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Abstract

In this work, stability control of bipedal standing is investigated. The biped is simplified as an inverted pendulum with a foot-link. The

controller consists of a general regression neural network (GRNN) feedback control, which stabilizes the inverted pendulum in a region

around the upright position, and a PID feedback control, which keeps the pendulum at the upright position. The GRNN controller is

also designed to minimize an energy-related cost function while satisfying the constraints between the foot-link and the ground. The

optimization has been carried out using the genetic algorithm (GA) and the GRNN is directly trained during optimization iteration

process to provide the closed loop feedback optimal controller. The stability of the controlled system is analyzed using the concept of

Lyapunov exponents, and a stability region is determined. Simulation results show that the controller can keep the inverted pendulum at

the upright position while nearly minimizing an energy-related cost function and keeping the foot-link stationary on the ground. The

work contributes to bipedal balancing control, which is important to the development of bipedal robots.

Crown Copyright r 2006 Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Balancing control is essential for bipedal locomotion.
There are three requirements in designing balancing
controllers: (1) maintaining postural stability, (2) improv-
ing energy efficiency and (3) satisfying the constraints
between the foot-link and the ground. In spite of the
attempts, there is little success in developing balancing
control satisfying all three requirements. We believe that
the lack of a constructive tool for stability analysis is one of
the obstacles. For example, when an optimal control is
designed, due to the complexity of the system, stability
analysis based on Lyapunov’s stability theory is challen-
ging. On the other hand, when a balancing control is
designed based on Lyapunov’s stability theory, it has little
flexibility to include the optimization criterion. Further-
more, it has often been assumed that the constraints
e front matter Crown Copyright r 2006 Published by Elsevie

gappai.2006.09.007

ing author. Tel.: +1204 474 8843; fax: +1 204 275 7507.

esses: umghorba@cc.umanitoba.ca (R. Ghorbani),

toba.ca (Q. Wu), wangg0@cc.umanitoba.ca (G.G. Wang).
between the feet and the ground are always satisfied once
the feet contact the ground. However, the satisfaction of
such constraints imposes bounds to the control torques
(Yang and Wu, 2006a), which has significant effects on
control design. Thus, it is challenging to develop balancing
control considering all three requirements.
Due to the nonlinear behavior and inherent complexities

of bipedal systems, nonlinear control becomes a valuable
choice, and numerous control methods have been em-
ployed for regulating bipedal locomotion. The capability of
neural networks for approximating generic functions
makes them a valuable tool for the design of nonlinear
controllers (see Plumer (1996) and the references therein).
Generally, there are two methods for developing an
optimal controller using neural networks. In the first
method, a nominal optimal controller is designed first,
which provides an open loop controller. The neural
network is then trained to learn the nominal control law
to produce a closed loop optimal controller. This method
has been widely used in various applications, such as
robotic manipulator control (Josin et al., 1988; Kuperstein
r Ltd. All rights reserved.
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and Wang, 1990), sensor/motor fusion (Kuprestien
and Rubinstien, 1989), autonomous vehicle control
(Pamerleau, 1991), and process control (Bhat et al., 1990).
One limitation is that the approximation of the nominal
control law inevitably introduces errors and may not
completely match to the nominal optimal control law. In
the second method, the neural network is directly trained
during optimization to provide the closed loop feedback
optimal controller. One advantage of this method is that it
reduces the approximation error of the control law caused by
direct derivation of the neural network’s parameters.
However, this method has not been used widely.

In this work, using the second method, a closed loop
nearly optimal controller is developed using the general
regression neural network (GRNN). A GRNN is chosen
due to its advantages, such that, it can provide an adequate
approximation of the systems with the outstanding
characteristic of fast training that reduces the optimization
workload during iterative process. GRNNs have the
advantage that it is unnecessary to define the number of
hidden layers or the number of neurons per layer in
advance. In addition, a GRNN could be implemented on
small microchips by using low memory that is a beneficial
factor in engineering applications. The optimization is
carried out using the genetic algorithm (GA), which is an
optimization algorithm inspired by the mechanics of
natural evolution to guide their exploration in a search
space. The basic concepts of GAs were developed by
Holland (1975) and a comprehensive overview has been
provided by Goldenberg (1989) and Michalewicz (1996).
GAs have been used in various problems associated with
bipedal locomotion. For example, Capi et al. (2002) have
applied a GA to generate an optimal trajectory for a
bipedal robot walking. Cabodevila and Abba (1997)
designed optimal gait of biped robot based on
expansion of the joint trajectories by Fourier’s series
using a GA. Arakawa and Fukuda (1996) used a GA to
generate natural motion of biped locomotion with energy
optimization.

