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Multidisciplinary Design Optimization (MDO) problems are dominated by couplings 

among subsystems formulated from different disciplines. Effective and efficient 

collaboration between subsystems is always desirable when solving MDO problems.  This 

work proposes a new sampling-based methodology, named the Collaboration Pursuing 

Method (CPM), for MDO problems. In the CPM, a new collaboration model, reflecting both 

physical and mathematical characteristics of couplings in MDO problems, is formulated to 

guide the search of feasible design solutions. The interdisciplinary consistency among 

coupled state parameters in MDO problems is reflected and maintained by the collaboration 

model. An adaptive sampling strategy is also developed to speed up the search of local 

optimal solutions. The new method is implemented using MATLAB
®
 6.0 and successfully 

applied to four test problems including an engineering design application. 

Nomenclature 

D = discrepancy of state parameters, 

f = system objective function 

G = vector of functions associated with constraints 

g = vector of constraints 

L   = difference between the ranking numbers of the largest and smallest feasible sample points 

n  =  number of state parameters 

r =  the ratio between the numbers of feasible and infeasible sample points 
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SP =    speed factor of guidance functions 

x = vector of design variables  (
1, ...,cs i i n=

∪x x ) 

xi = vector of disciplinary/local design variables of yi 

xcs    =     vector of design variables shared by by yi and f.  xcsi ∩ xcsj, i ≠ j, does not have to be Ø 

i
%x    = vector of explicit and implicit design variables of yi 

y = vector of state parameters, {y1,…yn} 

yci    = vector of state parameters output from other subsystems to subsystem i, {yj}, j ≠ i 

Yi = function associated with yi 

Y  = implicit approximate function 

Y  = explicit approximate function 

σ = standard deviation 

I. Introduction 

large engineering problem often covers several complex and coupled physical disciplines / subsystems. For 

example, a helicopter air intake scoop design involves couplings among de-icing, aerodynamic performance, 

and engine performance.
 1, 2
 These disciplines usually rely on computationally intensive processes for analysis, e.g., 

Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD). Engineering design is driven by today’s 

increasingly competitive global market, and is confined by all aspects of design over the product life cycle, such as 

performance, life-cycle cost, reliability, maintainability, vulnerability, and so forth.
 3
 Multidisciplinary Design 

Optimization (MDO), or Multidisciplinary Design Synthesis, is a methodology for solving such complex and 

coupled engineering problems. MDO consists of a wide scope of issues including design synthesis, sensitivity 

analysis, approximation concepts, and optimization methods and strategies. It has been extensively reviewed in 

references.
 4- 10

 This paper is dedicated to a new sampling-based methodology that does not apply sensitivity analyses 

when solving MDO problems. 

 A general MDO problem is defined by 
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In Eq. (1), y is governed by 
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Eq. (2) describes the System Analysis (SA) or the Multidisciplinary Analysis (MDA). The solution of Eq. (2) is 

normally calculated by an iterative procedure (such as the Gauss-Seidel iterative method for linear equations and the 

Steepest Descent method for nonlinear equations
 11
), when given a set of x, the initial guess of y, convergence 

criterion determined by a specified accuracy tolerance, and maximum number of iterations. State Parameters, y, 

usually represent some physical features, e.g., temperature, and they are often calculated by computationally 

intensive processes. The standard MDO formulation in Eq. (1) is also called the Multidisciplinary Feasible (MDF) 

method in the nonlinear programming community, or the “All-in-One” method in the engineering community.
 12
 It 

can be solved by conventional optimization algorithms, such as gradient-based methods, treating the SA/MDA as 

equality constraints. The main difficulty of applying “All-in-One” in practice is that the computational cost could be 

prohibitive since the SA/MDA is frequently called during the optimization process. From this sense, reducing the 

number of calls to the SA/MDA can improve the performance on an MDO method. 

 From the engineering perspective, decomposition strategies have been applied to formulate and solve MDO 

problems. Global Sensitivity Equations (GSE) are used in Linear Decomposition methods, such as Concurrent 

Subspace Optimization (CSSO),
 13- 17

 and Bi-level Integrated System Synthesis (BLISS).
 18, 19

 The Linear 

Decomposition methods linearize a coupled design system in the neighborhood of a feasible design. It can be 

imagined that the optimum solution will be reached along a piecewise path in the design variable space, and a local 

optimum solution could be obtained. Another decomposition-based MDO method is the Collaborative Optimization 
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(CO),
 20- 23

 which utilizes slack-variables to decouple subsystems. It was found that CO has difficulties preserving the 

standard Karush-Kuhn-Tucker condition due to its formulation structure.
 24, 25

 Furthermore, a converged solution is 

not guaranteed. This work is motivated by a novel collaboration model, which is constructed based on the 

expression of couplings from mathematical and physical perspectives. This collaboration model has a similar role to 

GSE for maintaining the interdisciplinary consistency of couplings in a sampling-based optimization process. 

