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Abstract 
 
This work proposes a novel concept of failure surface frontier (FSF), which is a hyper-surface 
consisting of the set of non-dominated failure points on the limit states of a failure region.  
Assumptions, definitions, and benefits of FSF are described first in detail.  It is believed that FSF better 
represents the limit states for reliability assessment (RA) than conventional linear or quadratic 
approximations on the most probable point (MPP).  Then, a discriminative sampling based algorithm is 
proposed to identify FSF, based on which the reliability can be directly assessed for expensive 
performance functions.  Though an approximation model is employed to approximate the limit states, it 
is only used as a guide for sampling and a supplementary tool for RA.  Test results on well-known 
problems show that FSF-based RA on expensive performance functions achieves high accuracy and 
efficiency, when compared with the state-of-the-art results archived in literature. Moreover, the concept 
of FSF and proposed RA algorithm are proved to be applicable to problems of multiple failure regions, 
multiple most probable points, or failure regions of extremely small probability.  
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1. Introduction 
 
Conventionally, variation and uncertainties in materials, manufacturing, assembly, field usage, and so 
on are taken into consideration through safety factors, which are often determined through empirical 
data.  In modern approaches, the statistical distribution of input variables and design performance are 
used to quantify the probability of achieving a specific performance target. This is the task of reliability 
assessment (RA).  RA is the foundation for reliability engineering and reliability-based design 
optimization (RBDO) [1-5].   
 
As a general formulation, consider an n-component system with design (variable) space n

xS ℜ⊆ , 
where )...,,,( 21 nxxxx = . Let the uncertain state of the system be denoted by a random vector 

)...,,,( 21 nXXXX =  with a joint probability density function (JPDF) jx(x). The performance function, 
or state function, is defined as  

)...,,,()( 21 nxxxfxf =                              (1) 
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where .)...,,,( 21
n

xn Sxxxx ℜ⊆∈=   
 
In reliability analysis, a limit state function, g(x), is defined such that for a particular limit state value f0 
of the performance function, 

0)()( 0 =−= fxfxg                                   (2) 

The limit state value, f0, is equivalent to an engineering performance specification.  This limit state 
function divides the variable space into the safe region for which g(x) > 0 and the failure region for 
which 0)( ≤xg .  Geometrically, the limit state Eq. (2) is an n-dimensional surface that is called the 
failure surface.  One side of the failure surface is the safe region, whereas the other side is the failure 
region.  Fig. 1 illustrates two limit state surfaces g1 (x)=0 and g2(x)=0; the dark region is the failure 
region and the rest is the safe region, or success region. The reliability of a system or product, R, is 
defined as the rate of compliance to the performance specification and is given by 
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=>=
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)(...)0)((
xg

x dxxjXgPR                                       (3) 

Eq. (3) is simply the volume integral of )(xjx over the safe region.  Conversely the failure probability 
of a system or product, fP , is defined as the rate of non-compliance to the performance specification or 
the complimentary event of reliability and is given by 
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xg

xf dxxjXgPP                         (4) 

Eq.  (4) is the volume integral of )(xjx  over the failure region.  By definition 1=+ fPR . The 

quantitative evaluation of the true R or fP  often poses two major difficulties. One is the determination 

of the correct form of )(xjx , which is often unavailable or difficult to obtain in practice because of 
insufficient data [6].  The other is the determination of the limit state surface g(x) = 0, which separates 
the failure region and safe region.  When the computation of the performance function is an expensive 
function such as FEA, such a difficulty aggravates.  Even if both )(xjx  and g(x) are given, the volume 
integral from  Eq. (3) or Eq. (4) maybe difficult to compute.  Therefore, direct calculation of reliability 
R or failure probability fP  from formula Eq. (3) or Eq. (4) may be impractical.   
 

(Insert Fig. 1 here.) 
 
Current reliability assessment methods include Monte Carlo Simulation (MCS) methods and variations, 
Most Probable Point (MPP)-based approximation methods, and emerging discriminative sampling 
based methods.  A typical MCS method involves three steps: (1) repetitive sampling from the set of 
random variables according to their respective probability distributions, (2) obtaining the corresponding 
performance function values to the samples, and (3) identifying whether the failure has occurred [7].  
The estimated probability of failure is then simply the number of failures, mf, divided by the total 
number of simulations, m, or Pf = mf /m, when m is sufficiently large.  MCS is accurate and reliable for 
all types of problems.  Therefore, its results are often used as a standard to test other methods [8]. 
However, MCS is computationally intensive because it requires a large m.  For implicit and 
computationally intensive, or expensive, performance functions, the computation burden becomes 
unbearable.  Some variants of MCS methods have been developed that can reduce the computation 
effort by about one order-of-magnitude. These methods include the Importance Sampling (IS), 
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Adaptive Importance Sampling (AIS), Latin Hypercube Sampling, and Directional Simulation methods 
[8-12].  The total number of sample points required by MCS methods, however, is still too large and 
thus the application of these methods is limited mostly to inexpensive performance functions.  
 