Stability analysis of bipedal locomotion is important
since it is the primary requirement. Wu et al. (1998) and
Wu and Swain (2002) investigated the stability control of a
human upper body during walking based on Lyapunov’s
stability theory. Grizzle et al. (2001) and Westervelt et al.
(2003) studied stable walking using the method of Poincare
mapping. Pai and Patton (1997) simulated the balancing of
human standing with the consideration of the constraints
between the feet and the ground. Huang et al. (2001) and
Capi et al. (2002) investigated stable bipedal walking by
keeping the zero moment point within the contact surface
between the feet and the ground. Kolesnichenko and
Shiriatev (2002) researched on stabilization of under
actuated robotic locomotion systems. Although stability
of bipedal locomotion has attracted much attention,
stability analysis of bipedal standing based on Lyapunov’s
stability theory has been limited especially with the
requirements of energy optimization and of the satisfaction
of the constraints. This is due to the complexity of the
systems and challenges in deriving a Lyapunov function.
The concept of Lyapunov exponents (Wolf et al., 1985)

is a powerful tool in categorizing the system stability.
Lyapunov exponents are defined as the average exponential
rates of divergence or convergence of nearby orbits in the
state-space. The signs of the exponents provide a qualita-
tive picture of system’s dynamics. Lyapunov exponents are
independent of initial conditions, and are properties of the
attactor geometry and dynamics. Since it is almost
impossible to determine the exponents analytically, they
are calculated based on either a mathematical model or a
time series. Methods for calculating Lyapunov exponents
based on a mathematic model have been developed (Wolf
et al., 1985). The limitations are that the models are not
always available, and even if they are available, due to their
complexity and uncertainties, the calculation of Lyapunov
exponents can be infeasible. The advantage of using a time
series is that the data for only one state is needed, which
can be measured experimentally. Three issues should be
addressed when using a time series: the quantity, quality
(measurement noise) of the data and the complexity of the
system. These issues can have important effects on the
calculated exponents. To remedy the problems, methods
for calculating Lyapunov exponents from short and noisy
time series have been developed (Zeng et al., 1990; Brown
et al., 1991). Although much work is needed, we believe
that the concept of Lyapunov exponents can be a
constructive tool for stability analysis of nonlinear systems.
However, to the best of our knowledge, it has not been
used for the stability analysis of bipedal systems.
In this paper, the balancing control of bipedal standing is

studied. The biped is assumed to move in a sagittal plane
and is simplified as an inverted pendulum with one rigid
link as feet. The controller is designed to move the inverted
pendulum to the upright position and to satisfy the
constraints between the foot-link and the ground. A
GRNN feedback controller will be first designed to move
the inverted pendulum in a region around the upright
position while minimizing an energy-related cost function.
A PID feedback controller is then used to keep the
pendulum at the upright position more accurately. The
foot-link is not fixed on the ground, but is required to be
stationary. Three constraints are considered, i.e., no lifting,
no slippage, and the center of pressure (COP) remaining
within the contact region between the foot-link and the
ground. To determine the stability of the control system,
the largest Lyapunov exponent of the controlled bipedal
system is calculated using the method by Wolf et al. (1985),
and is used to determine a stability region. The time series
is generated by the dynamic model, which is noise-free and
can be of any amount. Thus, our approach will yield the
true Lyapunov exponent by definition (Wolf et al., 1985).
The paper is organized as follows. Section 2 describes the

dynamic model of a biped during standing, which includes
the dynamic equations, constraint inequalities, the control
algorithm and the cost function to be minimized. Section 3
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gives the detailed design of the GRNN feedback controller
and the GA optimization approach. Section 4 shows the
stability analysis of the control system using the concept of
Lyapunov exponents. Section 5 provides simulation results,
followed by the conclusions.