 The proposed new methodology, named the Collaboration Pursuing Method (CPM), aims to search for the global 

optimum solution of an MDO problem with a short turn-around time. It maintains the consistency of couplings 

among state parameters by a collaboration model implemented with Radial-basis Functions (RBF). The Mode-

Pursuing Sampling (MPS) method is applied as a global optimizer module in the CPM.
 26, 27

 Section II introduces the 

proposed collaboration model. Sections III and IV briefly reviews the Radial-basis Function, and the MPS method, 

respectively. The algorithm of the CPM will be elaborated in Section V, and results of test cases are shown in 

Section VI. 

II. Collaboration Model 

 MDO problems are dominated by couplings among state parameters. Effective and efficient collaboration 

between subsystems (i.e., interdisciplinary consistency) is always desirable when solving MDO problems. 

Collaboration among subsystems in Linear Decomposition methods is maintained by GSE. In CO, coupled 

subsystems are relaxed by issuing some slack-variables from the system level to disciplinary analyses. Then the 

interdisciplinary consistency is pursued in the system level by extra equality constraints, which are the match 

between the targets issued from the system level and their corresponding values returned from subsystems.  

 In a sampling process, it is not certain if any set of design variables, x, can produce feasible values of its state 

parameters governed by Eq. (2). This section introduces a Collaboration Model to help screen out, from a sample 

pool, infeasible sample points and select feasible sample points subject to SA/MDA. A feasible sample point subject 

to SA/MDA means that the point satisfies the simultaneous equations defined in Eq. (2). A feasible sample point 

covers “feasibility” associated with both the physical constraints of subsystems, as well as the interdisciplinary 

consistency. The selected sample points subject to SA/MDA have a high probability of maintaining the consistency 

of coupled disciplines. Therefore the Collaboration Model can be viewed as a filter for a sampling process. 
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Specifically, this Collaboration Model can be elaborated by using a general two-state-parameter SA/MDA problem 

defined by 
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In Eq. (3), y1 is an explicit function reflecting the physical relation between y1 and its variables, i.e., xcs1, x1, and y2. 

Meanwhile, y1 is an implicit function of x, which is the union of x1, x2, xcs1 and xcs2. The situation is similar for y2. 

Intrinsically, all state parameters, y, are only implicitly affected by their associated design variables. The implicit 

function of state parameters uncovers mathematical dependencies between state parameters, y, and design variables, 

xcs1, x1, xcs2, and x2. 

 Recall Eq. (2). The proposed Collaboration Model is constructed based on two dependent approximations of 

coupled state parameters. One is the approximation of the implicit function and the other is of the explicit function. 

This work employs a Radial-basis Function (RBF) to model the implicit and explicit approximations as follows: 

  

 ( )Y , 1, ...,i i iy i n= =%x  (4) 

 ( )Y , , , 1, ...,
i i i csi ci

y i n= =x x y  (5) 

 

where, i
%x  includes all associated design variables of the state parameter yi evaluated by the approximate implicit 

function. In MDO problems where all state parameters are coupled with each other (in other words, values of y are 

evaluated simultaneously with a SA/MDA), i
%x  is the same as x defined in Eq. (1). For example, i

%x  is the union of 

x1, x2, xcs1, and xcs2 in Eq. (3). In other situations where at least one state parameter is not coupled with any of other 

state parameters (i.e., yci is empty in the yi function in Eq. (1)), and some or all of its design variables do not exist in 

other coupled state parameters’ function, i
%x  is a sub-set of x. In general, the dependency analysis of state 

parameters is necessary to determine which state parameter should be in Eq. (2) and which design variable should be 

considered in the Collaboration Model. The value of yi calculated by the approximate implicit function, Eq. (4), is 

represented by iy , and sequentially, the approximate value of yi marked as iy can be explicitly evaluated by Eq. 
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(5), given xi, xcsi and ciy . For a set of given design variables x, the interdisciplinary discrepancy of state parameters, 

D, can be determined by 

 

 

1

n

i i

i

D y y

=

= −∑  (6) 

 

If the value of D is small, then this set of design variables, x, is possibly feasible subject to SA/MDA. 

