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The Collaboration Pursuing Method (CPM) is a sampling-based Multidisciplinary Design 

Optimization (MDO) method, which differs from traditional sensitivity-analysis based MDO methods. It was 

found that the CPM is constrained by the effectiveness of sampling in a design space when solving larger 

MDO problems. Three new modules, i.e., new initialization process, discrete sampling, and Active Design 

Variable Control, are developed in this work to extend CPM’s capability in dealing with larger MDO 

problems. Using the CPM with the new modules, called Extended Collaboration Pursuing Method (ECPM), a 

conceptual aircraft design problem involving structures, aerodynamics, and propulsion is successfully solved. 

The ECPM is a promising new MDO method to solve larger MDO problems with better accuracy and 

comparable efficiency, when compared with other MDO methods.  

Nomenclature 

f = system objective function 

g  = vector of inequality constraints 

G  = constraint function associated with g 

n = number of state parameters 

R = range 

x = vector of design variables  (
1, ...,cs i i n=

∪x x ) 

xi = vector of disciplinary/local design variables of yi 

xcs =     vector of design variables shared by by yi and f.  xcsi ∩ xcsj, i ≠ j, does not have to be Ø 
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y  =  vector of state parameters, {y1, …, yi, …, yn} 

yi  = state parameter/variable i  

Yi  = function associated with yi 

yci  =  vector of state parameters output from other subsystems to subsystem i, {yj}, j ≠ i 

I. Introduction 

ultidisciplinary Design Optimization (MDO) has emerged as a new technology dealing with the design of 

complex systems involving conflicting design requirements, such as aircraft design. By definition, MDO is 

“a methodology for the design of complex engineering systems and subsystems that coherently exploits the 

synergism of mutually interacting phenomena”.
 1
 MDO aims to optimize a complicated design system involving 

many coupled subsystems (or disciplines). Finding efficient collaboration among coupled subsystems for achieving 

the optimum design becomes the most important challenge in MDO. 

 Research in MDO problem formulation has been active in recent years
 2- 9
. A broad range of issues and challenges 

in MDO are reviewed and discussed in Refs.  1,  10 and  11. This work focuses on investigating techniques that 

facilitate a sampling-based MDO method, called Collaboration Pursuing Method (CPM), in dealing with larger 

MDO problems with mixed (continuous and discrete) design variables. 

 The recently developed Collaboration Pursuing Method (CPM)
 12, 13

 is a sampling-based MDO method, in which 

effective collaboration among coupled subsystems is achieved by selecting feasible samples with a Collaboration 

Model (CM) rather than by using sensitivity analysis.  The sampling feature gives the CPM a potential to solve all 

types of MDO problems, especially the ones with expensive “black-box” functions.  Based on sampling, the CPM 

does not rely on gradient information and it can be readily extended to solve mixed (continuous and discrete) MDO 

problems.  On the other hand, due to the sampling feature, the CPM’s efficiency is constrained by the problem 

dimension when solving larger MDO problems.  This paper presents an advancement of the CPM. Three new 

modules: discrete sampling, new initialization process, and Active Design Variable Control are developed to extend 

CPM’s capability for solving larger MDO problems. The CPM with the new modules is referred to as the Extended 

Collaboration Pursuing Method (ECPM) herein. Section II defines a general formulation of MDO problems and 

reviews the original development of the CPM. Newly developed modules in the ECPM are explained in Section III. 

M 
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Results of a conceptual aircraft design problem solved with the ECPM and comparisons between the ECPM and 

other MDO methods are shown in Section IV. Finally, the ECPM is discussed in Section V. 

II. Optimization Problem and CPM Architecture 

 According to Ref.  11, a general MDO problem can be formulated as 
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Eq. (2) describes the System Analysis (SA) (also called the Multidisciplinary Analysis (MDA)). For a fully coupled 

MDA  system (yi is a function of xi and the yj, i ≠ j, j = 1, …, n), y is implicitly dependent of x. The solution of Eq. (2) 

is usually calculated by an iterative procedure. This requires a set of x, initial guess of y, and convergence criterion 

determined by a specified accuracy tolerance or a maximum allowed number of iterations. Samples of design 

variables satisfying SA/MDA in Eq. (2) and constraints g are called feasible samples.  

 The CPM is a sampling-based method for solving MDO problems.
 12, 13

 The foundations of the CPM were 

originally developed in Ref.  13. The architecture of the CPM is shown in Figure 1. The CPM selects from a pool of 

feasible samples with respect to both SA/MDA and constraints g. Then, desirable samples from the selected feasible 

samples are chosen to be evaluated as new experimental points for optimizing MDO problems. As the number of 

experimental points increases over CPM iterations, the optimization process moves towards the optimum solution. 

The CPM’s main modules are defined as follows. 
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 As shown in Figure 1, a Collaboration Model (CM) was developed to effectively maintain the feasibility of 

samples with respect to SA/MDA
 13
, and applied in solving MDO problems

 14
. CM reflects both physical and 

mathematical characteristics of couplings in MDO problems, and models the interdisciplinary discrepancy of 

coupled state parameters
13
. CM outputs a feasibility distribution of samples with respect to SA/MDA, which can be 

used to differentiate samples. Effective collaboration among coupled subsystems is realized by selecting samples 

that are more likely feasible than others, with respect to SA/MDA. Radial basis functions (RBF) defined in Eq. (3) 

are employed in the CM to approximate the coupled state parameters, 

 

 ( ) ( )

1

E
e

i i

e

y α
=

= −∑% x x x  (3) 

 

where αi are unknown coefficients calculated by a set of simultaneous linear equations with input data points, 

( )e m
R∈x , e = 1, 2, …, E. An Adaptive Sampling process is applied within the neighborhood of the current best 

experimental point during the optimization process for achieving local optima.  Global optimum solutions are sought 

when solving MDO problems by applying the Mode-Pursuing Sampling (MPS) method to the CPM framework
16
. 

The MPS method searches for the global optimum of a black-box function.  It is a discriminative sampling method 

that generates more sample points around the current minimum than other areas, while statistically covering the 

entire search space.
 15
    

 In the original development of the CPM, the initialization process may not be efficient to prepare initial 

experimental points required by the RBF approximation, since initial experimental points must be feasible, with 

respect to both SA/MDA (Eq. (2)) and constraints g. Also, the CPM is not capable of dealing with larger MDO 

problems. In this work, new modules: discrete sampling, new initialization process, and Active Design Variable 

Control are developed in MATLAB
® 
6.0 (Ref.  16) and added into the framework of the ECPM. As mentioned 

earlier, the ECPM is focused on improving the optimization efficiency when solving larger MDO problems. The 

architecture of the ECPM is shown in Figure 2, where highlighted boxes represent the new modules.  

III. Extended Collaboration Pursuing Method 

 The ECPM consists of three new modules - new initialization, discrete sampling, and Active Design Variable 

Control.  Firstly, a new initialization process is developed to save computational cost for initialization.   Secondly, 
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since only certain accuracy of design variables is meaningful in a real engineering design problem, the sampling 

process can be easily modified to discretize continuous design variables based on their accuracy.  Discretizing 

continuous variables can partly alleviate difficulties caused by a large number of design variables, as the number of 

possible solutions becomes finite.  Thirdly, when the number and range of design variables are large, the 

effectiveness and efficiency of sampling-based methods are degraded, since more samples are needed to effectively 

cover the entire design variable space. Reducing the dimension of design variables during the optimization process 

by controlling the number of active design variables, could reduce the number of samples to achieve an acceptable 

level of accuracy and efficiency. The active design variables are defined as the variables whose value will be varied 

by sampling, rather than being fixed at a certain value. In the ECPM, as shown in Figure 2, the number of active 

design variables is controlled by an Active Design Variable Control module based on the variation of design 

variables at the best design solution in two consecutive optimization iterations. Such variation partially reflects the 

sensitivity information of /f∂ ∂x . Like the Adaptive Sampling process, the Active Design Variable Control 

effectively helps the ECPM pursue local optima and also speed up the optimization process.   

  In general, all three new modules help the ECPM improve its efficiency. Moreover, both the discrete sampling 

and Active Design Variable Control modules also extend the ECPM’s capability for solving larger MDO problems 

with improved accuracy. The detailed process of the ECPM is elaborated sequentially according to Figure 3 as 

follows (step numbers correspond to box numbers in Figure 3):  

A. New Initialization (Steps 1 and 2) 

 At the beginning of optimizing MDO problems, the ECPM randomly generates samples in the entire design 

variable space until several (e.g. four) initial feasible experiments with respect to SA/MDA are obtained. The 

feasibility of the initial experiments is validated by calling SA/MDA.  