The MPP-based approximation methods originate from the concept of “most probable point.”  MPP 
was from the phrase “most probable failure point” coded in [13].   Because of the difficulties to 
accurately determine the failure surface that separates the safe and failure region and to obtain the 
volume integral, a reliability index based on a linear approximation to the limit state function is thus 
used as a simplified solution for reliability assessment [14].  The reliability index is defined as the 
shortest distance from the origin to the failure surface in the transformed normal design space.  The 
point on the failure surface that is closest to the origin is then referred as the MPP.  The idea of using 
reliability index is equivalent to using a tangent line at MPP to represent the failure surface, which is 
also referred as First Order Reliability Method (FORM). In FORM, the distance between MPP, u*, and 
the origin in the normalized U-space, β =|| u*|| , specifies the reliability R or the complementary Pf. 

 ||)||()( *uPf −Φ=−Φ= β      (5) 

where (.)Φ  denotes the standard normal cumulative distribution function.  In essence, FORM uses the 
tangent line as shown in Fig. 2 to approximate the nonlinear g(u)=0 surface. As one can see from Fig. 
2, for the complex nonlinear g(u)=0 function(s), the approximation could induce a large error.  For the 
function underneath the tangent line, if FORM is used, the actual safe region would be much smaller 
than estimated, which might result in a risky design.  For the function above the tangent line, FORM 
will give a very conservative estimation. Various FORM-based methods are studied and analyzed in a 
recent work [15]. 
 

(Insert Fig. 2 here.) 
 

If a quadratic curve is used for approximation, then the Second Order Reliability Method (SORM) and 
its variations are developed.  There are a number of variations of SORM by introducing different 
quadratic terms.   Wu et al. [16] defined the linear and quadratic Taylor’s expansions of g(x)=0 in the 
X-space and referred them as mean-value based first-order and second-order methods, respectively.  
The definitions in the X-space are very useful when the transformation from the non-normal space to 
normal space causes extra curvatures to the limit state function, which has been observed in many 
engineering application problems, as the authors stated [16].  An interesting work from the same group 
is in [17], in which a parabolic curve with adjustable curvature is developed and integrated with the 
sampling process.    
 
All these MPP-based approaches use analytic techniques to approximate the failure surface in order to 
alleviate the computational burden of direct MCS.   This class of methods represents the mainstream in 
reliability assessment. However for problems with a nonlinear limit-state function, their accuracy is 
suspicious [14]. Also for problems with expensive functions, the search of MPP may not be an easy 
task.  Moreover, these methods have tremendous difficulties in solving problems of multiple failure 
regions or multiple MPP’s.  It is because there is no guarantee that all MPP’s can be identified and it is 
impossible to use one limit state to divide safe or failure regions, e.g., for Problem 2 (to be defined in 
Section 5) as shown in Fig. 3 with two failure regions and four limit state surfaces.   
 

(Insert Fig. 3 here.) 
 

More recently, an emerging class of methods are under development [18-20].  These methods deviate 
from MPP-based approximation methods and endeavour to achieve the balance between MCS and 



MD-05-1241   Wang 4 

approximation.  Continuing on their previous work by using importance sampling (IS) based methods 
[11], Zou and colleagues developed an indicator response surface based method, in which MCS is only 
performed in a reduced region around the limit state [18].  A recent work in literature reduces the 
sampling cost by approximating the output distribution with an analytical function [19]. The authors 
recently developed a more flexible discriminative sampling method with high efficiency and accuracy 
[20]. The work in [20], however, bears two limitations: 1) the reliability assessment relies on the 
accuracy of the approximation model of the performance function; and 2) it is not designed to solve 
problems of multiple failure regions. This work significantly improves [20] by addressing these two 
limitations.  A new concept, the failure surface frontier (FSF), is proposed in order to gain a deeper 
insight to the failure surface and regions.   Based on FSF, reliability assessment can be objectively 
assessed and does not rely on the accuracy of the approximation model.  It solves problems of multiple 
failure regions with high efficiency.  It also can effectively solve problems of multiple MPP’s or of 
very low probability failure regions.  
 
With respect to the difficulties in computing Eq. (3) or (4), this work targets at RA problems with 
expensive performance function; )(xjx  is assumed readily available; and the integral is to be computed 
through MCS on the obtained FSF. 
 

2. Failure surface frontier 

Definition of Failure Surface Frontier (FSF) 
For a random vector )...,,,( 21 nxxxx =  defined on the space n

xS ℜ⊆  with a joint probability density 
function (JPDF) jx(x), we assume that the probability center, xc , the point of the maximum )(xjx  value, 
is not a failure point. That is, 

for xccxxx SxxjxjSx ∈≤∈∀ ),()(, , and g(xc)>0   (6) 

For independent variables with normal distributions, its xc will be at the mean ),...,,( 21 nµµµµ = . For 
other cases,  a global optimization process might need to be called on )(xjx  to identify the probability 
center, xc. For uniform )(xjx , any point is a probability center.  The one closest to the mean 

),...,,( 21 nµµµµ =  that satisfies Eq. (6) will be chosen as xc.   
 