 The Collaboration Model defined in Eqs. (4)-(6) gives a distribution of the interdisciplinary discrepancy subject 

to SA/MDA for a group of sample points. It means that sample points with a smaller value of D are more likely 

feasible subject to SA/MDA than those with a larger value of D. The effectiveness of the Collaboration Model is 

shown by applying the Collaboration Model to a problem, which is the SA/MDA process of Test Case 1 (in Section 

VI) defined by 
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 (7) 

 

In total, 100 random sample points generated in the design variable space, (x1, x2, x3, x4) are applied for studying the 

effectiveness of the proposed Collaboration Model. Five experimental points, listed in Figure 1, are randomly 

generated and used for the RBF approximations defined in Eqs. (4) and (5). After applying the Collaboration Model 

for calculating the interdisciplinary discrepancy value, D, of the 100 random samples, the distribution of D over the 

100 sample points is depicted in an ascending order in terms of the value of D in Figure 1. The real feasibility of the 

100 sample points subject to SA/MDA in Figure 1 is determined based on evaluations of y of the 100 points by 

calling the SA/MDA process. Sample points marked with ‘dot’ signs are feasible, and points plotted with “plus” 

signs are infeasible. As expected, the sample points with a small value of D in Figure 1 are more possibly feasible 

subject to SA/MDA than others with a large value of D. The effectiveness of the Collaboration Model was also 

demonstrated in Ref.  27 by implementing the above study with 500 and 1000 random sample points, respectively. 
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 Since the Collaboration Model is built on the response surface model, i.e., Radial-basis Functions, an intensive 

study of the Collaboration Model was conducted in Ref.  28. In particular, the relation between the effectiveness of 

the Collaboration Model and the accuracy of the RBF models can be shown by testing a SA/MDA problem defined 

in Eq. (8):  
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2

2
1 2

2
2 1

 =  + 0.01

 =  + 0.01

x

x

y e y

y e y
 (8) 

 

where 3.5 ≤ x1 ≤ 4.5 and 0 ≤ x2 ≤ 1. A fixed set of 100 random sample points are used to demonstrate the 

improvement of the Collaboration Model with more accurate RBF models. From the point of view of approximation 

modeling, the accuracy of the RBF models should be improved with more experimental points. In this paper, 2 – 6 

experimental points are sequentially chosen from Table 2, respectively, for setting up the RBF models needed by the 

Collaboration Model. Each Collaboration Model yields a distribution of the 100 sample points’ discrepancy of 

coupled state parameters in an ascending order in Figures 2-4. Also, the feasibility of the 100 sample points is 

checked by calling the SA/MDA and it is represented with dots (feasible) or plus signs (infeasible). As 

aforementioned, the purpose of the Collaboration Model is to separate feasible and infeasible sample points subject 

to SA/MDA, based on the sample points’ discrepancy distribution.  In Figures 2-4, the length of an overlapped 

segment, L, is equal to the difference between the largest ranking number of feasible sample points, and the smallest 

ranking number of infeasible points.  L indicates the uncertain region of D values when both feasible and infeasible 

points are possible.  The parameter, r, is the ratio between the total number of feasible and infeasible points in the 

overlapping segment of the length L.  In general, the shorter the overlapped segment length L and the larger the ratio 

r imply a more effective Collaboration Model. As shown in Figures 2-4, r is increased from 1.44 based on a low 

accuracy RBF model to 5.125 for a more accurate RBF model, and the length of the overlapped segment of the 

discrepancy distribution curve is reduced from 83 to 49. From this demonstration, the effectiveness of the 

Collaboration Model can be improved by increasing the accuracy of the RBF models. 

 The Collaboration Model is constructed by two mutually dependent approximation functions, which reflect both 

physical characteristics and mathematical dependency of the SA/MDA. Sample points are distinguished by a 

feasibility distribution subject to SA/MDA in terms of their interdisciplinary discrepancy values determined by the 
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Collaboration Model. The Collaboration Model serves a key role in the CPM and could be a general method for 

other sampling-based MDO methods. More details about the Collaboration Model are documented in Refs.  27 and 

 28. 

III. Review of the Radial-basis Function 

 A Radial-basis Function (RBF) can implement an R
m
 → R

1
 nonlinear mapping from the design variable space (of 

a state parameter yi), x, to yi, where m is the dimensionality of design variables x.
 30
 The nonlinear mapping becomes 

more accurate with more experimental points. In general, given a set of E different design variables 

( ){ }, 1, 2, ...,
e m

R e E∈ =x and a corresponding set of E real numbers { }1
| 1,...,

e

iy R e E∈ = , the RBF can be 

expressed in the following form. 