2. Model description

An adequate bipedal model for investigating bipedal
standing should be simple, but complex enough to capture
the main dynamic characteristics of standing. It has been
reported that standing human subjects, subject to small
disturbance, typically respond by moving in a segittal
plane, and they tend to keep the knees, hips and neck fairly
straight, moving about the ankle (Kuo, 1995). Thus, it is
reasonable to simplify a biped as an inverted pendulum.
Inverted pendulum models have been used to study bipedal
posture (Hemami and Stokes, 1983; Hemami and Katbab,
1982; Wu et al., 1998).

Based on the above discussion, we simplify the legs,
trunk, arms and head as an inverted pendulum, and feet as
one link, which provides a base of support on the
ground. The feet position is assumed to be bilaterally
symmetric and stationary, and the biped moves in the
sagittal plane. The simplified bipedal model is shown in
Fig. 1. The dynamic equations are developed using the
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Fig. 1. Simplified bipedal model.
Euler–Lagrangian method shown below:

t ¼ ðI þmr2Þ€yþmgr cos y, (1)

Fgx ¼ mr€y sin yþmr_y
2
cos y, (2)

Fgy ¼ ðmf þmÞgþmr€y cos y�mr_y
2
sin y, (3)

xCOP ¼ Lf �
bFgx � tþ cmfg

F gy

þ a

� �
, (4)

where Fgx and Fgy are the horizontal and vertical ground
reaction forces. t, y, _y and €y are the ankle torque, angular
displacement, velocity and acceleration of the inverted
pendulum (counter clockwise as ‘‘+’’), respectively. The
parameters a, b, c, xCOP, r, L, Lf, mf and m are the
horizontal distance between the ankle and the heel, ankle
height, horizontal distance between the mass center of
the foot-link and the ankle, horizontal distance between the
COP and the toe, distance between the mass center of the
inverted pendulum and the ankle, length of the pendulum,
length of the foot-link, mass of the foot-link and mass of
the pendulum, respectively.
Unlike most of previous work that the feet were assumed

to be fixed on the ground, in this work, the foot-link is not
fixed on the ground, but is required to be stationary during
balancing. Three constraints are considered:

Gravity constraint. The vertical ground reaction force,
Fgy, must be positive, indicating that the foot-link does not
lift from the ground, i.e.,

FgyX0. (5)

Friction constraint. The horizontal ground reaction
force, Fgx, must not exceed the maximum static friction
dictated by the coefficient of friction, m, indicating that the
foot does not slip:

Fgx

�� ��pmFgy. (6)

COP constraint. The COP must reside within the
boundary of the support, i.e.,

0pxCOPpLf . (7)

Substituting Eqs. (1)–(4) into the above inequalities, the
upper and lower bounds of the ankle torque, t, can be
determined, which are functions of the states, y and _y. It
was also found that the satisfaction of these constraints
imposes an upper bound to the value of the angular
velocity, as discussed in details by Yang and Wu (2006a).
A feedback controller is designed to stabilize the inverted

pendulum at the upright position while keeping the
constraints satisfied. The input to the controller is the
error states e ¼ y� yd and _e ¼ _y� _yd, where yd and _yd are
the desired angle and angular velocity, and yd ¼ 901 and
_yd ¼ 0 ðrad= secÞ. The output is the torque, t applied at
the ankle joint. The state feedback controller consists
of a GRNN and a PID controller. The GRNN
stabilizes the disturbed biped to a small region around
the upright position while minimizing the control torque.
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For increasing the accuracy of stabilization and due to
limited number of sampling points for decreasing the
optimization workload, a PID controller is then activated
to keep the biped close to upright positions. The
parameters of the PID controller are determined by trial
and error to keep the pendulum at upright position. The
control torque is always within the control bounds
determined from inequlities (5)–(7). The block diagram of
the controller is shown in Fig. 2. In addition to stabilizing
the biped and satisfying the constraints, the GRNN
controller is also designed to minimize the following cost
function:

J ¼
1

2

Z tf

0

ffiffiffiffiffiffiffi
tTt
p

dtþ C1 yd � yfj j þ C2
_yd � _yf
�� ��

þ

Z tf

0

C3 dt; ð8aÞ

C3 ¼
0; if the constraints are satisfied;

C; if the constraints are not satisfied;