This assumption should be satisfied for a reasonable engineering problem.  It is because if the 
probability center is a failure point, the product design must have serious problems and need to be 
addressed first before resorting to optimization.  Based on the assumption and determination of xc, the 
definition of FSF is given as follows. 
  
Definition: Failure surface frontier is a hyper-surface consisting of the set of non-dominated failure 
points on the limit states of a failure region. A non-dominated failure point is defined when this point 
cannot be moved closer to the probability center, xc, within the same failure region along any one of its 
xi, i =1,…,n, component direction. 
 
For example, in Fig. 3, the failure surface frontiers are illustrated.  All the star points (failure points) are 
either on the FSF or dominated by FSF.  The other two limit state surfaces further away from the 
probability center are dominated by the FSF’s, respectively, and thus they are not FSF’s.  Similarly, the 
g1(x)=0 curve in Fig. 1 is a FSF but not g2(x)=0.   
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Advantages of FSF Definition 
Based on the concept of failure surface frontier (FSF), we view the region dominated by FSF as failure 
region while the other as safe region.  For example, the left bottom region of g1(x) in Fig. 1 is the 
failure region and the right of g1(x) is the safe region. 
 
The proposed FSF definition offers a few distinctive advantages: 

1. FSF is a complete or part of the real failure surface, which could be convex, concave, or any 
other complex form.  It is thus a more accurate representation of the limit-state surfaces for 
reliability assessment than MPP based linear or quadratic approximation models.   

2. When failure regions are formed by one or multiple failure surfaces, FSF could be comprised of 
discontinuous surface segments from multiple limit states. 

3. FSF sets apart the dominating failure surfaces from the rest.  The proposition of FSF thus first 
frees our attention from the dominated failure surfaces, which are of much less significance in 
practice than FSF.  Even though there could be safe regions in the “failure regions” determined 
by FSF, those areas are of much lower probability and would not likely be considered in real 
design practice.  For example in Fig. 1, the safe region left to g2(x) will be viewed as a failure 
region by using FSF.  Such an error is, however, on the conservative side.   FSF therefore 
eliminates the need to obtain the dominated failure surfaces, which significantly reduces the 
computation effort for RA.  

4. By using the proposed method in this work, FSF could be computed for expensive problems 
with multiple failure modes, multiple MPP’s, or of extremely low probability failure regions. 
RA results based on FSF are of high accuracy and efficiency.  Test details will be given in 
Section 4. 

 
It is to be noted that all directional sampling based RA approaches are limited to star-shaped limit 
states, in which any ray from the origin intersects the limit state at most at one point [12]. The proposed 
definition of FSF shares some similarities with the star-shaped limit state assumption. In the proposed 
definition, only the non-dominated FSF segment from the limited states is of concern, so that any ray 
from the probability center, xc, intersects the FSF at most at one point.  The differences however, are 
many fold. First, directional sampling is performed in the transformed normal space while FSF is in the 
original variable space. Second, the probability center, xc, is used instead of the transformed origin.  
The former offers more flexibility.  Third, FSF facilitates the combined, even discontinuous, frontier 
from multiple limit states. From the proposed algorithm and test results in this work, the concept of 
FSF facilitates simpler and more aggressive sampling than directional sampling for RA on expensive 
functions. 

FSF Computation 
Mathematically, the definition of FSF resembles that of Pareto Frontier in the performance space in 
multi-objective optimization (MOO). An important concept from MOO, the fitness function, is to be 
introduced first to describe the non-dominated FSF points in the design space. 
 
For a given set of points, a fitness function is defined as [21]  

)),,,,,(min(max1 2211
j

sn
i
sn

j
sk

i
sk

j
s

i
s

j
s

i
s

ij
i xxxxxxxxG −−−−−=

≠
��     (7) 

Where, Gi denotes the fitness value of the ith point; i
skx is the scaled kth random variable value of the ith 

design, then j
sk

i
sk xx −  is the scaled kth random variable value difference between the ith and jth points, 

k = 1,…,n; the ‘min’ operation is over all the random variables and the ‘max’ is over all other points 
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ij ≠  in the generation. The variables snss xxx ,...,, 21 , are normalized  to a range between zero and one. 

For example, for i
sx 1 , 

min,1max,1

min,1,1

1 rawxrawx
rawxrawxi

s
ix −
−=                   (8) 

Where, the subscript ‘s’ of i
sx 1  stands for scaled; rawx1,i denotes raw (un-scaled) value of the first 

random variable for the ith point; rawx1,max denotes the maximum raw value of the first random variable 
among all points; and rawx1,min denotes the minimum raw value of the first random variable among all 
points.  For normalized variables in [0 1], it is known that all the points on the frontier in a point set 
should have a fitness function value equal to or larger than 1, and points with a fitness value less than 1 
are definitely dominated by the frontier points.  By calculating the fitness values of points in the failure 
regions, FSF can be identified. 
 

(Insert Fig. 4 about here.) 
 