 In this process, regardless of their feasibility with respect to constraints g, initial experiments will be saved in 

the database of experiments, as long as they satisfy SA/MDA.  These samples are used for tuning the RBF 

approximation, in order to filter out infeasible samples with respect to SA/MDA. After the initialization process, 

the initial infeasible experiments with respect to constraints g will be replaced by feasible experiments (selected 

over ECPM iterations) with respect to both SA/MDA and constraints g.  Infeasible samples with respect to 

SA/MDA are discarded and marked to avoid future repeating. In contrast, the original CPM demands initial 

feasible points with respect to both SA/MDA and constraints g before the approximation is performed.  The new 
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initialization module greatly reduces the cost for initialization compared to the initialization process in the 

original CPM. Detailed analysis of its effectiveness is shown in Section IV.D.  

B. Sampling (Steps 3 and 4) 

 Beginning with the first ECPM iteration, two sampling processes take place at the beginning of each ECPM 

iteration for generating a large number of samples, which will be checked for feasibility by CM and some of 

which will be selected for optimization. 

1) Global Sampling – Step 3: A random sampling process employed in the original design space, [xLb, xUb], 

where xLb and xUb are the lower and upper bounds of design variables, respectively, is called Global 

Sampling. Global Sampling generates p random samples, e.g., 10
4
, which will be processed by the MPS to 

search for the global optimum solution at Step 9. 

2) Adaptive Sampling – Step 4: A random sampling process for generating p3 random samples, e.g., 10
4
, in 

the neighborhood of the current best solution, x
*
, is called Adaptive Sampling. The main idea of Adaptive 

Sampling is to have more samples in a small local space around the current best solution. For continuous 

design variables, the size of a local space for Adaptive Sampling is determined by 

( )( ) ( )( )* *

1 1,Ub Lb Ub Lb
 − ∆ − + ∆ −  
x x x x x x                                                (4) 

where ∆1 is a preset ratio between 15% and 30%. For discretized variables, the size of a local space for 

Adaptive Sampling can be assigned by 

( ) ( )* *
,d dIa Ia − +

 
x x                                                                           (5) 

where ad is the accuracy or interval used to discretize continuous variables, and I is an integer, such as 4. 

The benefit of using Adaptive Sampling has been demonstrated in Refs.  12 and  13.  The efficiency and 

accuracy of the CPM were improved significantly as a result. 

C. Discrete Sampling (Step 5) 

 The sample sets given by Global Sampling and Adaptive Sampling can be easily discretized so that the 

ECPM is able to more efficiently solve MDO problems. 

 Continuous design variable values and the discretized design variable set can be generated by a random 

sampling procedure in the design variable space, [xLb, xUb]. In order to make samples meaningful to engineering 
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applications, as well as effective in dealing with larger design problems, discrete sampling is implemented by a 

one-to-one mapping process between the continuous design variable values and a discretized design variable set. 

The pre-determined accuracy of a design variable discretizes the design variable with finite values within its 

range. For example, if the range of x1, e.g., 2 ≤ x1 ≤ 3, and the meaningful accuracy of x1 with one decimal place, 

i.e., ad = 0.1, are given, x1 can be discretized to 

 

         { }1, 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0dx =                                                  (6) 

 

In other situations where a design variable is discrete in nature, its discretized variable set consists of all 

allowable values. For a continuous random sample x1, its corresponding discrete value is then 

 

|}|||,,,1],,1[{ ,11,11,1 dzdsds xxxxnsdzforandnsdsx −≤−=∀∈ L                          (7) 

 

where ns is the number of discrete values of x1. For x1,d defined in Eq. (6), if a continuous sample is 2.435677, 

the discrete value should be 2.4. The meaningful accuracy of design variables is dependent on the physical 

meaning of design variables and design specifications. For example, in a conceptual aircraft design problem 

described in Section IV, the accuracy of the Mach number is 0.1.  

Discrete sampling can help the optimization process reduce the number of possible combinations of design 

variables. Therefore, the efficiency and capability of the ECPM will be improved with a limited number of 

random samples. Discrete sampling also extends the applicability of the ECPM to MDO problems with mixed 

design variables.  

D. Active Design Variable Control
**
 (Step 6) 

 The discretized sample set from Adaptive Sampling is duplicated and passed to the Active Design Variable 

Control module. The design variable value of this duplicated sample set will be adjusted, in order to reduce the 

dimension and improve the effectiveness of the samples.  

                                                           
**
 The Active Design Variable Control process can be applied either in the original design variable space, [xLb, xUb], 

or in a neighborhood around the current best solution, x
*
. In this work, it is only applied in the latter situation, as 

shown in Figure 3. 
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Since the ECPM is fundamentally built on experiments, a part of the sensitivity information could be 

extracted from two adjacent intermediate best solutions over the past optimization process, in terms of how the 

objective value varies with design variable values. Utilizing the given sensitivity information, one can estimate 

the influence of a design variable on the objective in a local space. Intrinsically, the mechanism of Active Design 

Variable Control is based on the sensitivity information /f∂ ∂x . 

In the Active Design Variable Control process, the value of a design variable for all samples (duplicated from 

Adaptive Sampling, i.e., p3 random samples) will be fixed at the current best solution, if this design variable 

value of the best solution over two consecutive ECPM iterations does not change. Also, each variable has a 

counter to record the consecutive ECPM iteration number when its value is kept fixed to all samples. Then all 

design variables can be sorted in an ascending order, in terms of the value of their counter. As all design 

variables are frozen at the current best solution, a certain number of design variables, that have a larger value of 

the counter than the remaining design variables, will be reactivated to have random values from sampling. The 

variable na denotes the number of reactivated design variables in the ECPM.  The motivation of reactivating 

design variables is that the reactivated design variables could be pre-maturely frozen. As a result, the Active 

Design Variable Control process reduces the dimension of the original MDO problem for sampling.  

As shown by a conceptual aircraft design problem solved with the ECPM in Section IV, the accuracy and 

capability of the ECPM in searching for the local optima is significantly enhanced by Active Design Variable 

Control and discrete sampling.  

E. RBF Approximation and Optimization (Steps 7 - 13) 

  Samples from the Global Sampling, Adaptive Sampling, and Active Design Variable Control modules are 

approximated with the RBF based on the database of experimental points. Then these samples are checked by 

CM with respect to SA/MDA and by constraints g, respectively. Infeasible samples are filtered out.  

  Step 9 employs the MPS to choose feasible points with respect to SA/MDA from the remaining p1 samples 

given by the Global Sampling module. The MPS then searches for the points of the small approximate objective 

function value from the chosen p2 feasible points, in order to pursue the global optimum solution. As a result, 

several desirable experiments, e.g., k experiments, are selected as Global Seeds at the end of Step 9.  

  Following the dotted lines in Figure 3, the Adaptive Sampling at Step 4 generates p3 samples, among which 

p4 points satisfy all the constraints and will be evaluated at Step 10.  Similarly, p5 samples are left after checking 
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the feasibility of samples generated from the Active Design Variable Control at Step 6.  A sample (having the 

best approximate objective function value) is chosen from the p4 samples as a Local Seed. Another sample 

(having the best approximate objective function value) is selected as an Optimal Seed from the p5 samples.  

  All selected samples are validated by calling SA/MDA to calculate their values of state parameters, y, as well 

as the objective function, f. Feasible samples (with respect to SA/MDA and constraints) are saved into the 

database of experiments to improve the accuracy of the RBF approximation in the next iteration. The ECPM is 

terminated if there is no further improvement of f after a certain number of consecutive ECPM iterations, such as 

4 iterations. Additional details about the MPS and Collaboration Model can be found in Refs.  12 and  13. 

  

 The Collaboration Model allows the ECPM to extract useful information in compliance with SA/MDA. Based 

on the Collaboration Model, the ECPM selects feasible samples to tune the RBF approximation, and consequently 

this approximation model expands itself towards the optimum solution of an MDO problem. The new initialization 

process, discrete sampling, and Active Design Variable Control modules make sampling more effective when 

dealing with larger design problems. 