(
(8b)

where tf is the final time instant. t is the ankle torque. yd
and _yd are the desired states, and yf and _yf are the actual
states at the final time instant. C1 and C2 are the weighting
coefficients. C3 is the constraint function for satisfying the
control bounds determined by the constraints between the
foot-link and the ground (Yang and Wu, 2006a). The first
term of the cost function is an integral of the control effort,R tf
0

ffiffiffiffiffiffiffi
tTt
p

dt. Based on the discussion by Chevallereau and

Aoustin (2001), reducing the control effort indicates the
low energy consumption during stabilization. The integral
of the control effort and the term associated with C3,
shown in Eq. (8a), are the cost representation in the
transitory regime. The remaining two terms of the cost
function, C1 yd � yfj j and C2

_yd � _yf
�� ��, are the errors of the

final angular position and angular velocity of the inverted
pendulum with respect to the desired ones, which represent
the cost function in permanent regime. Note that the
satisfaction of the constraints between the foot-link and the
ground also imposes conditions on the angular velocity
(Yang and Wu, 2006a), which is not considered in the
control design. However, in the simulation study, the
simulated angular velocity was compared to the velocity
bound, and if the angular velocity is higher than the
velocity bound, the constraints are violated, stabilization is
out of the question and the simulation is terminated.
PID

Controller

GRNN

Plant
_

Controller

Selection+
Desired

Fig. 2. Block diagram of the controller.
3. Development of general regression neural network using

genetic algorithm

In this section, the design of a GRNN controller based
on a GA for balancing of constrained bipedal standing is
presented. The GRNN is a three-layer network that can be
used to estimate the nonlinear functions. It is assumed that
the vectors X and Y are the input and the output of the
neural network, respectively. Estimation of Y according to
an independent input variable X is the most probable value
for the output Y with respect to the input X, which is
denoted as E(Y|X), the best estimation of Y. GRNN uses
the joint probability density function (JPDF) to find
E(Y|X) as shown below:

EðY jX Þ ¼

R1
�1

Yf ðX ;Y ÞdyR1
�1

f ðX ;Y Þdy
, (9)

where f(X, Y) denotes the JPDF of X and Y. Assuming that
the sampling points, (Xi, Yi) (i ¼ 1, 2,y,n), are related
through a Gaussian JPDF f(X, Y), thus, fn(X, Y) can be
defined as follows:

f nðX ;Y Þ ¼
1

ð2PÞðPþ1Þ=2sPþ1
n

Xn

i¼1

CiðX ;Y Þ, (10)

where

CiðX ;Y Þ

¼ exp �
ðX � X iÞ

T
ðX � X iÞ þ ðY � Y iÞ

T
ðY � Y iÞ

2s2

� �
.

ð11Þ

In Eq. (10), P is the dimension of vector X. It has been

proven that, if lim
n!1

sðnÞ ¼ 0 and lim
n!1
ðsPðnÞÞ ¼ 1, we have

that lim f nðX ;Y Þ
n!1

¼ f ðX ;Y Þ. So using above considerations

for n sampling points, Eq. (9) can be converted to:

EðY jX Þ ¼

Pn
i¼1

Y i exp �D2
i =2s

2
� 	

Pn
i¼1

exp �D2
i =2s2

� 	 , (12)

where

D2
i ¼ ðX � X iÞ

T
ðX � X iÞ. (13)

The details of the derivation of Eq. (12), the training
procedure and the parameter determination are explained
in Holland (1975) and Specht (1991).
By considering a finite number of nodes, n, at pattern

unit of the GRNN, the output of the GRNN is designed to
be the best estimation of:

tðEÞ ¼

Pn
i¼1ti exp �D2=2s2

� 	
Pn

i¼1 exp �D2=2s2
� 	 , (14)
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where

D2
i ¼ ðE � EiÞ

T
ðE � EiÞ. (15)

Note that vector E is the actual error of the system and Ei is
the sample input of ith node in the GRNN. The input and
output of GRNN are E ¼ e; _ef gT and t, respectively. s is
the spreading factor, and it can be tuned through the
algorithm (Breiman et al., 1977). In this work, yd ¼ 901,
_yd ¼ 0 ðrad= secÞ. eminoeoemax and _emino_eo_emax where
emin; emax; _emin and _emax are the minimum and maximum
values of error in the angular displacement and angular
velocity, respectively. They have been selected to satisfy
three requirements: (1) to achieve an acceptable range of
error in stabilizing the inverted pendulum around the
upright position, (2) to have good accuracy for GRNN for
approximating the optimal control, and (3) to have a
reasonable number of sampling points to reduce the
computing load.