 

 ( ) ( ) ( )( )
1

E
e

i i

e

y p α ϕ
=

= + −∑% x x x x  (9) 

 

where p is a linear polynomial, ( )( )e e
i iy y=% x , 

( )( ){ }, 1, 2, ...,
e

e Eϕ − =x x  is a set of E functions, known as radial-

basis functions. •  denotes a norm, which is usually Euclidean; and αi are unknown coefficients (weights) 

calculated by a set of simultaneous linear equations. The input data points, 
( )e m

R∈x , e = 1, 2, …, E, are used as 

centers of the radial-basis functions. There is a large class of radial-basis functions including the multiquadrics, 

inverse multiquadrics, Gaussian functions, thin-plate spline, linear Radial-basis Function, etc. For simplicity, we 

choose the linear Radial-basis Function in this work as follows: 

 

 ( ) ( )

1

E
e

i i

e

y α
=

= −∑% x x x  (10) 

 

According to Micchelli’s Theorem,
 29, 30

 as long as 
( ){ }

1

E
e

e=
x  is a set of distinct points, Eq. (10) is not singular in the 

solution for αi. The reason to choose the RBF is because the RBF approximation passes through all experimental 
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points and gives a good accuracy around the experimental points. Also, it is easy to implement. The linear Radial-

basis Function is applied to Eqs. (4) and (5) for implementing the Collaboration Model. It is to be noted that, from 

the algorithm of the CPM, the RBF model is only used as a guide for sampling rather than a surrogate of the original 

function based on which optimization is performed. Also, although RBF is chosen as the approximation method in 

this work, neither the Collaboration Model nor CPM dictates the exclusive use of RBF for approximation. 

IV. Review of Mode-Pursuing Sampling Method 

 The Mode-Pursuing Sampling (MPS) method is used as a global optimizer in the CPM and it is thus briefly 

introduced in this section. The MPS was developed as a method to search for the global optimum of a black-box 

function. It is a discriminative sampling method that generates more sample points around the current minimum than 

other areas, while statistically covering the entire search space.
 31
 The main procedure of the MPS can be elaborated 

when solving Eq. (11) (the general formulation of an optimization problem) as follows: 

 

 
( )

min ( )

subject to: 0

f

≤

x

g x
 (11) 

 

1. Generate ki initial experimental points through a random sampling process in the design variable space: x
(1)
, 

x
(2)
, …, x

(ki)
, and evaluate their corresponding objective function values of f: f(x

(1)
), f(x

(2)
),…, f(x

(ki)
). The 

objective function, f, in Eq. (11) is approximated with a Radial-basis Function in Eq. (12) based on all currently 

available function values, i.e., f(x
(1)
), f(x

(2)
), … , f(x

(ki)
). 

 

 ( ) ( )

1

ˆ
ki

e
i

e

f α
=

= −∑x x x  (12) 

 

such that 
( )( ) ( )( )ˆ , 1, ..., .
e e

f f e ki= =x x  

2. Randomly create a large number of samples, p, e.g., p = 10
4
, in the design variable space, [xLb, xUb]. All sample 

points’ approximated objective function values, ( )ˆ
qf x  (q = 1, …, p), are evaluated by Eq. (12). A distribution, 

GF, as shown in Figure 5-(a), is defined by ranking p samples in an ascending order in terms of the value of 
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( )ˆ
qf x . 

3. Define a Guidance Function, ( )qGF x  based on the GF distribution generated in Step 2 as follows:  

 

 ( ) ( )0
ˆ , 1, ...,q qGF c f q p= − =x x  (13) 

 

where c0 is a constant such that ( )0
ˆ , 1, ...,qc f q p≥ =x , as shown in Figure 5-(b). 

4. Cumulatively sum up ( )qGF x  over p sample points to build up a new function CG(x) by 

 

 

 

 ( )
( )

( )

1

1

, 1, ...,

q

j

j

q p

i

i

GF

CG q p

GF

=

=

= =

∑

∑

x

x

x

 (14) 

 

 
CG(x) is plotted in Figure 5-(c). This new function is used as a guide for sampling. It reflects a certain ‘bias’ to 

a random selection from the set of ( )ˆ
qf x  (q = 1, …, p) due to its upper convex shape. In other words, the 

probability of being selected for each sample in the space of ( )ˆ
qf x  (q = 1, …, p) is not equal. Instead, sample 

points with a small value of CG(x) have a higher probability to be selected than other points with a large value 

of CG(x). 