For example there are four points in Fig. 4 with normalized coordinates.  Using their coordinates, their 
fitness values can be calculated by using Eq. (7).  As one can see that only one point (0.9, 0.8) has a 
fitness value less than 1 and it is a dominated point.  The other points are on the frontier or called 
dominating points.  It is to be noted that the frontier could be of any shape, convex or non-convex.  The 
frontier shown in Fig. 4 is apparently non-convex.   
 
Given the concept of FSF, the goal of the proposed method is to identify all the FSF’s in the design 
space, based on which reliability is assessed.  In this work, the design space is translated so that the 
probability center xc is at the origin of the new design space.  Therefore, the fitness value of each 
failure point in the design space can be computed using its relative coordinates. Because the fitness 
value of FSF is used to guide the sampling process (which will be described later), for multiple failure 
regions in problems such as in Fig. 3, the fitness value is calculated respectively in each quadrant (for 
n=2) (we use “quadrant” as a general term for n>2 cases), so that all FSF’s can be obtained 
simultaneously. 
  

3.  Proposed FSF-based reliability assessment algorithm 
Failure surface frontier (FSF) is defined mostly to facilitate the efficient reliability assessment for 
expensive performance functions, for which the efficiency of RA is largely manifested by the total 
number of function evaluations.  This work employs the kriging model as an approximation of the 
performance function.  The kriging model, however, is not used as a surrogate of the failure surface for 
RA, but rather as a guide to sample more points on FSF.  
 
The kriging model is defined below [22-24].  

�
=

+=
k

i
ii XzXfaXy

1

)()()(ˆ                                    (9) 

Kriging model consists of two parts.  The first part is usually a simple linear regression of the data.  
The second part is a random process.  The coefficients, ia , are regression parameters.  )(xf i  is the 
regression model.  The random process )(Xz  is assumed to have mean zero and covariance, 

)(),( 12
2

21 xxRxxv −= σ .  The process variance is given by 2σ and its standard deviation is σ .  The 
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spatial correlation function, R(.), controls the smoothness of the model, influence of other nearby 
points, and differentiability of the approximation model, or metamodel.  Kriging is flexible to 
approximate complex functions.  It interpolates sample points, and the influence of other nearby points 
is controlled by the spatial correlation function.  Based on these features, kriging is chosen for the 
proposed method.  The proposed method, however, does not dictate the exclusive use of kriging as the 
metamodel.   
 
A kriging toolbox is given by [25].  It provides regression models with polynomials of orders 0, 1, and 
2, as well as seven spatial correlation functions for selection.   This work uses the regression model 
with polynomials of order 0, and the Gaussian correlation model.  A detailed description of kriging is 
in the corresponding author’s previous work [23].    
 
Given the concept of FSF, the goal of the proposed method is to assess reliability by means of FSF.  
For clarity, points evaluated by expensive processes are referred as evaluated points or expensive 
points; points calculated from metamodels are referred as cheap points.  

Algorithm  
Conceptually, the proposed algorithm consists of three major steps: 1) sampling in the original space 
and building a metamodel, 2) using the metamodel to generate many points, from which selecting a few 
(guided by FSF) for expensive evaluation, and 3) returning to Step 1 for re-sampling in the original 
space.  For Steps 1) and 3),  the sample points are generated in the original variable space; no variable 
transformation is performed.  After the sample points are generated at Step 1), Step 2)  is to locate FSF 
from these sample points.  The fitness value as defined in Eq. (7) is a relative measure with respect to 
the rest of sample points in a point set.  Therefore Eq. (8) depends on the value of other points in the 
same set.  After applying Eqs. (7) and (8), each sample point (in the original variable space) receives its 
fitness value, as if each sample point is labelled with its fitness value. A few points are selected for 
expensive evaluation according to their fitness value.  Then the sampling process continues in the 
original variable space.  In the end, the expensive points will tend to concentrate on or near FSF.  Step 
1) and 3) employ ordinary random sampling processes, for which existing sampling methods can be 
applied for either correlated or uncorrelated variables .  The novelty of the proposed method mainly lies 
in Step 2, which employs metamodeling and the concept of FSF to select a few from the sample points 
for expensive evaluation.  Specifically, the algorithm consists of following detailed steps: 
 
Step 1:  Generate a large number of sample points in the design space according to the joint probability 
density function (JPDF) of random variables.  As one can see that from these sample points, (2n + 1) 
initial points are chosen; n is the number of random variables.  The end points along each variable 
direction, as well as the point defined by the mean of all xi components, are chosen as the initial points.  
Note the number of initial points does not increase exponentially with the number of variables.   
 
Step 2: Evaluate the initial points by calling the expensive performance function, f(x).  Construct a 
kriging model based on the initial points.  The kriging model is thus a metamodel of f(x).  
 
Step 3: Classify the evaluated points into failure and safe points according to their limit state function 
value. If failure points exist, identify the FSF points by Eq. (7) from these points.   Recall that the 
fitness calculation was performed in each different quadrant.  
 
