontier. Therefore, for the 
beam problem, we can conclude that the space 
reduction does not result in the loss of Pareto-optimal 
points. 

 

 

 

 

 

 

 

 

 

Figure 9 Comparison of Pareto-optimal frontiers generated 
from the original space and the reduced space. 

 

DISCUSSION 

From the test problems, one can see that the 
original design space for multi-objective optimization 
problems can be reduced with a limited number of 
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function evaluations by using the proposed method.  
Moreover, the reduced space can still capture all of the 
Pareto points, i.e., the space reduction can be adequate 
without the risk of loosing the Pareto design points.  It is 
also found that if goals are too tough, it might be hard to 
sample points satisfying the goals.  Often more sample 
points are required to reach a reasonably accurate 
subspace.  Otherwise, the probability of missing 
attractive spaces is high.  On the other hand, if goals are 
too easy to satisfy, the space reduction effect is not 
significant.  In real design, goals could potentially be 
appropriately determined by experienced engineers or 
competitors.  One advantage of the proposed method is 
that when the goals are too high, there could be no 
overlaps between subspaces.  The method can thus 
send early feedback to the decision maker about the 
goals before plunging into the expensive optimization 
process. 

CONCLUSION 

This work presents a new method that can help 
reduce the design search space for multi-objective 
optimization (MOO) problems and robust design 
optimization problems, if they are formulated as a 
special case of MOO.   The proposed method should 
have following advantages: 1) if the product design 
goals are not achievable, this method can efficiently 
identify this situation without wasting time running 
expensive optimizations; 2) assuming all the goals are 
realistic, this method can help design engineers focus on 
a smaller design space for further optimization; 3) in the 
reduced space, likely all the design solutions satisfy the 
design goals and further optimization may not be 
necessary; engineers thus have many good (optimal) 
design solutions; and 4) this method supports 
simultaneous computation because it samples several 
points simultaneously.  Though it is not demonstrated by 
the examples, this method should work for both 
continuous and discontinuous functions with either 
discrete or continuous variables because the method 
itself does not dictate the need for continuous functions 
or variables.  The proposed method, however, bear a 
few limitations.  First, the number of subspaces 
generated is large; these subspaces may be combined 
to reach a small number of subspaces without 
significantly increasing the size of the final space.  
Second, the sampling method, which is inherited Latin 
Hypercube Sampling method [16], might not be 
economical for high-dimensional design problems.  
Thirdly, the constraints are assumed inexpensive to 
compute.  Future research may address these 
limitations. 
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