IV. Conceptual Aircraft Design 

In this section, a conceptual aircraft design problem applied in Ref.  17 is solved with the ECPM. This problem 

was also solved in Refs.  6,  7, and  18.  This design problem has ten design variables, three coupled subsystems / 

disciplines (structures, aerodynamics, and propulsion), and 12 constraints. The data dependencies of the conceptual 

aircraft design problem are shown in Figure 4. The structures subsystem needs the inputs of lift and engine weight 

from the aerodynamics subsystem and the propulsion subsystem, respectively. In a similar fashion, the 

aerodynamics subsystem relies on the total weight from the structures subsystem and engine scale factor from the 

propulsion subsystem, while the propulsion subsystem is coupled with the aerodynamics subsystem in terms of drag. 

As described in Ref.  17, some typical functions are modeled with polynomial functions to reflect the commonly 

known relationship between variables, e.g., stress falling with the increase of the skin thickness in a wing box. The 

aircraft design problem aims to maximize the Range computed by the Breguet equation. All design variables are 

listed in Table 1. Additional details about this problem can be found in Refs.  12 and  17.  
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 As shown in Figure 2, the ECPM applies the new initialization process, both continuous and discrete sampling, 

and Active Design Variable Control modules to maximize the Range of the conceptual aircraft. In this work, λ and T 

are kept as continuous variables and the remaining variables in Table 1 are discretized based on their assigned 

accuracy listed in Table 2. The MPS is not utilized in the ECPM for solving the conceptual aircraft design. Instead, a 

sample (Global Seed) with the smallest approximate Range value, given by Global Sampling, is selected as one of 

the experimental points. For the internal control of the ECPM, the Global Seed is eliminated if its Range value is 

smaller than that of the Optimal Seed or Local Seed. To use the Collaboration Model in the ECPM, the explicit 

relations between state parameters and their corresponding variables are shown in Table 3. For example, WT is an 

explicit function of WF, L, WE, λ , x, t/c, AR, Λ and SREF in the structures subsystem. Also, it is observed that the 

union of λ and x, Cf, and T are local design variables in structures, aerodynamics, and propulsion subsystems, 

respectively, and couplings amongst WT, D, and ESF dominate the whole system. The implicit relations between the 

coupled state parameters, WT, D, and ESF, and their associated variables are listed in Table 4, where ‘o’ signs 

indicate the dependency based on the implicit relations between state parameters and design variables. 

 For optimizing the conceptual aircraft design with the ECPM, subroutine codes of SA/MDA, disciplinary 

analyses (structures, aerodynamics, and propulsion) and Range calculations are directly adopted from Ref.  17 and 

embedded in the framework of the ECPM. In order to compare the results given by the ECPM and the results from 

Ref.  17, some baseline cases are tested based on intermediate and optimum solutions from Ref.  17, as shown in 

Table 5. Results in the ECPM columns in Table 5 are obtained by running the SA/MDA subroutines embedded in 

the ECPM, rather than the whole ECPM optimization process. Since the values of Range are calculated in the 

ECPM are very close to the values from Ref.  17, the ECPM has a basis for comparison with BLISS in Ref.  17 for 

this problem in terms of SA/MDA, disciplinary analyses, and Range evaluation. However, one of the constraints, 

wing twist - Θ, of the optimum solution from Ref.  17 is violated. Therefore, in the optimization process of the 

conceptual aircraft design with the ECPM, two types of Θ constraints are applied separately, i.e., 0.96 ≤ Θ ≤ 1.04 

defined in the original formulation in Ref.  17, and 0.9049 ≤ Θ ≤ 1.04 (as shown in Table 5) from the above analyses. 

The complexity of the conceptual aircraft design problem is uncovered by numerical studies below. 

A. Numerical Studies of the Conceptual Aircraft Design Problem 

 Numerical studies are conducted based on the extensive enumeration by calling SA/MDA with respect to the 

original and modified constraints, while the number of random samples is fixed. 10
4
 random samples with respect to 
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the modified constraints (0.9049 ≤ Θ ≤ 1.04) are independently generated for four times.  The average maximum 

Range is 1914.25 nm (nautical miles), which is far from the optimum, 3963.98 nm, given by Ref. 18 as shown in the 

last column of Table 5.  Random samples of 10
4
, 2x10

4
, and 3x10

4
 with respect to the original constraints (0.96 ≤ Θ 

≤ 1.04) are also independently generated and each case is executed for four times.   It is observed that with more 

sample points, the average maximum Range value improves.  However, even with 3x10
4
, the average maximum 

Range value is only 1985 nm.  It appears that 3x10
4
 random samples are not enough to effectively cover the entire 

design variable space of the conceptual aircraft design problem. This reflects the real challenge of sampling-based 

optimization methods for solving large-scale MDO problems. The capability of the sampling-based optimization 

methods is constrained by the sample size, which is related to the number of design variables and their range.  

With respect to the original constraints, the effectiveness of applying the Adaptive Sampling (note: the Active 

Design Variable Control module is not applied in this study) in the ECPM is shown by ten runs with the new 

initialization process over 35 ECPM iterations, as shown in Table 6. The sample size for Global Sampling and 

Adaptive Sampling is 10
4
, ∆1 equals 0.2, and I is set to 4.  At each ECPM iteration, only a Local Seed and a Global 

Seed are selected. As mentioned before, the Global Seed will be eliminated if its Range value is less than that of the 

Local Seed over two consecutive ECPM iterations. In comparison to the results with 10
4
 random sampling, Adaptive 

Sampling effectively lifts up the Range value from about 1500 nm to 3500 nm.  It is also observed that the Range 

value obtained by applying the Adaptive Sampling easily falls in between 2500 nm and 3500 nm after a number of 

ECPM iterations. The effectiveness of discrete sampling, the new initialization process, and the Active Design 

Variable Control will be described in Section IV-C.  

B. Parameter Studies of the ECPM  

 In this conceptual aircraft design problem, the ECPM involves three parameters, which are ∆1, I, and na 

introduced in Section III – B and D. ∆1 and I determine the size of a local space around the current best solution, and 

na is the number of active design variables.  The way by which these parameters influence the ECPM’s performance 

is studied with the same initial experiments. The number of random samples (for Global Sampling, Adaptive 

Sampling, and Active Design Variable Control, respectively) is 10
4
. Four initial experiments listed in Table 7 are 

infeasible with respect to SA/MDA and modified constraints. Also, the maximum number of ECPM iterations is set 

to 35. 

(1) Study on na:  
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This study is implemented by changing the value of na with respect to two settings of ∆1 and I. In the first setting, 

∆1 = 0.4 and I = 5. In the second setting, ∆1 = 0.3 and I = 5. According to results listed in Table 8, we can roughly 

conclude that a small na, such as na = 1, results in a good accuracy of the optimum solution. A relatively large 

na, e.g., na = 2 or 3, gives a good efficiency to converge to the optimum solution. As expected, the Active 

Design Variable Control is less effective (the optimum value is low) when na is very large, such as 4. As for this 

problem, the value of na is suggested to be between 1 and 3 with respect to 10
4
 random samples. 

(2) Study on ∆1 and I: 

Similarly, the value of na is fixed to be 2 and the study of the influence of ∆1 and I on the ECPM’s performance 

is conducted, as shown in Table 9. Large values of ∆1 and I correspond to a big local space around the current 

best solution, and vice versa. A small local space results in a local optimum solution early, such as in Case 1; and 

a big local space causes Adaptive Sampling to be less effective, such as in Case 5. In this problem, the value of 

∆1 is suggested between 0.2 and 0.4, and the value of I is recommended between 3 and 4 with respect to 10
4
 

random samples. 

C. Optimization Results with respect to the Modified Constraints 

 This conceptual aircraft design problem was solved previously with the All-In-One formulation and the All-In-

One with the Response Surface method in Ref.  18, BLISS method in Refs.  6,  17, and  18, and BLISS with response 

surfaces in Ref.  7. The results reported in Refs.  6,  7,  17, and  18 are listed in Table 10. Based on the number of 

subsystem analyses with the All-in-One method, it seems that each SA takes four iterations to converge, and one 

iteration costs three subsystem analyses, i.e., structural, aerodynamic, and propulsion analyses. Since the subroutine 

codes of the SA and subsystem analyses applied in the ECPM are identical to codes used in Refs.  6,  7,  17, and  18, 

the method of calculating the number of subsystem analyses in Refs.  6,  7,  17, and  18 is applied to the ECPM for the 

conceptual aircraft design problem. 