Step 4: Randomly generate a large number of cheap points from the kriging model (e.g. 103). From 
these cheap points, new sample points are to be picked and be evaluated.  We would like to avoid 
points that have an extremely low probability.  Also we need randomly distributed sample points, from 
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which points of desired property will be picked.  The questions at this step are then 1) how to determine 
the sampling region? and 2) how to avoid extremely low probability points? These questions are 
addressed by the following sub-algorithm: 

4a. Generate a relatively large number of sample points in the design space according to the 
JPDF, and identify the min( )(xjx ) from these sample points.  
4b. Randomly generate a large number of sample points in the 6 sigma hyper-box and 
their )(xjx values can be computed.  The points whose )(xjx value is less than min( )(xjx ) are 
discarded from the point set. As a result, the left-over points will be randomly distributed and 
all have a higher )(xjx  value than min( )(xjx ). 

The sub-algorithm was developed in order to balance the efficiency and accuracy.  In cases that the 
accuracy is of prominent concern, Step 4a could be eliminated and one can directly sample within the 6 
sigma hyper-box. 

 
Step 5: Classify the cheap points into two classes (failure and safe points) using the kriging model 
prediction. 
 
Step 6: Draw one sample from the cheap safe points to explore new failure regions. 

- Randomly draw a number of points according to the inverse of their failure probability, i.e., 
low probability points will have higher chance of being sampled.  This is because in 
engineering design failure points are often of low probability.  Since the intention is to 
identify failure regions, we would like those regions to have higher chance of being 
explored. 

- Calculate the minimum distance between each of the above points and the expensive 
evaluated safe points; pick the sample point that has the maximum minimum distance (i.e., 
maxmin distance) so that the new sample point is far from the expensive safe points.  

 
Step 7: Combine the cheap failure points with the expensive failure points, calculate their fitness values 
in each quadrant, and identify the FSF points by Eq. (7) from the combined point set.  One can choose 
all or some of the cheap FSF points according to their fitness values as new sample points.  In addition, 
find the minimum )(xjx  value of the combined FSF points and the minimum of all the evaluated FSF 
points.  If the former is less than the later, and the point yielding the minimum )(xjx  in the combined 
FSF is not yet in the new sample set, add it to the new sample set.   
 
Step 8: Evaluate the new drawn points in Step 6 and Step 7 by calling the expensive process.  
 
Step 9:  If convergence criteria are satisfied, perform RA and the process terminates. Otherwise, go 
back to Step 2 with all evaluated points as initial points. 

Convergence Criteria 
This work applies two convergence criteria.  The first criterion measures the closeness and distribution 
of the points on the failure surface frontier (FSF) at the last iteration.  It is known that when points on 
the frontier are closely and evenly distributed, the fitness value of all frontier points tends to be 1 [26].  
Therefore, in this work we set the average fitness value of all the current failure surface frontier points 

less one, 1
1

1

−= �
=

L

i
iG

L
G , close to 0 as a convergence criterion, where L is the number of frontier 

points in the last iteration.  In practice, we use 01.0≤G .   



MD-05-1241   Wang 9 

 
The second criterion checks the convergence of FSF. Define the number of expensive FSF points at the 
last iteration as Nf; and define Nn as the number of FSF points among Nf  that are dominated by any of 
the new FSF points generated at the current iteration.  Then the ratio ]1,0[, ∈= λλ fn NN  is expected 

to approach zero as FSF converges.  In the testing, 05.0≤λ  is applied.  It is observed from testing that 
for most testing cases, the convergence history is similar to that shown in Fig. 8 (which will be 
discussed later).   
 
For cases when the failure region is extremely small or does not exist, there is no new failure point 
being drawn after a number of iterations, or although new failure points can be drawn, it is very 
difficult to satisfy all of the two criteria simultaneously, the process will terminate after a prescribed 
maximum number of iterations has been reached. 

Reliability Assessment  
After FSF’s have been identified, at Step 9 of the algorithm, the failure probability of the problem is to 
be evaluated.   
 
Assume we now generate a large number of sample points.  These sample points are judged by FSF’s 
to see if they are in the safe or failure region. That is, if existing FSF’s cannot dominate a sample point, 
the point is then in the safe region, otherwise it is in the failure region.  These sample points are also 
evaluated by the final kriging model. If a sample point’s model function value is larger than the safety 
threshold, it is considered safe; otherwise, failure.  The combination of the two independent criteria will 
create two situations: 

1. Both criteria are consistent, i.e., they simultaneously predict a point either safe or failure. 
2. The two criteria are inconsistent, i.e., their predictions conflict.  

In Situation 1, since there is no conflict, their prediction will be used as the final judgment for the point.  
In Situation 2, the point will be evaluated by calling the expensive performance function as the final 
judgment.  From the error analysis point of view, an error can occur in Situation 1 when a point is in 
fact in the failure region but not dominated by existing FSF points.  This happens because FSF might 
be incomplete. Another type of error in Situation 1 is the mis-judgment of a safe point as a failure 
point. This happens in cases such as the safe region left to g2(x) = 0, as depicted in Fig. 1.  The 
argument is such an error is in the conservative side and the points in such regions will unlikely be 
chosen as design candidates.  Moreover, both types of errors are remedied in Situation 2, in which the 
point will be evaluated and used in the reliability assessment. 
 