The sampling points for training the GRNN, (Ei, ti)
(i ¼ 1; 2; . . . ; n), are determined such that the bounds of the
control torque determined from inequalities (5)–(7) are
satisfied and the cost function, shown in Eq (8), is
minimized. Thus, searching the n sampling points is an
optimization problem, which is carried out using a GA.
GAs are optimization algorithms based on the principle of
natural evolution and population genetics. A GA com-
prises a set of individuals (the population) and a set of
biologically inspired operators (the genetic operators). The
individuals have genes, which are the potential solutions
for the problem. A GA has three operators: (1) Selection,
in which individuals are chosen to participate in the
reproduction of new individuals. The method of the
tournament selection is used here, which selects two or
more individuals randomly and makes the next generation
by choosing the highest fitness one. (2) Crossover, which
combines the characteristics of two parent individuals to
form two offspring. In this work, the arithmetical crossover
is used. (3) Mutation, which alters one or more genes of
selected individuals by a random change. In the current
study, a ‘‘real’’ scheme is used to form chromosomes
(GAlib: Matthew’s C++ Genetic Algorithms Library). A
chromosome is defined as an ordered list of sample nodes
as shown in Fig. 3. Each gene of a chromosome represents
a sample node consisting of the error states ei, _ei and the
torque, ti, which denote the optimum point in error phase
plane and the torque value of the corresponding point.

Based on the initial conditions and constraints on the
control torque, the initial population is generated. Every
population introduces a separate form of a GRNN
controller because every population includes a separate
combination of sample points. Simulation of the bipedal
stabilization is conducted using the controller as shown in
Fig. 2. Next, the cost function is calculated based on the
Fig. 3. A chromosome representing the sample nodes of GRNN.
simulation results with the consideration of the satisfaction
of all constraints. Then the GA optimization routine will
be started to find the next generation. Several evolutionary
operators are set up which include reproduction, crossover
operator and mutation. Searching is continued until the
termination criterion (maximum number of generations
Gnmax) is satisfied. The block diagram of the optimal
GRNN feedback control based on a GA is shown in Fig. 4.
4. Stability analysis

The control is designed to stabilize the bipedal model at
an upright position, while minimizing the cost function and
satisfying the constraints between the foot-link and the
ground. The stability of the control system is a crucial issue
and required to be analyzed. Due to the complexity of the
control systems, the concept of Lyapunov exponent is used
to characterize the system stability.
Due to the complexity of the control algorithm, the

method, developed by Wolf et al. (1985), to calculate the
largest Lyapunov exponents based on a time series is used.
The time series is generated by the dynamic systems, shown
in Eq. (1), combined with the control law. In brief, for a
given time series x(t), an m-dimensional state space is
reconstructed with delay coordinates, i.e., a point on the
attractor is given by fxðtÞ; xðtþ ~tÞ; . . . ;xðtþ ½m� 1�~tÞg,
where ~t is the delay time. By computing the vector distance
L(t0) of two points at time t0 and L0(t1) at later time t1 and
repeating the procedure until the fictitious trajectory
has traversed the entire data file, the largest Lyapunov
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exponent is estimated as follows:

l1 ¼
1

tM � t0

XM
k¼1

log2
L0ðtkÞ

Lðtk�1Þ
, (16)

where M is the total number of replacement steps. Also
during the calculation of the largest Lyapunov exponents,
if the length of vector L0(t1) between the two points
becomes too large, a new reference point capable of
minimizing the replacement length and the orientation
change is chosen.

The signs of Lyapunov exponents indicate the stability
property of the dynamic systems. For example, when all
Lyapunov exponents are negative, trajectories from all
directions in the state-space converge to the equilibrium
point. In this case, the system is exponentially stable about
the equilibrium point. If one exponent is zero while others
are negative, trajectories converge from all but one
direction in the state-space and the attractor is a one-
dimensional curve. If the trajectory is further bounded and
forms a closed loop, the system performs a periodic motion
and has a stable limit cycle. If at least one Lyapunov
exponent is positive, two initially nearby trajectories
separate at exponential rate and the system is chaotic.