 According to Table 5 with the optimum solution from Ref.  17, the constraint of Θ is modified to be 0.9049 ≤ Θ ≤ 

1.04. The remaining constraints are still the same as the original. Based on the parametric studies of ∆1, I, and na, 

the values of these parameters are specified as follows: 

1 0.3

4

2

I

na

∆ =

=

=

                                                                                      (8) 
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 The optimization process of the ECPM is run based on five cases with different initial infeasible experiments 

with respect to constraints, as shown in Table 11. The number of random samples (for Global Sampling, Adaptive 

Sampling, and Active Design Variable Control, respectively) is 10
4
. The number of initial experiments is 4 and these 

initial points are listed in Table 11 above the optimal solution in each row, which corresponds to each case.  The 

optimum solutions of all five cases satisfy the constraints (results omitted).  Each case is executed six times, and the 

results are shown in Table 12. Due to the statistical nature of random sampling, the ECPM could have different 

optimum solutions with the same initial experiments. Based on the average computational cost of each case in Table 

12 and the costs listed in Table 10, the ECPM is more efficient than the All-In-One and All-In-One/RS when solving 

this problem. The ECPM is also competitively efficient against the BLISS, BLISS/RS1, and BLISS/RS2 when 

solving the conceptual aircraft design problem. 

 The distribution of experimental points of Case 4 in Table 11 is plotted in Figure 5. We can see that the ECPM 

started with four initial infeasible experiments, as shown by the ‘∇ ’ sign, with a very poor Range value. At the very 

beginning of the optimization process, the Global Seeds marked with the ‘*’ sign lead the optimization process. 

Then the Local Seed marked by the ‘□’ sign takes over the leading role after several ECPM iterations, while it is 

limited under about 3500 nm. Finally, the Optimal Seeds marked with the ‘◊’ sign make the optimization process 

converge towards the optimum solution. The convergence of Range over iterations is shown in Figure 6 for Case 4. 

D. Effectiveness Analysis of New Modules 

  The original CPM has a high cost in preparing initial feasible experiments with respect to SA/MDA and 

constraints based on a random sampling process. In the conceptual aircraft design problem, the computational costs 

for generating four feasible experiments are recorded from ten independent runs with respect to the modified 

constraints, using the original initialization method. It is found that it takes an average of 120 SA’s for initialization 

with the original initialization method, while the average total number of SA’s for optimization in Table 12 is about 

40 with the new initialization process.  Apparently, the new initialization strategy greatly improves the efficiency of 

ECPM. The motivation for initializing ECPM with experiments that are infeasible with respect to constraints is that 

these infeasible experiments still reflect the mathematical relation of coupled state parameters. Thus, the infeasible 

experiments can be used for initialization to improve the RBF approximation model.  

 To show the effectiveness of discrete sampling, Case 4 in Table 11 is optimized with the ECPM based on 

continuous sampling as shown in Table 13 (other conditions applied in the ECPM for this study are the same as 
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specified for solving Case 4 in Table 11). The average optimal Range value is about 3231 nm, which is much less 

than the optimal Range of Case 4 in Table 11 and Table 12. Thus, given a fixed total number of samples, the discrete 

sampling significantly improves the solution quality, as compared with continuous sampling.  

 Based on the comparison between the results in Table 12, when the Active Design Variable Control module is 

applied, and the results listed in Table 6 in which the Active Design Variable Control module is not applied, the 

Active Design Variable Control process effectively reduces the dimension of the optimization problem in a local 

space and improves the optimum solution from about 3383 nm to about 3926 nm (average value in 

Table 12). 

E. Optimization Results with respect to the Original Constraints 

 To optimize the conceptual aircraft design problem with respect to the original constraints, 0.96 ≤ Θ ≤ 1.04, the 

parameters in the ECPM are set as follows: 

 

1 0.2

4

4

I

na

∆ =

=

=

 (9) 

 

The value of na is increased because a greater number of design variables can increase the diversity of samples, so 

that more feasible samples could survive with respect to the tightened constraint of Θ. As a result, the chance to 

reach the real optimum is expected to be higher. The number of random samples (for Global Sampling, Adaptive 

Sampling, and Active Design Variable Control, respectively) is still 10
4
.  The optimization process is independently 

executed eight times with different initial infeasible experiments with respect to the constraints g. The optimum 

solution and the computational cost of each case are reported in Table 14. All original data are available in the 

Appendix. For Case 6, the distribution of experimental points is plotted in Figure 7, and the convergence of the 

Range is shown in Figure 8.  By referring to the constraint value of the optimum solution of each case, as shown in 

Appendix, the conceptual aircraft design problem is a constrained optimization problem with respect to Θ. Clearly, 

the computational cost is increased in Table 14 when compared to the cost required by the ECPM with respect to the 

modified constraints in Table 12. This occurs because the constraint of Θ is tightened and active at the optimum 
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solution. Thus, the feasible region in the design space is narrowed down. Consequently, the number of effective 

samples is smaller than that with respect to the modified constraints.   

V. Discussion 

 Given an allowed number of random samples, the effectiveness of Adaptive Sampling is dependent on the size 

of the local region around the current best solution, i.e., ∆1 or I. The values of ∆1 and I also depend on the number of 

design variables. For a small number of design variables, more samples will cover a wider range of design variables 

effectively. In practice, the values of ∆1 and I can be dynamically adjusted based on feedback from the past ECPM 

iterations. For example, if the objective function value cannot be improved by the Adaptive Sampling, the value of 

∆1 and I could be reduced.  

 In the Active Design Variable Control process, the number of reactivated design variables depends on the 

random sample size, and the sampling region for Active Design Variable Control defined in Eq. (4) or (5). In 

general, a large number of random samples and a small region defined by ∆1 or I allow more active design variables. 

In practice, the value of na should be specified by users. Feedback from previous ECPM iterations in the 

optimization process can also be used for adjusting the value of na. For example, if the objective function value does 

not improve over a certain number of consecutive ECPM iterations (note: other parameters kept fixed, e.g., ∆1 and 

I,), the value of na could be reduced to make sampling more effective. 

 In the application of the conceptual aircraft design problem, it has been shown that 3x10
4
 random samples are 

not sufficient to reach even close to the optimum.  Consequently, Global Seeds selected by the MPS from samples 

given by the Global Sampling will likely not be effective in searching for the optimum. Therefore, the MPS is not 

used for solving the conceptual aircraft design problem, but it could be used in a sub-region of the design variable 

space. This shows again that large-scale MDO problems introduce new challenges in searching for the global 

optimum solution. Also, the ECPM is based on random sampling, which brings randomness to the optimum solution 

and efficiency, as shown in Table 11, 12 and 14. Applying more efficient sampling strategies to the ECPM, such as 

Latin Hypercube Sampling, might further improve the efficiency and effectiveness of the ECPM. 

VI. Conclusions 

 The Extended Collaboration Pursuing Method (ECPM), developed in this work, has been successfully applied to 

solve a conceptual aircraft design problem. The new initialization strategy, discrete sampling, and Active Design 
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Variable Control modules are demonstrated to function effectively in the ECPM, when coping with difficulties 

arising from larger design problems. The new initialization strategy allows infeasible points to be used for RBF 

approximations and thus increase the efficiency dramatically. Discrete sampling helps to improve the effectiveness 

of sampling and also can be extended for solving mixed variable problems. The Active Design Variable Control 

dynamically and effectively controls the number of active design variable, so as to reduce the dimension of the 

problem. The sensitivity information used in the Active Design Variable Control is a byproduct of the optimization 

process with no extra costs. In solving the conceptual aircraft design problem, the ECPM is competitively efficient 

and it readily deals with constraints in comparison with the BLISS.  However, the BLISS has a better accuracy than 

the ECPM for solving the conceptual aircraft design problem.  It is to be noted that both CPM and ECPM are 

sampling-based MDO methods, which can solve MDO problems involving analytical and/or black-box functions.  

With the advantages of being versatile and robust, the limitation of sampling-based methods is when the number of 

variables increases, more samples are required to effectively cover the design space. High computational capacity, 

such as parallel computing, may facilitate the ECPM for solving large MDO problems. 
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Table 1. Design variables of the conceptual aircraft design. 