Because FSF is simply a set of expensive evaluated points on the limit state, it thus provides an 
objective measure for RA.  The proposed FSF-based RA method thus alleviates the reliance on an 
accurate metamodel, which is hard to obtain and validate.  

4. Tests of the Proposed Method 
Five test problems are chosen from the literature.  They are assumed to be expensive black-box 
functions and hence the efficiency of the reliability assessment method is measured by the total number 
of evaluations of the expensive performance function.  
 
Problem 1 [11] has a performance function 3

2
3
121 ),( xxxxf += .  Its limit state function is 

18),( 3
2

3
121 −+= xxxxg . The distribution of random variables is )5,9.9(~),5,10(~ 21 NxNx .  This 



MD-05-1241   Wang 10 

problem has only one failure mode and has been widely used.  It provides a good reference for 
quantitative comparison. 
 
Problem 2 is given by [27] and used by [11; 18]. It is formulated from a tuned vibration absorber 
(TVA) system.  The amplitude of the system is the performance function described as below: 

211221212121

2

2
21

][4])()()(1[

|)
1

(1|
),(

2
211

2
2

2
1211 ββββββββ ς

βββ
−++−−−

−
=

R
f    (10) 

Where R is the mass ratio of the absorber to the original system, ς  is the damping ratio of the original 
system, and 1β  and 2β  are the ratios of the natural frequency of the original system and vibration 
absorber with respect to the excitation frequency, respectively.  In this work, R and ς are treated as 
deterministic variables with R = 0.01 and  ς  = 0.01; only 1β  and 2β  are random variables with a 
distribution )025.0,1(~1 Nβ  and )025.0,1(~2 Nβ . The objective of the design problem is to reduce the 
risk of the amplitude being larger than a certain value, under the uncertainties of the parameters.  The 
limit state function for this example is ),(0.28),( 2121 xxfxxg −= . Variables x1, x2 are used in the 
function for consistency instead of 1β  and 2β , respectively. This problem has multiple failure regions, 
as shown in Fig. 3.  It was referred as an “extremely difficult” problem [18]. 
 
Problems 3 is modified from [28].  The limit state function is given as 
 

��

�
�
�

−−

>≤+−
=

otherwisexx

xxxx
xxg

21

21
2
2

2
1

21
||23

0,23||3
),(     (11) 

Where both 1x  and 2x  are independent, identically and standard normally distributed.  
 
Problems 4 is from [28].  The limit state function is given as 

4
1221 )4(3),( xxxxg +−=       (12) 

 
Where both 1x  and 2x  are independent, identically and standard normally distributed.  

 
Problem 5 is a practical engineering example from [14].  The settlement of a point A in Fig. 5 caused 
by the construction of a structure can be shown to be primarily caused by the consolidation of the clay 
layer.  Suppose the contribution of settlement due to secondary consolidation is negligible.  For a 
normally loaded clay, the settlement S is given by  

                                         
0

0

0
log1 p

pp
e

C HS c ∆+
+=                                                        ( 13) 

where cC  is the compression index of the clay; 0e  is the void ration of the clay layer before loading; H 

is the thickness of the clay layer; 0p  is the original effective pressure at point B (mid-height of the clay 
layer) before loading; and p∆  is the increase in pressure at point B caused by the construction of the 
structure; “log” denotes logarithm to the base 10.  Because of the non-uniform thickness and lack of 
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homogeneity of the clay layer, the settlement predicted by the empirical formula could be subject to 
model error, which may be corrected by a factor N. 
 
                                     (insert Fig. 5 about here) 
 
Suppose satisfactory performance requires that the settlement be less than 2.5 inches and the variables 
have the statistics as shown in Table 1. 
 
     (Insert Table 1 here) 
 
Since the probability distributions of the variables are unknown, they will be assumed to be normally 
distributed.  Determine the probability of excessive settlement at point A in Fig 5. 

0

0

0
log5.2)( 1 p

pp
e

C HXg c ∆+
+−=                                                               (14) 

 
 The test results and comparison with related methods are listed in Tables 2-3 respectively.  For Monte 
Carlo simulation, the required number of samples, ns, and %error is determined by [14; 29] 

fs

f

pn

p
zerror

×
−

×=
1

100% 2/α      (15) 

where )2/1(1
2/ αα −Φ= −z , (.)1−Φ denotes the inverse function of the standard normal cumulative 

distribution.  α  reflects the confidence level.  Usually  the 95% confidence ( 05.0=α ) is taken.  For a 
fair comparison, the sample size for Problem 1 and 2 is taken from the references [11; 18], 
respectively.  The sample sizes for Problems 3 and 4 are determined from Eq. (15) with a small 
%error.   
 