It is known that although Lyapunov exponents are
calculated along a single solution trajectory, they have the
same values for all trajectories in the same stability region.
Thus, the determination of a stability region becomes a
crucial issue. The stability region is defined to include
initial states, from which all of the largest Lyapunov
exponents are convergent to the same negative value. The
algorithm developed by Nusse and Yorke (1998) is adapted
here. First, the region of interest is divided into a number
of grid boxes where the grid box at the origin of the state-
space (also called ‘center box’) contains the equilibrium
point. Next, each neighboring box is tested such that if the
largest Lyapunov exponent is negative, the neighboring
grid box belongs to the stability region.
5. Simulation results

The developed control algorithm has been implemented
with C++ in the PC environment. Parameters of the
bipedal model are: L ¼ 50 cm, Lf ¼ 27.6 cm, a ¼ 25 cm and
m ¼ 1 kg, mf ¼ 0.9 kg, r ¼ 0.287m, b ¼ 2 cm. The initial
states are yd�y ¼ 0.26 (rad) and _y ¼ �0:2ðrad= secÞ. The
Fig. 5. Convergence of
values of emax ¼ 0:05 rad, emin ¼ �0:05 rad, _emax ¼

0:4ðrad= secÞ and _emin ¼ �0:4ðrad= secÞ are used. The
weighting coefficients, shown in Eq. (8a), were selected as
C1 ¼ 10, C2 ¼ 0.2. The constant C3 of the constraint
function, shown in Eq. (8b), was taken as 2.0. In this work,
GALIB software was used for GA optimization. For better
results in terms of the solution quality and CPU time, a
real-valued GA was employed. We considered N ¼ 40 for
the pattern unit of the GRNN, so each individual of the
GA consists 40 genes of e, _e and t. The following GA
parameters were used: crossover probability pc ¼ 0.5,
mutation probability pm ¼ 0.05 and population size ¼ 200.
The maximum number of generations, Gnmax, is 120. As the
biped entered the region of yd � yj jo2:5� with the angular
velocity below 0.4 rad/s, the GRNN controller was
switched to a PID controller to keep the biped at the
upright position.
The convergence test was carried out first, and we found

that with Gnmax ¼ 120, the cost function converged as
shown in Fig. 5. The angular displacement and the angular
velocity of the ankle joint are shown in Fig. 6(a). The bold
dash curve is the optimal trajectory with the initial states
y ¼ 0:26 ðradÞ and _y ¼ �0:2 ðrad= secÞ, and the solid curves
are trajectories starting from all 24 grid boxes neighboring
the optimal one, as will be discussed later. The bounds of
the ankle torque determined based on the constraints
(5)–(7) and the control torques are also shown in Fig. 6(b).
Fig. 6 shows that the bipedal model was stabilized close to
an upright position, and the control torque was always
bounded within the desired limits indicating that the
constraints between the foot-link and the ground were
satisfied.
As shown in Eq. (8), the GRNN controller is designed to

minimize a torque-cost function. The integral amount of
torque for the proposed system is 1.78 (Nm s). We
compared the integral amount of torque from our control
system with the one from previous published work
(Yang and Wu, 2006b), where a state-switching PD
controller was used to stabilize the same bipedal model
and satisfying the same constraints, but without any
considerations of optimization. The integral amount of
torque of the state-switching PD control system with the
same initial condition as optimal trajectory is equal to
4.27 (Nm s). It is clear that the proposed controller reduces
the required torques, which indicates the energy consumed
is reduced significantly.
the cost function.
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The largest Lyapunov exponent was determined to be
�3.3, indicating that the optimal control system is
exponentially stable about the upright position. The
region:

G :¼ fe; _e; 0:18 radpeo0:34 rad

and � 0:28 rad=sp_ep� 0:12 rad=sg

in the phase plane is divided into 24 grid boxes with the size
of 0.007 rad (0.41) and 0.007 (rad/s) for y and _y, respec-
tively. The initial states for the nominal controller, used for
optimization p/2�0.26 rad and �0.2(rad/s). We found that
all the largest Lyapunov exponents are negative and the
mean value is �3.5 with deviation of 0.3. The finding of
negative Lyapunov exponents indicates that the above
region, G, is a part of the stability region. This is confirmed
by the simulations shown in Fig. 6(a). Note that region, G,
is a part of the stability region, but not necessarily the
entire stability region. Finding the largest stability region is
important, but it is off the scope of this work.
The spreading factor s in the GRNN has an important

influence on the performance of the controller. We found
that for a lower value of s, the GRNN can stabilize the
biped closer to the upright position. However, it is more
sensitive to the initial states. For a larger value of s, the
GRNN is more robust to the disturbance of the initial
states, but it is less accurate in term of keeping the biped
close to the upright position. In this work, we found the
best spreading factor s as 0.7 by trial and error. However,
it is highly desirable to determine the spreading factor s by
some optimization methods.