Variables Description Unit Lower Bound Upper Bound 

1 λ Wing taper ratio N/A 0.1 0.4 

2 x Wingbox x-sectional area as 

polynomial function 

p.f. 0.75 1.25 

3 Cf Skin friction coefficient as 

polynomial function 

p.f. 0.75 1.25 

4 T Throttle setting N/A 0.1 1 

5 t/c Thickness/chord ratio N/A 0.01 0.09 

6 h Altitude ft 30000 60000 

7 M Mach number N/A 1.4 1.8 

8 AR Aspect ratio N/A 2.5 8.5 

9 Λ Wing sweep degree 40 70 

10 SREF Wing surface area ft
2
 500 1500 

 

Table 2. Discretized design variables. 

Variables x Cf t/c h (ft) M AR Λ (◦) SREF (ft
2
) 

Accuracy 0.05 0.05 0.01 1000 0.1 0.1 1 10 

 

Table 3. Explicit dependency between state parameters and their variables. 

State Parameters 
Local Variables 

Structures Aerodynamics Propulsion 
 

S A P 

Interdisciplinary Variables  

 

 

WF WT Θ L D CL/CD WE SFC ESF R λ x Cf T t/c h M AR Λ SREF 

WF               x   x  x 

WT x   x   x    x x   x   x x x 

Θ    x       x x      x  x 

σ1    x       x x   x   x  x 

σ2    x       x x   x   x  x 

σ3    x       x x   x   x  x 

σ4    x       x x   x   x  x 

S
tr

u
c
tu

r
e
s 
(S

) 

σ5    x       x x   x   x  x 

L  x                   

D  x x      x    x  x x x x x x 

CL/CD  x x      x    x  x x x x x x 

A
e
r
o
d
y
n
a
m

ic
s 

(A
) 

dp/dx               x      

WE         x            

SFC              x  x x    

ESF     x         x       

T               x       

P
r
o
p
u
ls

io
n
 

(P
) 

Temp              x  x x    

R
 

R x x    x  x        x x    
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Table 4. Implicit dependency between coupled state parameters and their variables. 

State Parameters Local Variables 

Structures Aerodynamics Propulsion 

 

S A P 

Interdisciplinary Variables 
 

WF WT Θ L D CL/CD WE SFC ESF R λ x Cf T t/c h M AR Λ SREF 

WF               x   x  x 

WT           x x o o x o o x x x 

Θ           x x      x  x 

σ1           x x   x   x  x 

σ2           x x   x   x  x 

σ3           x x   x   x  x 

σ4           x x   x   x  x 

S
tr

u
c
tu

r
e
s 
(S

) 

σ5           x x   x   x  x 

L  x                   

D           o o x o x x x x x x 

CL/CD  x x      x    x  x x x x x x 

A
e
r
o
d
y
n
a
m

i

c
s 
(A

) 

dp/dx               x      

WE         x            

SFC              x  x x    

ESF           o o o x o o o o o o 

T               x       

P
r
o
p
u
ls

io
n
 (
P
) 

Temp              x  x x    

R
 

R x x    x  x        x x    

 

Table 5. Cases from Refs.  6 and  17 and their results given by SA/MDA in the ECPM.  

Case 1 2 3 4 5 
**
 

λ .25       0.14951    0.17476   0.25775 0.38757 

x 1 0.75 0.75 0.75 0.75 

Cf 1 0.75 0.75 0.75 0.75 

T .5 0.1676 0.20703 0.15624 0.15624 

t/c .05 0.06 0.06 0.06 0.06 

h (ft) 45000 54000 60000 60000 60000 

M 1.6 1.4 1.4 1.4 1.4 

AR 5.5 4.4 3.3 2.5 2.5 

Λ (◦) 55 66 70 70 70 

D
es

ig
n
 V

a
ri

a
b
le

s 

SREF (ft
2
) 1000 1200 1400 1500 1500 

Method BLISS ECPM BLISS ECPM BLISS ECPM BLISS ECPM BLISS ECPM 

Range 535.79 535.79 1581.67 1581.3 3425.35 3424.7 3961.41 3961.1 3963.98 3963.2 

σ1 ≤ 1.09  1.1250  1.0553     1.0453  1.0419    1.0696  

σ2 ≤ 1.09  1.0833  1.0520  1.0422  1.0358  1.0550 

σ3 ≤ 1.09  1.0625  1.0446  1.0362  1.0298  1.0445 

σ4 ≤ 1.09  1.0500  1.0384  1.0311  1.0253  1.0371 

σ5 ≤ 1.09  1.0417  1.0335  1.0271  1.0219  1.0318 

0.96 ≤ Θ ≤ 1.04  0.9500  0.8961  0.9142  0.9290  0.9049 

0.5 ≤ dp/dx ≤ 1.04  1.000  1.0400  1.0400  1.0400  1.0400 

ESF ≤ 1.05  0.5028  0.8023  0.5160  0.7328  0.7328 

U AT -T 0≤   0.1621  -0.1905  0.3250  -3.04e
-5
  -3.04e

-5
 

C
o
n
st

ra
in

ts
 

Temp ≤ 1.02  1.000  0.8541  0.8367  0.8367  0.8367 

 

 

                                                           
**
 Case 5 is the optimum solution given by the BLISS in Refs.  6 and  17. 
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Table 6. Effectiveness of applying Adaptive Sampling in the ECPM. 

Run Maximum Range Index Number of the ECPM Iteration 
††
 

1 3480.071 15 

2 3480.071 15 

3 3480.071 15 

4 3480.071 15 

5 3156.942 9 

6 3480.071 15 

7 3156.942 9 

8 3480.071 15 

9 3480.071 15 

10 3156.942 9 

Average 3383.132 13.2 

 

Table 7. Initial infeasible experimental points for the parameter studies of the ECPM. 

Variables 1 2 3 4 

λ 0.312689 0.346180 0.192750 0.378284 

x 1.15 1.05 1.05 1.10 

Cf 1.05 1.2 1.0 0.95 

T 0.602455 0.805926 0.611939 0.478591 

t/c 0.05  0.07 0.03 0.09 

h (ft) 52000 46000 31000 57000 

M 1.4 1.6 1.7 1.5 

AR 6.1 8.0 6.6 3.4 

Λ (◦) 45 53 56 61 

SREF (ft
2
) 1010 660 1110 1290 

Range (nm) 640.061194 337.649591 254.079841 1634.393249 

 

Table 8. Results of studies on na. 

Case 1 (na = 1) 2 (na = 2) 3 (na = 3) 4 (na = 4) 

 
Maximum 

Range 

Index 

Number 

of ECPM 

Iteration 

Maximum 

Range 

Index 

Number 

of 

ECPM 

Iteration 

Maximum 

Range 

Index 

Number 

of 

ECPM 

Iteration 

Maximum 

Range 

Index 

Number 

of 

ECPM 

Iteration 

∆1 = 0.4 

I = 5 
3960.907 26 3961.077 21 3944.355 26 3827.855 34 

∆1 = 0.3 

I = 5 
3958.993 26 3834.720 22 3930.220 16 3849.757 24 

 

                                                           
††
 The index number of the CPM iteration indicates when the optimum solution occurred over a total of 35 CPM 

iterations. 
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Table 9. Results of studies on ∆1 and I. 

Case 

1 

(∆1 = 0.1 

I = 1) 

2 

(∆1 = 0.2 

I = 2) 

3 

(∆1 = 0.3 

I = 3) 

4 

(∆1 = 0.4 

I = 4) 

5 

(∆1 = 0.5 

I = 5) 

 
Max. 

Range 

Index 

Number 

of 

ECPM 

Iteration 

Max. 

Range 

Index 

Number 

of 

ECPM 

Iteration 

Max. 

Range 

Index 

Number 

of 

ECPM 

Iteration 

Max.  

Range 

Index 

Number 

of 

ECPM 

Iteration 

Max.  

Range 

Index 

Number 

of 

ECPM 

Iteration 

na = 2 3559.96 19 3528.280 23 3835.590 28 3835.977 21 3123.022 15 

 

Table 10. Results of the conceptual aircraft design given from Refs.  6,  7,  17, and  18.  

Computational Effort 

CASE 
Initial 

Objective 

Initial Max. 

Constraint Value 

Final 

Objective 

Final Max. 