Table 2 list the test results by using the proposed approach for the 5 test problems, respectively.  Table 
3 compares the test results with the state-of-the-art in the literature for the corresponding test problem.  
For Problem 1, which is a relatively simple problem, the proposed method achieved the highest 
accuracy and efficiency. For Problem 2, the MPP-based methods failed to find the two MPP’s. The 
multi-modal AIS based MPP also failed to identify both failure regions, and severely underestimated 
the probability of failure. The failure boundary for Problem 3 is convex and coincides with the contour 
of the performance function with an infinite number of MPP’s [28] .  Therefore FORM or SORM will 
have difficult or lead to significant risk for this problem.  It also presents a problem for MPP-based 
importance sampling methods as there is no single MPP.  Problem 4 has a highly concave limit state 
curve [28].  Due to the low probability of the failure region, it will result in low efficiency for MCS or 
MPP-based importance sampling methods.  Ref. [28] applied the IS on kernel density method to solve 
both Problems 3 and 4. Although the kernel density based IS method [28] is not based on MPP, it needs 
a large number of samples to obtain the first estimate of the kernel density. With the available data 
given by [28], the proposed method out wins for both Problems 3 and 4 in efficiency, as shown in 
Tables 2 and 3.   For a larger scale problem, i.e., Problem 5 with six design variables, the proposed 
method also outperforms in efficiency the Monte-Carlo simulation method to achieve the same 
accuracy.  
 

(Insert Figs. 6-7 about here.) 
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Fig. 6 plots all the evaluated expensive points in the design space for Problem 2.  It is visually apparent 
that significantly more sample points are generated on or close to the limit states.  Fig. 7 plots the 
evaluation result for 104 random sample points for Problem 2 using the proposed method against the 
evaluation directly from the performance function.  Similar plots have been obtained for other test 
problems.  The plots in Fig. 6 and Fig. 7 indicate that the chance of sampling in Problem 2 is almost 
identical for both failure regions.  This proves the capability of the proposed method for problems with 
multiple failure regions.  Fig. 8 plots the convergence history for Problem 1 as an example. Similar 
convergence behaviour for other problems is also observed. 
 

5. Discussions 
For expensive performance functions, metamodels are commonly used [20].  The reliability assessment 
(RA), however, often depends on the accuracy of the metamodel.  This method fundamentally differs 
from this common practice by introducing an objective means, failure surface frontier (FSF), for the 
purpose of RA.  The metamodel is employed in this work mainly as a guide for iterative sampling.  It is 
used in RA only as a supplementary tool to identify controversial points, at which the expensive 
performance function is called for evaluation.  Therefore, the proposed RA method does not rely on the 
accuracy of the metamodel. 
 
The importance sampling (IS) based methods have two types.  One is the IS on design points and the 
other is IS on kernel sampling density [11; 28; 29].  IS on the design point is to move the center of 
sampling to a point on the limit state, which is usually the conventional MPP. This method was 
promoted by [30].  The method, however, bears a few problems: 

1. In general, the search for design points occupies a considerable portion of the total computational 
effort. 

2. If there are multiple MPPs, the search for multiple design points requires more sophisticated 
algorithms for the optimization problem.  Moreover, since it is not known a priori, multiple points 
search has to be carried out for every problem. 

3. The application of design points to IS becomes more difficult or inefficient  in situations such as 
noisy limit state functions, relatively flat PDFs along or in the neighborhood of the limit state 
surfaces, and highly concave/convex  limit state surfaces.  When such situations are not properly 
handled in IS, the estimate can have a large variance or even become practically biased [28] . 

 
The IS on kernel sampling density is to use sample points to construct a kernel density estimator of the 
optimal IS density. The main drawback is that the points used to construct the kernel sampling density 
are simulated by the basic Monte Carlo procedure, so the probability of having samples generated in 
the failure region is equal to the failure probability, which is usually small in practical applications.  
The simulation of points lying in the failure region thus requires a very large number of sample points 
and so the method is computationally expensive. This work has chosen the version from [28] for the 
comparison (See Tables 6 and 8), which is considered the most efficient approach of this category by 
[29]. 

Comparatively, the proposed RA method based on the concept of FSF has a few distinctive features: 

1. There is no need to perform transformation of design space.  Since the method works always in its 
original design space, no transformation and thus approximation of the variable distribution is 
needed. This eliminates the possible error in transformation. 
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2. The method uses FSF as an objective means for reliability assessment instead of relying on the 
accuracy of the metamodel. 

3. The proposed method does not call any MCS process directly on the expensive performance 
function. 

4. The proposed strategy is simple and easy to understand by practitioners.  Little tuning of parameters 
is required with no need to guess any parametric family of densities as in the case of IS methods. 

5. The proposed method works for challenging problems with multiple failure regions, multiple 
(infinite) number of MPP’s, and extremely small failure probabilities.  