5. Furthermore, applying a speed factor SP,
§
 the intensity of preference of CG(x) to sample points whose value of 

f̂  is small can be increased by 

 

 ( ) ( )( ) ,,0 1, 1, ...
SP

q q
pCG CG SP q= < ≤ =x x  (15) 

                                                 
§ The value of SP is up to designers. In general, a small SP could result in a local optimum; a large SP costs more computational 

efforts in searching for the global optimum. 
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As a result, a certain number of sample points will be selected randomly by a one-to-one mapping between a 

series of random values generated within [0, 1] and the distribution of ( )CG x , as shown in Figure 5-(d). For 

example, a random value is given as 0.4899. Its corresponding sample ranking number is 600 in Figure 5-(d). 

Then the sample point with the ranking number of 600 in ( )CG x
 
is chosen as one of the new experiments. In 

this way, more sample points with low ranking number values are selected than those with high ranking number 

values for the next sampling iteration. The total number of chosen sample points is usually between three and 

five.
**
  

6. Use all experiments including the initial experiments to form Eq. (12). Then, repeat steps 2–6 until a certain 

convergence criterion is satisfied.  

 In Ref.  31, constraints, g, are considered to be inexpensive functions of design variables, x. Therefore, sample 

points violating g are discarded in the random sampling process in step 2 before approximating f. This situation, 

however, rarely happens in MDO problems since g involves state parameters, which are usually evaluated by 

computationally expensive processes. In each iteration, most new experiments are selected from sample points 

where a small value of f̂
 
exists. Meanwhile, sample points are also chosen from other potential areas, even though 

these points have a large value of f̂ .  MPS is thus, in essence, a discriminative sampling method. Compared with 

other optimization methods applying approximation techniques, MPS retains the possibility to pursue the optimum 

solution, not only along the direction with a high gradient value, but also statistically in other potential directions.  It 

was proved that MPS converges to the global optimum of f(x), as long as f(x) is continuous in the neighborhood of 

the global optimum.
 31
 Based on the idea of building a guidance function, MPS can be customized and applied to 

other problems, such as multi-objective optimization.
 32
 In the next section, the framework of the Collaboration 

Pursuing Method will be explained. 

V. Collaboration Pursuing Method 

 The Collaboration Pursing Method (CPM) is a sampling-based method. The basic idea of the CPM is to select 

some sample candidates from a sample pool for optimization. These selected sample points are preferred to be 

                                                 
** The number of new experiments depends on designers. The more experiments chosen, the more computational cost required. 
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feasible subject to SA/MDA and the constraints. The Collaboration Model introduced in Section II is applied for 

choosing feasible sample points subject to SA/MDA. Iteratively, CPM selects some sample candidates from a 

sample pool to search for the global optimum solution. The architecture of the CPM is shown in Figure 6. The 

global optimum solution is achieved with the MPS method in the CPM. Since the effectiveness and efficiency of 

sampling-based methods are related to the number of design variables as well as the range of design variables, an 

Adaptive Sampling process is applied within the neighborhood of the current best solution, x
*
, which is similar to a 

trust region.
 33
 Similar work has been done in Ref.  34, while the Adaptive Sampling in this work is much simpler. 

 The detailed process of the CPM is illustrated in Figure 7 and elaborated as follows: 

(1) Initialization – steps 1 and 2: The CPM starts with several initial feasible experimental points (subject to both 

SA/MDA and the constraints), e.g., 4, by calling the SA/MDA process. This procedure is based on a random 

sampling process in the design variable space. Initial experiments, or sample points, will be saved in the database 

of experiments.  

(2) In each CPM iteration, several sample candidates are selected from a large sample pool for optimization. From 

the 1
st
 CPM iteration on, two sampling processes take place in the beginning of each CPM iteration. 

a) Global Sampling – step 3: A random sampling process employed in the original design space, [xLb, xUb], is 

called Global Sampling. The Global Sampling generates p random sample points, e.g., 10
4
, which will be 

processed by MPS to search for the global optimum solution. 

b) Adaptive Sampling – step 4: A random sampling process for generating p3 random sample points in the 

neighborhood of the current best solution, x
*
, is called Adaptive Sampling. The idea of the Adaptive 

Sampling is to have more sample points in a small region around the current best solution. If the Adaptive 

Sampling still cannot improve the objective function value with a certain number of random sample points, 

the size of the small region should be decreased to increase the effectiveness of the Adaptive Sampling.  

The center of the small region will be continually updated until the optimization process reaches a local 

optimum, as shown in Figure 8. The Adaptive Sampling searches for local optimum solutions and speeds 

up the optimization process. The range of design variables for Adaptive Sampling is determined by 

 

 ( )( ) ( )( )* *
,Ub Lb Ub Lb

 − ∆ − + ∆ −
 
x x x x x x  (16) 
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where ∆ is a preset ratio between 5% and 30% depending on the number of design variables and 

computational capacity. Figure 7 uses ∆1 to represent ∆(xUb-xLb). 