Constraint 

Value 
Number 

of SA 

Number of Subsystem 

Analyses 
‡‡
 

All-in-One 535.79 -0.162 3964.19 1.0e
-8
 119 119x4x3 = 1428 

All-in-One/RS 
§§
 535.79 -0.162 3974.84 0.0013 72 864 

BLISS 535.79 -0.162 3964.07 192e
-5
 7 491 

BLISS/RS1 
***
 535.79 -0.162 3961.50 0.0 17 354 

BLISS/RS2 
†††
 535.79 -0.162 3964.12 0.0 12 1097 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
‡‡
 Subsystem means subsystem. 

§§
 The All-in-One/RS is a sequential approximation-based All-in-One optimization strategy that involves the use of 

response surface model for approximation evaluations of the design objective and constraint functions.  
***
 The BLISS/RS1 builds up a response surface to approximate the objective function and constraints in Z space 

based on the data from SA/MDA.  
†††
 The BLISS/RS1 builds up a response surface to approximate the objective function and constraints in Z space 

based on the data from the BB optimization.  
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Table 11. Results given by the ECPM with respect to the modified constraints. 
‡‡‡

 

Design Variables 

Case 

 λ x Cf T t/c h M AR Λ SREF Range 

# of SA 

when 

Range* 

occurs 

Index # 

of the 

ECPM 

iteration 

when 

Range* 

occurs 

Number 

of Sub-

problem 

Analyses 

0.385039 0.85 1.05 0.537384 0.08 53000 1.6 2.6 65 940 1384 

0.284630 1.15 1.20 0.764387 0.02 42000 1.8 8.0 52 1390 244 

0.117367 0.95 1.15 0.108875 0.02 36000 1.5 6.1 48 700 196 

Initial 

Design 

Variables 
0.104582 1.10 0.95 0.938633 0.05 43000 1.7 5.7 46 1170 286 

1 

Optimum 0.370513 0.75 0.75 0.156244 0.06 60000 1.4 2.5 70 1490 3946.9 

45 21 
540 

(45x4x3) 

0.241243 1.20 1.10 0.117881 0.08 44000 1.5 7.3 63 1060 419 

0.143925 1.20 1.00 0.106188 0.04 57000 1.4 7.1 52 1290 911 

0.389819 0.80 0.85 0.453128 0.02 47000 1.7 5.9 50 1460 433 

Initial 

Design 

Variables 
0.196969 0.80 1.00 0.719632 0.03 53000 1.7 7.8 60 1070 523 

2 

Optimum 0.128208 0.75 0.75 0.156210 0.06 60000 1.4 2.5 70 1500 3958.6 

40 18 

480 

(40x4x3) 

 

0.106628 0.90 1.00 0.962897 0.04 44000 1.5 4.1 67 530 437 

0.142364 0.85 1.15 0.982815 0.05 35000 1.5 4.7 58 700 270 

0.300568 1.15 1.00 0.932244 0.06 43000 1.7 3.8 67 1480 529 

Initial 

Design 

Variables 
0.259309 1.15 0.80 0.687146 0.01 41000 1.5 3.2 55 880 337 

3 

Optimum 0.270599 0.75 0.75 0.156240 0.06 60000 1.4 2.5 70 1500 3961.3 

36 17 
432 

(36x4x3) 

0.199809 0.80 1.10 0.790933 0.05 47000 1.8 2.8 54 1100 602 

0.364464 1.00 0.80 0.113399 0.02 48000 1.5 4.0 58 1280 451 

0.174475 1.20 1.20 0.194790 0.01 39000 1.8 4.5 52 940 155 

Initial 

Design 

Variables 
0.353402 1.10 0.95 0.705562 0.03 53000 1.5 7.4 48 700 554 

4 

Optimum 0.325759 0.75 0.75 0.156231 0.06 60000 1.4 2.5 70 1500 3962.2 

26 13 
312 

(26x4x3) 

0.241510 1.00 1.20 0.746822 0.06 33000 1.7 6.8 48 590 245 

0.276891 1.20 1.25 0.959758 0.04 50000 1.4 7.3 55 1160 347 

0.171966 0.95 1.15 0.995564 0.03 35000 1.7 3.9 65 720 269 

Initial 

Design 

Variables 
0.233039 0.80 0.80 0.814310 0.09 44000 1.4 4.0 64 1000 677 

5 

Optimum 0.351410 0.75 0.75 0.156213 0.06 60000 1.4 2.5 70 1500 3962.6 

42 21 
504 

(42x4x3) 

                                                           
‡‡‡

 All initial experimental points are infeasible with respect to the constraints, and ‘*’ indicates the optimum 

solution. 
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Table 12. Results of multiple runs of Cases in Table 11. 

Run  Case1 Case2 Case3 Case4 Case5 

Range* 3946.9 3958.6 3961.3 3962.2 3962.6 

# of SA 45 40 36 26 42 1 

Number of Subsystem Analyses 540(45x4x3) 480(40x4x3) 432(36x4x3) 312(26x4x3) 504(42x4x3) 

Range* 3946.9 3958.6 3914.4 3962.2 3958.1 

# of SA 45 40 27 26 62 2 

Number of Subsystem Analyses 540(45x4x3) 480(40x4x3) 324(27x4x3) 312(26x4x3) 744(62x4x3) 

Range* 3946.9 3960.7 3863.5 3962.2 3836.1 

# of SA 45 58 46 26 46 3 

Number of Subsystem Analyses 540(45x4x3) 696(8x4x3) 552(46x4x3) 312(26x4x3) 552(46x4x3) 

Range* 3946.9 3945.9 3898.8 3944.7 3835.0 

# of SA 45 34 60 43 36 4 

Number of Subsystem Analyses 540(45x4x3) 408(34x4x3) 720(60x4x3) 516(43x4x3) 432(36x4x3) 

Range* 3946.9 3963.1 3930.5 3960.1 3959.4 

# of SA 45 33 28 55 39 5 

Number of Subsystem Analyses 540(45x4x3) 396(33x4x3) 336(28x4x3) 660(55x4x3) 468(39x4x3) 

Range* 3959.9 3883.3 3639.8 3960.3 3913.3 

# of SA 49 39 29 29 33 6 

Number of Subsystem Analyses 588(49x4x3) 468(39x4x3) 348(29x4x3) 348(29x4x3) 396(33x4x3) 

Range* 3949.1 3945.0 3868.05 3958.6 3910.8 

# of SA 45.7 40.7 37.7 34.2 43 
Average 

Number of Subsystem Analyses 
548.4 

(45.7x4x3) 

488 

(40.7x4x3) 

452.4 

(37.7x4x3) 

410.4 

(34.2x4x3) 

516 

(43x4x3) 

 

Table 13. Results of Case 4 in Table 11 based on continuous sampling. 

Run 1 2 3 4 Average 

Range* 3497 2966 3497 2966 3231.5 

# of SA when Range* occurs 54 38 54 38 46 

Index # of the ECPM iteration when Range* occurs 25 17 25 17 21 

 

Table 14. Results given by the ECPM with respect to original constraints. 

 

 

 

 

Case 
Ranges of Initial 

Experimental Points (nm) 
Range

* 
(nm) 

# of SA when 

Range
*
 

occurs 

Index # of the ECPM 

iteration when Range
*
 

occurs 

Number of 

Subsystem 

Analyses 

1 373.8, 800.2, 380.9, 452.2 3910.6 66 33 792(66x4x3) 

2 1005.6,  438.7, 186.3, 155.5 3830.3 33 16 396(33x4x3) 

3 766.1, 223.5, 682.8, 262.7 3806.2 66 34 792(66x4x3) 

4 530.6, 1015.9, 348.6, 445.1 3834.5 61 29 732(61x4x3) 

5 196.5,  740.8, 383.6, 1060.5 3942.5 62 31 744(62x4x3) 

6 397.9, 800.6, 374.7, 300.1 3924.4 39 18 468(39x4x3) 

7 873.7, 874.0, 472.3, 571.9 3958.4 48 24 576(48x4x3) 

8 290.6, 508.1, 405.7, 250.7 3792.2 65 31 780(65x4x3) 

Average  3893.767 55 27 660(55x4x3) 
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Figure 1. Architecture of the original Collaboration Pursuing Method. 
 13
 

 

 

 

Figure 2. Architecture of the Extended Collaboration Pursuing Method. 
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Figure 3. Flowchart of the Extended Collaboration Pursuing Method. 
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Figure 4. Data dependencies for aircraft Range optimization. 
 17
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Figure 5. Distribution of experimental points over 35 ECPM iterations of Case 4 in Table 11. 