 
It is to be noted that the proposed method is a discriminative sampling method, in some sense an 
intuitive method.  It is, therefore, lacks of a rigorous approach to quantify its error as that in Eq. (15)  
for Monte Carlo simulation.  In addition, as dimensionality increases, a large set of evaluated FSF 
points is needed to represent the FSF’s so that the number of evaluation increases.  The efficiency of 
the method for high-dimensional problems rely on a few things, 1) the efficiency of constructing the 
approximation model (in this case, kriging), 2) the variance of each design variable as it determines the 
size of design space, and 3) the complexity of the failure surface.  An approximation of FSF from the 
obtained FSF points might be used to improve efficiency.  Future study will be on the reliability 
assessment for high-dimensional problems with expensive performance functions.  
   

6. Conclusions 
The work aims at reliability assessment on expensive performance functions. The proposition of the 
concept of failure surface frontier (FSF) in this work provides a better alternative to existing linear or 
quadratic approximation of expensive limit state surfaces.  It also brings our attention to FSF, the set of 
most significant failure points from the entire failure surfaces (limit states). The final reliability 
assessment can be performed by employing FSF as an objective measure, instead of relying on the 
accuracy of approximation. 
 
Practically, this work was a significant improvement to our recent work [20] to tackle problems of 
multiple failure regions, multiple MPP’s, and low probability failure regions.  The proposed algorithm 
based on the concept of FSF is able to solve these problems effectively and efficiently.  
   
Test and comparison results show that the proposed method bears high accuracy and efficiency for four 
test problems with representative features.  Its performance on high dimensionality problems needs to 
be further studied. 
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 Table 1 Statistics data for Problem 5 

 
 Mean C.O.V. Standard Deviation 

N 1.0 0.10 0.10 

cC  0.396 0.25 0.099 

0e  1.19 0.15 0.1785 

H 168 in. 0.05 8.4 

0p  3.72ksf 0.05 0.186 

p∆  0.50ksf 0.20 0.10 
 

Table 2 Test Results for 5 problems 

Example 
# 

No. of 
iterations 

No. of 
function 

evaluations 

Convergence 

Criteria 1 

Convergence 

Criteria 2 

No. of 
failure 
points 

No. of 
safe 

points 

No. of 
errors 

compared 
with MCS 

1 36 215 0.0082 0 617 11,983 0 

2 24 285 0.0086 0.0125 326 29,674 3 

3 27 284 0.0098 0.0460 382 99,618 2 

4 52 215 0.0335 0 912 4,999,088 0 

5 31 2213 0.0371 .0938 361 3639 0 
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Table 3 Test Result Comparison for 5 Problems 

Example # Methods Probability of 
failure 

Difference from 
MCS result (%) 

No. of function 
evaluations 

FORM with 
response surface 

0.0256 352 97 

SORM with 
response surface 

0.0162 186 97 

Original multi- 
modal AIS 

0.00617 9.0 450 

Multi-modal AIS 0.00575 1.6 560 
MCS 0.0051 0 120,000 

11 

FSF 0.0051 0 215 
FORM No convergence - - 

Multi-modal AIS 0.00407 58 850 
IRS-Based Monte 

Carlo 0.00963 0.7 206 

MCS 0.0108 0 30,000 

22 

FSF 0.0109 0.9 285 
Multi-modal AIS 
on kernel (Ref. 
[26]) based on 

Markov 
simulation 

Not Provided Not Provided 

500 (Kernel 
sampling density 
construction)  + N 
(the number of 
samples used to 
obtain the estimate 
in the AIS) 

MCS 0.0038 0 100,000 

3 

FSF 0.0038 0 284 
Multi-modal AIS 
on kernel (Ref. 
[26]) based on 

Markov 
simulation 

Not provided Not provided 

500 (Kernel 
sampling density 
construction)  + N 
(the number of 
samples are used to 
obtain the estimate 
in the AIS) 

MCS 0.0001824 0 5,000,000 

4 

FSF 0.0001824 0 215 
MPP method 

(Ref. 14) 
0.102 Not provided Not provided 

MCS 0.0902 0 4,000 

5 

FSF 0.0902 0 2213 
 
                                                 
1 The results in the first four rows are copied from Ref. [11].  The results in the last two rows come from our computation.  
The total number of MC sample points are chosen as the same as that in [11], i.e., 120,000. 

 
2 The results in the first three rows come from Ref. [17].  The results in the last two rows come from our computation.  The 
samples size for MC is the same as that in [17], i.e., 30000. 
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Fig. 1 An illustration of the failure surface and failure regions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Tangent line to g(u)=0 in the U-space 
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Fig. 3 A problem with 2 failure regions and many limit state surfaces 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4 An illustration of fitness function values 

Failure Regions 

Safe Region 

FSF 

xc 

(0, 1), G=1.8 

(1, 0), G=1.6 

(0.8, 0.6), G=1.2 

Xs1 

Xs2 

0 

(0.9, 0.8), G=0.9 



MD-05-1241   Wang 21 

 
 
 
 

 
Fig. 5 Soil profile for Problem 5 

 

 
Fig. 6 Evaluated sampling points for Problem 2 
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Fig. 7 Reliability assessment from 104 sample points for Problem 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Convergence history of two criteria for Problem 1 
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