(3) Collaboration Model and Feasibility Check – steps 5 and 6: p sample points from the Global Sampling and p3 

points from the Adaptive Sampling are separately approximated with RBF approximation based on the database 

of experimental points by 

 

( ) ( ), , 3Y , 1, ..., , 1, ...,q i i q iy i n q p or p= = =%x     (17) 

( ) ( ), , , , 3Y , , , 1, ..., , 1, ...,q i i q i q csi q ciy i n q p or p= = =x x y    (18) 

 

 Points that cannot yield matched state parameters y by calling Eq. (2) are deemed infeasible subject to 

SA/MDA. The matching between coupled state parameters is maintained by the Collaboration Model, which 

filters out infeasible points subject to SA/MDA based on an interdisciplinary discrepancy distribution of sample 

points. The interdisciplinary discrepancy of each point is calculated by 

 

 , , 3

1

, 1, ...,

n

q q i q i

i

D y y q p or p

=

= − =∑  (19) 

 

The Collaboration Model shows a distribution of the interdisciplinary discrepancy subject to SA/MDA over all 

sample points by Eq. (19). Sequentially, the constraint check is implemented by 

 

 ( ) 3, , 1, ...,q q q q p or p= =Gg x y  (20) 

 ( ) 3, , 1, ...,q q q q p or p= =Gg x y  (21) 

 

Sample points violating constraints determined by either Eq. (20) or Eq. (21) or both are discarded. This is a 

conservative way to make sure that selected sample points are feasible subject to the constraints. The numbers of 

remaining sample points are p1 and p4, inherited from the Global Sampling and the Adaptive Sampling, 

respectively. 
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(4) In steps 7 – 9, the approximated objective function, f% , of the p4 samples will be evaluated given design 

variables and y . For a minimization problem, a sample point with the smallest value of f%  is selected as one of 

the new experiments, from the p4 points given by the Adaptive Sampling, and is called a Local Seed. 

(5) Global Optimizer – MPS – step 10: Global Seeds (new experiments) chosen from p1 points are determined by 

the MPS method. Two guidance functions are built for this process. 

a) In steps 10.1 and 10.2, p1 points are sorted in an ascending order in terms of the value of the interdisciplinary 

discrepancy given by Eq. (19). Guidance Function I is formed by 

 

 ( ) , , 1

1

, 1, ...,

n

q q i q i

i

GD y y q p

=

= − =∑x  (22) 

 

Then Eq. (22) is cumulated over p1 sample points by 

 

 ( )
( )

( )
1

1

1

1

, 1, ...,

q

j

j

q p

i

i

GD

CD q p

GD

=

=

= =

∑

∑

x

x

x

 (23) 

 

Finally, p2 points, e.g., 200, are statistically selected from a modified Guidance Function I given by 

 

 ( ) ( )( ) 1

1
,, 1, ...

SP

q q
pCD CD q= =x x  (24) 

 

The purpose of Guidance Function I is to select p2 possibly feasible points subject to SA/MDA and 

constraints. 

b) In steps 10.3 - 10.5, the approximate objective values, ( )f% x , of all p2 points are calculated. These p2 points 

are sorted in an ascending order in terms of ( )f% x values. The Guidance Function II is built up by 
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 ( ) ( ) ( )
2

2
1, ...,

max , 1, ...,q i q
i p

GF f f q p
=

 = − = 
 
% %x x x  (25) 

 

Then Eq. (25) is cumulated over p2 points by 
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 (26) 

 

Finally, k points, e.g. 3, are selected statistically as the new experimental points (Global Seeds), from a 

modified Guidance Function II defined by 

 

 ( ) ( )( ) 2

2
,, 1, ...

SP

q q
pCF CF q= =x x  (27) 

 

The sample point with the smallest value of ( )f% x  in p2 point should be included in the k selected sample 

points since this one is promising. 

(6) All selected sample points will be passed to the SA/MDA module to calculate the state parameters, y, as well 

as the objective function, f, in step 2. The experimental points which satisfy SA/MDA are saved into the database 

of experimental points to improve the quality of the next RBF approximation. The CPM process can be stopped 

if there is no further improvement of f after a certain number of consecutive CPM iterations, e.g., 6. 

 In summary, the Collaboration Model allows CPM to extract useful information in compliance with SA/MDA. 