 

Figure 6. Convergence of Range over 35 ECPM iterations of Case 4 in Table 11. 
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Figure 7. Distribution of experimental points over 35 ECPM iterations of Case 6 in Table 14. 

 

 

Figure 8. Convergence of Range over 35 ECPM iterations of Case 6 in Table 14. 
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Appendix  

 

Results of the conceptual aircraft optimization in Table 14.
§§§
 

x1 – λ; x2 – x; x3 – Cf; x4 – T; x5 – t/c; x6 – h; x7 – M; x8 – AR; x9 – Λ; x10 – SREF; 

f – Range 

y1 – WT; y2 – D; y3 – ESF; y5 – WF; y6 – Θ; y7 – L; y8 – L/D; y9 – SFC; y10 – WE 

c1 – 1σ ; c2 – 2σ ; c3 – 3σ ; c4 – 4σ ; c5 – 5σ ; c6 – Θ; c7 – dp/dx; c8 – ESF; c9 – Temp; c10 – UAT-T  

C
a
se

 

Initial Infeasible Experimental Points **** 
Optimal Design 

Variables 

Optimal State 

Parameters 

Constraints at 

the Optimum 

Solution 

1 

x1 = 0.234500 x1 = 0.355195 x1 = 0.254663 x1 = 0.155419 

x2 = 1.000000 x2 = 1.000000 x2 = 1.000000 x2 = 0.950000 

x3 = 0.800000 x3 = 0.900000 x3 = 0.900000 x3 = 1.000000 

x4 = 0.763701 x4 = 0.318047 x4 = 0.446012 x4 = 0.900598 

x5 = 0.040000 x5 = 0.070000 x5 = 0.010000 x5 = 0.070000 

x6 = 46000.     x6 = 56000.     x6 = 46000.     x6 = 42000. 

x7 = 1.600       x7 = 1.800       x7 = 1.500       x7 = 1.500 

x8 = 7.300       x8 = 6.400       x8 = 4.10         x8 = 2.500 

x9 = 42.00       x9 = 57.00       x9 = 49.00       x9 = 46.000 

x10 = 1500.     x10 = 1240.     x10 = 1330      x10 = 1140.00 

                      f1 = 373.756197 f2 = 800.160567  

                      f3 = 380.861400 f4 = 452.226646     

x1 = 0.120449 

x2 = 0.750000 

x3 = 0.750000 

x4 = 0.156201 

x5 = 0.060000 

x6 = 60000.00 

x7 = 1.400000 

x8 = 2.500000 

x9 = 70.00000 

x10 = 1470.00 

y1 = 44403.824060 

y2 = 5442.048306 

y3 = 0.718264 

y5 = 18832.647098 

y6 = 0.960814 

y7 = 44403.824060 

y8 = 8.159395 

y9 = 0.923953 

y10 = 9240.721209 

c1 = 1.003528 

c2 = 1.008828 

c3 = 1.009050 

c4 = 1.008405 

c5 = 1.007652 

c6 = 0.960814 

c7 = 1.040000 

c8 = 0.718264 

c9 = 0.836745 

c10 = -0.278e-3 

x1 = 0.287451 x1 = 0.124758 x1 = 0.282065 x1 = 0.361815         

x2 = 1.050       x2 = 1.000000 x2 = 1.150000 x2 = 0.850000         

x3 = 1.050000 x3 = 1.000000 x3 = 0.850000 x3 = 0.800000         

x4 = 0.342438 x4 = 0.119520 x4 = 0.362931 x4 = 0.147002         

x5 = 0.090000 x5 = 0.040000 x5 = 0.020000 x5 = 0.080000         

x6 = 58000.00 x6 = 48000.00 x6 = 30000.00 x6 = 32000.00 

x7 = 1.500000 x7 = 1.700000 x7 = 1.600000 x7 = 1.700000         

x8 = 5.300000 x8 = 4.000000 x8 = 8.200000 x8 = 7.300000         

x9 = 50.00000 x9 = 50.00000 x9 = 54.00000 x9 = 55.00000         

x10 = 910.000 x10 = 560.000 x10 = 880.000 x10 = 1200.00 

2 

                      f1 = 1005.622323 f2 = 438.708252 

                      f3 = 186.349524 f4 = 155.519235    

x1 = 0.170562 

x2 = 0.800000 

x3 = 0.750000 

x4 = 0.154891 

x5 = 0.060000 

x6 = 60000.00 

x7 = 1.400000 

x8 = 2.500000 

x9 = 70.00000 

x10 = 1500.00 

y1 = 49693.232404 

y2 = 5554.706172 

y3 = 0.739335 

y5 = 19350.552345 

y6 = 0.960005 

y7 = 49693.232404 

y8 = 8.946150 

y9 = 0.924571 

y10 = 9525.570215 

c1 = 0.998161 

c2 = 1.002569 

c3 = 1.003350 

c4 = 1.003363 

c5 = 1.003182 

c6 = 0.960005 

c7 = 1.040000 

c8 = 0.739335 

c9 = 0.836745 

c10 = -.8664e-2 

x1 = 0.280412 x1 = 0.345357 x1 = 0.152164 x1 = 0.286179         

x2 = 1.100000 x2 = 0.800000 x2 = 0.850000 x2 = 0.950000         

x3 = 1.000000 x3 = 1.100000 x3 = 0.850000 x3 = 0.900000         

x4 = 0.550635 x4 = 0.910018 x4 = 0.321407 x4 = 0.840457         

x5 = 0.020000 x5 = 0.060000 x5 = 0.020000 x5 = 0.080000         

x6 = 53000.00 x6 = 31000.00 x6 = 53000.00 x6 = 34000.000         

x7 = 1.600000 x7 = 1.700000 x7 = 1.600000 x7 = 1.400000         

x8 = 3.500000 x8 = 6.800000 x8 = 5.200000 x8 = 7.100000         

x9 = 42.00000 x9 = 50.00000 x9 = 43.00000 x9 = 50.000000         

x10 = 530.000 x10 = 1140.00 x10 = 770.000 x10 = 1220.000 

3 

                       f1 = 766.077219   f2 = 223.514664 

                       f3 = 682.839907 f4 = 262.717500 

x1 = 0.155668 

x2 = 0.800000 

x3 = 0.750000 

x4 = 0.156197 

x5 = 0.060000 

x6 = 60000.00 

x7 = 1.400000 

x8 = 2.500000 

x9 = 70.00000 

x10 = 1480.00 

y1 = 49202.759320 

y2 = 5480.668670 

y3 = 0.723381 

y5 = 19004.700585 

y6 = 0.964877 

y7 = 49202.759320 

y8 = 8.977510 

y9 = 0.923955 

y10 = 9309.854407 

c1 = 0.992851 

c2 = 0.998576 

c3 = 1.000186 

c4 = 1.000750 

c5 = 1.000959 

c6 = 0.964877 

c7 = 1.040000 

c8 = 0.723381 

c9 = 0.836745 

c10 = -0.305e-3 

                                                           
§§§
 All corresponding values of Range* are listed in Table 14. 

****
 In the column of ‘Initial Infeasible Experimental Points’, each column from x1 to x10 represents an initial 

experimental point. 
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x1 = 0.126724 x1 = 0.204810 x1 = 0.250837 x1 = 0.260782         