6. Conclusions

In this paper, a balancing control has been developed,
which can stabilize the biped at the upright position and
satisfy all constraints between the foot-link and the ground.
The controller consists of a GRNN controller, which
stabilizes the biped in a region around the upright position
while reducing the energy consumption by partially
minimizing the torque at the ankle joint, and a PID
controller, which keeps the biped at the upright position.
The optimization has been carried out based on a GA. The
stability of the optimal controlled bipedal system is
investigated using the concept of Lyapunov exponents,
and a stability region is determined.
For much of the previous work, design of balancing

control satisfying all three requirements has been extremely
limited. We believe that the lack of an effective tool for
stability analysis is one of the main obstacles. Thus, the
first contribution is that we proposed to study the system
stability using the concept of Lyapunov exponents and
demonstrated that the concept of Lyapunov exponents is a
constructive tool. This contribution is novel in that we set
up a framework, which makes the control design satisfying
all three criteria feasible. This is because the researchers can
design neural network control or optimal control satisfying
the constraints without being restricted by the lack of tools
for proving the stability.
The second contribution is that we developed a partially

optimal neural network controller, which is directly trained
during optimization to provide the closed loop feedback
control. One advantage of this method is that it reduces the
approximation error of the control law caused by direct
derivation of the neural network’s parameters. We used a
GRNN due to its outstanding characteristic of fast training
and GA for optimization. We demonstrated that our
controllers is effective and satisfies all three requirements.
Although the work presented here is theoretical and the

time series is generated by the simulation model, the results
can be extended to real robot balancing control. As
discussed earlier, when the time series is generated by
experiments, issues of quantity and quality (measurement
noise) of the data must be considered. Since almost
unlimited noise-free data was generated from the simulation
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model, the Wolf’s method (Wolf et al., 1985) was used here
for its simplicity. When the quantity and the quality of the
experimentally measured time series are of concerns, the
methods developed by Zeng et al. (1990) and Brown et al.
(1991) are recommended since they were specifically
developed for short and noise time series.

As for the future work, since the value of spreading
factor s in the GRNN has an important influence on the
performance of the controller, it is desirable to develop a
method for determining an optimal spreading factor s. We
are also considering to design a multi-parallel-GRNN
trained from several initial points of state space to make
the optimal controller more global. Another future work is
to test the effectiveness of our controller and the method of
stability analysis experimentally.
References

Arakawa, T., Fukuda, T., 1996. Natural motion trajectory generation of

biped locomotion robot using genetic algorithm through energy

optimization systems. IEEE International Conference on Man, and

Cybernetics 2, 1495–1500.

Bhat, N., Minderman, P., McAvoy Jr., T., Wang, N., 1990. Modeling

chemical prosses systems via neural computation. IEEE Control

Systems Magazine, 24–30.

Breiman, L., Meisel, W., Purcell, E., 1977. Variable kernel estimates of

multivariate densities. Technometrics 19(2).

Brown, R., Bryant, P., Abarbanel, H.D.I., 1991. Computing the

Lyapunov spectrum of a dynamical system from an observed time

series. Physical Review A 43, 2787–2806.

Cabodevila, G., Abba, G., 1997. Quasi optimal gait for a biped robot

using genetic algorithm. IEEE International Conference on Systems,

Man, and Cybernetics. Computational Cybernetics and Simulation

(Cat. no. 97CH36088-5) 4, 3960–3965.

Capi, G., Kaneko, S., Mitobe, K., Barolli, L., Nasu, Y., 2002.

Optimal trajectory generation for a prismatic joint biped robot

using genetic algorithms. Robotics and Autonomous Systems 38,

119–128.

Chevallereau, C., Aoustin, Y., 2001. Optimal reference trajectories foe

walking and running of a biped robot. Robotica 19, 557–569.

GAlib: Matthew’s C++ Genetic Algorithms Library, lancet.mit.edu/

galib-2.4/GAlib.html.