Based on the Collaboration Model, CPM uses selected sample points to tune the RBF approximation model, and 

consequently the RBF approximation model gradually improves its accuracy. The MPS method retains the 

possibility to pursue the global optimum solution. In the next section, some test cases are solved with CPM. 
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VI. Test Problems and Discussion 

 Three numerical test cases and one engineering application are solved with CPM. The first numerical test case is 

formulated by the authors by placing two coupled state parameters as system-variables into the well-known six-

hump camel-back problem. Test Cases 2 and 3 are obtained from Ref.  35. Finally, a power converter problem is 

solved as a benchmark MDO problem.
 36, 37

 According to Figure 6 and Figure 7, the CPM process starts with initial 

feasible experiments for solving all test cases. Only in Test Case 2 the Adaptive Sampling module is applied. To 

observe the robustness and consistency of CPM, 10 independent runs have been carried out for each test case. The 

convergence tolerance of the ‘fsolve’ function in MATLAB
®
 6.0 (Ref. [37]) for solving the SA/MDA is set to 10

-4
 

in Test Cases 1, 2, and 4, and 10
-7
 in Test Case 3. For each test case, one of the 10 independent runs is randomly 

chosen for plotting the cumulative number of the SA/MDA evaluations over CPM iterations. 

A. Test Case 1 

( )
( )
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2 4 2 41
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1 1 2 2

4

2 3 4 1

1
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1 2 3 4
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y x x y

y x x y
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= − + + − +

= + − +

= + − +

≤

≤

≤ ≤

    (28) 

 

 Based on intensive enumeration by calling the SA/MDA in Eq. (28), a feasible region (plotted with “dots” and 

two straight lines), subject to both the SA/MDA and constraints in the design space of the six-camel hump-back 

problem, is shown in Figure 9. Also, Figure 9 shows the optimization process of CPM by experimental points 

marked with different signs. The optimum solution of Test Case 1 should be located in the feasible region in 

compliance with its SA/MDA and constraints, and it should be as close as possible to f = –0.1 according to the 

contour of f in Figure 9. Speed factors of the first and the second Guidance Functions are fixed as 0.51 and 0.07, 

respectively. At the end of each CPM iteration, 4 sample points (Global Seeds) are selected. Results of Test Case 1 

are shown in Table 3. All runs start with 5 feasible experiments. Runs 1-9 are stopped if the value of f is less than –

0.9. In particular, the optimization process of Run 10 is terminated when no further improvement of f occurs after 10 

consecutive CPM iterations. The convergence history of the objective function for Runs 1-10 is plotted in Figure 10. 
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According to the objective function contour of the six-camel hump-back problem in Figure 9, the optimum is 

reached successfully. 

B. Test Case 2 

( ) 2
2

1 2 3

2

1 1 2 3 2

2 1 3 1

1 2 3

1 2

min 2 2
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2

0 7 2 , 7
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y
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y x x x y
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x and x x

y and y

−= + − + − +

= + + − −

= + − +

≤ ≤ ≤ ≤

− ≥ − ≥

     (29) 

 

 Speed factors of the first and the second Guidance Functions are fixed as 1 and 0.41, respectively. At the end of 

each CPM iteration, 3 sample points (1 Local Seed and 2 Global Seeds) are selected. Results are listed in 
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Table 4. Runs 1-3 are stopped if the value of f is less than 8.08; Runs 4-6 are stopped if the value of f is less than 

8.04; and Runs 7 – 9 are terminated after 6 consecutive CPM iterations with no further improvement of the value of 

f. All runs start with 5 random feasible experiments. The Adaptive Sampling module is applied in Runs 1-9 by 

setting ∆ = 5%. It is observed that the Adaptive Sampling is especially efficient when the system objective function f 

is sensitive to the variation of its design variables. Comparisons are given between Runs 1-9 and Run 10, which does 

not apply Adaptive Sampling and it is stopped if the value of f is less than 8.08. Apparently, Run 10 has the worst 

optimum value with the highest number of calls to the SA/MDA. The convergence history of f of Runs 7-9 is shown 

in Figure 11. 

C. Test Case 3 
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    (30) 

 

 Speed factors of the first and the second Guidance Functions are set to 0.51 and 0.81, respectively. Upper bounds 

of the design variables are assigned by the authors. At the end of each CPM iteration, 5 sample points (Global Seeds) 

are selected. The SA/MDA solver within CPM is applied to evaluate the optimal solution given by Ref.  35 to verify 

the accuracy of the solver. For the given design variable set, the optimal objective function value is the same as 

reported in Ref.  35, which is 2.984 as shown in Table 5 (the optimum values of y are not available in Ref.  35). All 

runs are terminated after 6 consecutive CPM iterations without further improvement of f. All of the 10 runs start 

with 3 random feasible experiments. Results by running CPM are shown in 
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Table 6. The optimal function values obtained are in the neighborhood of 1.0, which is better than 2.984, given by 

the CSSO method in Ref.  35. It is very difficult to maintain the feasibility of samples subject to SA/MDA in this 

case, since the SA/MDA in Eq. (30) is over constrained by an equality constraint. The trend of the objective function 

of Runs 1-10 is plotted in Figure 12. The difficulty of achieving feasible sample points, raised by the equality 

constraint, results in large computational effort for initialization and an early stop of the optimization process 

according to the optimization convergence criterion. 