x2 = 0.950000 x2 = 1.250000 x2 = 1.150000 x2 = 0.900000         

x3 = 1.000000 x3 = 0.850000 x3 = 0.850000 x3 = 0.750000         

x4 = 0.234876 x4 = 0.174619 x4 = 0.175360 x4 = 0.289290         

x5 = 0.020000 x5 = 0.060000 x5 = 0.040000 x5 = 0.050000         

x6 = 48000.00 x6 = 54000.00 x6 = 41000.00 x6 = 45000.00 

x7 = 1.500000 x7 = 1.500000 x7 = 1.500000 x7 = 1.600000         

x8 = 4.100000 x8 = 4.700000 x8 = 6.000000 x8 = 6.900000         

x9 = 51.00000 x9 = 60.00000 x9 = 43.00000 x9 = 52.000000         

x10 = 1160.00 x10 = 1230.00 x10 = 520.000 x10 = 890.0000 

4 

                          f1 = 530.557297 f2 = 1015.889269 

                          f3 = 348.634034 f4 = 445.106975 

x1 = 0.133390 

x2 = 0.800000 

x3 = 0.750000 

x4 = 0.156218 

x5 = 0.060000 

x6 = 60000.00 

x7 = 1.400000 

x8 = 2.500000 

x9 = 70.00000 

x10 = 1500.00 

y1 = 49625.267200 

y2 = 5554.617762 

y3 = 0.733044 

y5 = 19350.552345 

y6 = 0.967819 

y7 = 49625.267200 

y8 = 8.934056 

y9 = 0.923946 

y10 = 9440.483839 

c1 = 0.987758 

c2 = 0.995352 

c3 = 0.997831 

c4 = 0.998897 

c5 = 0.999432 

c6 = 0.967819 

c7 = 1.040000 

c8 = 0.733044 

c9 = 0.836745 

c10 = -0.173e-3 

x1 = 0.326506 x1 = 0.370768 x1 = 0.108218 x1 = 0.213221         

x2 = 1.000000 x2 = 0.900000 x2 = 1.200000 x2 = 0.750000         

x3 = 0.900000 x3 = 0.800000 x3 = 0.750000 x3 = 0.750000         

x4 = 0.573440 x4 = 0.480827 x4 = 0.764863 x4 = 0.618691         

x5 = 0.090000 x5 = 0.030000 x5 = 0.030000 x5 = 0.040000         

x6 = 30000.00 x6 = 54000.00 x6 = 33000.00 x6 = 58000.00 

x7 = 1.700000 x7 = 1.600000 x7 = 1.600000 x7 = 1.500000         

x8 = 7.500000 x8 = 5.400000 x8 = 4.300000 x8 = 4.400000         

x9 = 43.00000 x9 = 48.00000 x9 = 67.00000 x9 = 57.00000         

x10 = 1330.00 x10 = 1150.00 x10 = 550.000 x10 = 670.000 

5 

                         f1 = 196.460454 f2 = 740.752732 

                         f3 = 383.635843 f4 = 1060.499087   

x1 = 0.114856 

x2 = 0.750000 

x3 = 0.750000 

x4 = 0.156233 

x5 = 0.060000 

x6 = 60000.00 

x7 = 1.400000 

x8 = 2.500000 

x9 = 70.00000 

x10 = 1490.00 

y1 = 44756.107036 

y2 = 5516.007425 

y3 = 0.727879 

y5 = 19177.336319 

y6 = 0.960301 

y7 = 44756.107036 

y8 = 8.113859 

y9 = 0.923939 

y10 = 9370.659256 

c1 = 1.003345 

c2 = 1.008948 

c3 = 1.009230 

c4 = 1.008593 

c5 = 1.007833 

c6 = 0.960301 

c7 = 1.040000 

c8 = 0.727879 

c9 = 0.836745 

c10 = -0.78e-3 

x1 = 0.223930 x1 = 0.214867 x1 = 0.253804 x1 = 0.192584         

x2 = 0.900000 x2 = 1.050000 x2 = 1.100000 x2 = 1.100000         

x3 = 1.100000 x3 = 1.150000 x3 = 1.250000 x3 = 1.000000         

x4 = 0.519545 x4 = 0.498969 x4 = 0.868203 x4 = 0.567149         

x5 = 0.090000 x5 = 0.040000 x5 = 0.070000 x5 = 0.060000         

x6 = 43000.00 x6 = 49000.00 x6 = 41000.00 x6 = 37000.00 

x7 = 1.800000 x7 = 1.600000 x7 = 1.800000 x7 = 1.500000         

x8 = 3.800000 x8 = 2.800000 x8 = 2.900000 x8 = 8.000000         

x9 = 49.00000 x9 = 57.00000 x9 = 40.00000 x9 = 45.000000         

x10 = 750.000 x10 = 940.000 x10 = 1410.00 x10 = 1410.00 

6 

                         f1 = 397.865281 f2 = 800.618592 

                         f3 = 374.696788 f4 = 300.074226   

x1 = 0.114020 

x2 = 0.750000 

x3 = 0.750000 

x4 = 0.155672 

x5 = 0.060000 

x6 = 60000.00 

x7 = 1.400000 

x8 = 2.500000 

x9 = 70.00000 

x10 = 1480.00 

y1 = 44613.135730 

y2 = 5479.032162 

y3 = 0.725604 

y5 = 19004.700585 

y6 = 0.961383 

y7 = 44613.135730 

y8 = 8.142521 

y9 = 0.924202 

y10 = 9339.898473 

c1 = 1.002356 

c2 = 1.008139 

c3 = 1.008567 

c4 = 1.008036 

c5 = 1.007353 

c6 = 0.961383 

c7 = 1.040000 

c8 = 0.725604 

c9 = 0.836745 

c10 = -.3665e-2 

x1 = 0.186602 x1 = 0.300930 x1 = 0.248547 x1 = 0.167753         

x2 = 0.900000 x2 = 0.950000 x2 = 1.050000 x2 = 1.200000         

x3 = 0.850000 x3 = 0.800000 x3 = 0.850000 x3 = 1.100000         

x4 = 0.117502 x4 = 0.473359 x4 = 0.859795 x4 = 0.502709         

x5 = 0.060000 x5 = 0.070000 x5 = 0.040000 x5 = 0.020000         

x6 = 53000.00 x6 = 57000.00 x6 = 49000.00 x6 = 45000.00 

x7 = 1.500000 x7 = 1.500000 x7 = 1.400000 x7 = 1.500000         

x8 = 2.800000 x8 = 6.200000 x8 = 4.000000 x8 = 2.500000         

x9 = 48.00000 x9 = 44.00000 x9 = 42.00000 x9 = 58.00000         

x10 = 960.000 x10 = 1170.00 x10 = 1130.00 x10 = 960.000 

7 

                         f1 = 873.735778 f2 = 874.042044 

                         f3 = 472.332724 f4 = 571.864600  

x1 = 0.112264 

x2 = 0.750000 

x3 = 0.750000 

x4 = 0.156241 

x5 = 0.060000 

x6 = 60000.00 

x7 = 1.400000 

x8 = 2.500000 

x9 = 70.00000 

x10 = 1500.00 

y1 = 44933.291470 

y2 = 5552.987948 

y3 = 0.732720 

y5 = 19350.552345 

y6 = 0.960004 

y7 = 44933.291470 

y8 = 8.091732 

y9 = 0.923935 

y10 = 9436.104076 

c1 = 1.003305 

c2 = 1.009043 

c3 = 1.009347 

c4 = 1.008709 

c5 = 1.007941 

c6 = 0.960004 

c7 = 1.040000 

c8 = 0.732720 

c9 = 0.836745 

c10 = -0.24e-4 
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x1 = 0.309000 x1 = 0.135044 x1 = 0.290600 x1 = 0.281596         

x2 = 1.100000 x2 = 0.800000 x2 = 0.950000 x2 = 0.800000         

x3 = 1.100000 x3 = 1.250000 x3 = 1.150000 x3 = 1.100000         

x4 = 0.600457 x4 = 0.195630 x4 = 0.585490 x4 = 0.933800         

x5 = 0.080000 x5 = 0.040000 x5 = 0.020000 x5 = 0.020000         

x6 = 31000.00 x6 = 55000.00 x6 = 42000.00 x6 = 31000.00 

x7 = 1.600000 x7 = 1.800000 x7 = 1.800000 x7 = 1.700000         

x8 = 7.200000 x8 = 8.200000 x8 = 7.800000 x8 = 3.300000         

x9 = 57.00000 x9 = 51.00000 x9 = 59.00000 x9 = 70.000000         

x10 = 1400.00 x10 = 1120.00 x10 = 540.000 x10 = 1260.000 

8 

                       f1 = 290.574850 f2 = 508.127100 

                       f3 = 405.687547 f4 = 250.653220   

x1 = 0.165940 

x2 = 0.800000 

x3 = 0.750000 

x4 = 0.156228 

x5 = 0.060000 

x6 = 60000.00 

x7 = 1.400000 

x8 = 2.500000 

x9 = 70.00000 

x10 = 1470.00 

y1 = 48989.982126 

y2 = 5443.692360 

y3 = 0.718359 

y5 = 18832.647098 

y6 = 0.963637 

y7 = 48989.982126 

y8 = 8.999403 

y9 = 0.923941 

y10 = 9242.005348 

c1 = 0.995067 

c2 = 0.999959 

c3 = 1.001187 

c4 = 1.001534 

c5 = 1.001603 

c6 = 0.963637 

c7 = 1.040000 

c8 = 0.718359 

c9 = 0.836745 

c10 = -0.108e-3 

 