Goldenberg, D.E., 1989. Genetic Algorithms in Search, Optimization and

Machine Learning, Reading. Addison Wesley, MA.

Grizzle, J.W., Abba, G., Plestan, F., 2001. Asymptotically stable walking

for biped robots: analysis via systems with impulse effects. IEEE

Transactions on Automatic Control 46, 46–51.

Hemami, H., Katbab, A., 1982. Constrained inverted pendulum model of

evaluating upright postural stability. Journal of Dynamic Systems

Measurement and Control 104, 343–349.
Hemami, H., Stokes, B.T., 1983. A qualitative discussion of mechanisms

of feedback and feedforward in the control of locomotion. IEEE

Transactions on Biomedical Engineering BME-30, 681–688.

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. The

University of Michigan Press, Ann Arbor, MI.

Huang, Q., Yokoi, K., Kajita, S., Kaneko, Y.C., Arai, H., Koyachi, N.,

Tanie, K., 2001. Planning Walking Patterns for a Biped Robot. IEEE

Transactions on Robotics and Automation 17, 280–289.

Josin, G., Charney, D., White, D., 1988. Robot control using neural

networks. In: Proceedings of the International Joint Conference

Neural Networks, vol. 2, San Diego, CA, pp. 625–631.

Kolesnichenko, O., Shiriatev, A.S., 2002. Partial stabilization of under-

actuated Euler–Lagrange systems via a class of feedback transforma-

tions. Systems and Control Letters 45, 121–132.

Kuo, A.D., 1995. An optimal control model for analyzing human

posture balance. IEEE Transactions on Biomedical Engineering 42,

87–101.

Kuprestien, M., Rubinstien, J., 1989. Implementation of an adaptive

neural controller for sensory-motor coordination. IEEE Control

Systems Magazine, 25–30.

Kuperstein, M., Wang, J., 1990. Neural controller for addaptive move-

ments with unforeseen payloads. IEEE Transactions on Neural

Networks 1 (1), 137–142.

Nusse, H.E., Yorke, J.A., 1998. Dynamics: Numerical Explorations.

Springer, Berlin.

Michalewicz, Z., 1996. Genetic Algorithms+ Data Structure ¼ Evolution

Programs. Springer, Berlin.

Pai, Y.C., Patton, J., 1997. Center of mass velocity-position predictions

for balance control. Journal of Biomechanics 30 (4), 347–354.

Pamerleau, D., 1991. Efficient training of artificial neural networks for

autonomous navigation. Neural Computation 3 (1).

Plumer, E., 1996. Optimal control of terminal processes using neural

networks. IEEE Transactions on Neural Networks. 7 (2), 408–418.

Specht, D.F., 1991. A general regression neural network. IEEE Transac-

tions on Neural Networks 2 (6), 568–576.

Westervelt, E., Grizzle, J.W., Koditschek, D.E., 2003. Hybrid zero

dynamics of planar biped walkers. IEEE Transactions on Automatic

Control 48 (1), 42–56.

Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A., 1985. Determining

Lyapunov exponents from a time series. Physica 16D, 285–317.

Wu, Q., Sepehri, N., Thornton-Trump, A.B., Alexander, M., 1998.

Stability and control of human trunk movement during walking.

Computer Methods in Biomechanics and Biomechanical Engineering

1, 247–259.

Wu, Q., Swain, R., 2002. A mathematical model of the stability control of

human thorax and pelvis movements during walking. Computer

Methods in Biomechanics and Biomedical Engineering 5, 67–74.

Yang, C., Wu, Q., 2006a. Effects of constraints on bipedal balance

control. In: American Control Conference, Minneapolis, USA

(accepted).

Yang, C., Wu, Q., 2006b. On stabilization of bipedal robots during

disturbed standing using the concept of Lyapunov exponents. Robot-

ica 24, 621–624.

Zeng, X., Pielke, R.A., Eykholt, R., 1990. Extracting Lyapunov exponents

from short time series of low precision. Modern Physics Letter B 6, 55–75.

http://lancet.mit.edu/galib-2.4/GAlib.html
http://lancet.mit.edu/galib-2.4/GAlib.html

	Nearly optimal neural network stabilization of bipedal standing using genetic algorithm
	Introduction
	Model description
	Development of general regression neural network using genetic algorithm
	Stability analysis
	Simulation results
	Conclusions
	References