D. Test Case 4 

 The power converter problem comprises a coupling between an electrical subsystem and a loss subsystem. An 

optimal power stage design is essential to the development of a quality power converter. The power stage design 

dominates the overall efficiency, size, and weight of the power converter. The objective of the power converter 

problem is to minimize the weight. The problem consists of six design variables and twelve state variables, of which 

four define constraints. All constant values are taken from Ref.  37. A schematic of the power converter problem is 

shown in Figure 13, and the geometry of the transformer core is shown in Figure 14. The formulation of the power 

converter problem is defined by 

 

 ( )1 c w cap hs
y f x W W W W= = + + +        (31) 

           Subject to: 

   Electrical Design State Analysis duty cycle: 
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      inductor value: 
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 The power converter problem has 6 design variables, as shown in Table 7. Relatively large upper bounds of all 

design variables and the lower bound of x4 are assigned by the authors, by referring to the optimum solution and the 

lower bounds of design variables from Refs.  36 and  37. The problem is mainly dominated by the couplings among 

y2, y3 and y8, and the explicit dependency matrix is shown Table 8. Speed factors of the first and the second 
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Guidance Functions are fixed as 1 and 0.00011, respectively. At the end of each CPM iteration, 2 sample points 

(Global Seeds) are selected.  Similar to Test Case 3, the SA/MDA solver within CPM is applied to evaluate the 

optimum solution in Ref.  36 to verify the accuracy of the solver. As shown in Table 9, CPM has the same accuracy 

as the CSSO method in Ref.  36. After the verification, 10 independent optimization runs are carried out with CPM, 

and terminated when no further improvement of f after 6 consecutive CPM iterations, as shown in Table 10. All runs 

start with 4 random feasible experiments. The convergence of f of Runs 1-10 is plotted in Figure 15. For Run 4 (with 

the highest number of calls to the SA/MDA in Table 10), the cumulative number of SA/MDA at each CMP iteration 

step is shown in Figure 16. 

 According to Ref.  36, the optimum solution (f = 1.48) is given by CSSO with 54 ‘Design Point System 

Iterations’, and a ‘Design Point System Iteration’ refers to a call to the SA/MDA, CPM is thus more efficient than 

CSSO for solving the power converter problem, based on the results in Tables 9-10. 

E. Discussion 

 For the implementation of MPS, if the Guidance Function I (Eq. (24)) is sped up intensively by applying a small 

value of SP1, e.g., SP1 = 0.01, new sample points given from the current CPM iteration to the next one are most 

likely feasible.  An aggressive (small) speed factor can increase the efficiency of MPS but may only lead to a local 

optimum; and a large speed factor value could slow down the optimization procedure. Based on the feedback from 

the last CPM iteration, the speed factor could be dynamically adjusted by designers’ intervention. For example, the 

value of the speed factor should be reduced if the value of f is not improved after several consecutive CPM iterations 

and the number of feasible experiments is larger than that of infeasible experiments at each CPM iteration. In this 

work for fair comparison, the speed factors are fixed throughout one optimization process and fixed for a number of 

independent runs. The efficiency of CPM can be potentially further improved by dynamically tuning the speed 

factors. 

 In this work, CPM starts with feasible experimental points subject to both SA/MDA and constraints. A common 

problem from all results is that CPM spent a lot of efforts in generating initial feasible experiments. As the number 

of state parameters and design variables increase, initialization could become a problem, so a good initialization 

procedure is important. A strategy is tested to generate feasible experiments by giving a small offset to the design 

variables of the last feasible experimental point. Although this strategy has been shown successful, it does not 
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guarantee that feasible experiments will be generated. A new initialization process, based on feasible experimental 

points subject to SA/MDA but not necessarily to constraints, has been applied to a conceptual aircraft design 

problem.
 27, 39

 More feasible experiments subject to both SA/MDA and constraints are expected to be created after the 

initialization step to replace the infeasible experiments subject to constraints in the database of experiments. This is 

more efficient than the current initialization process. Also for engineering problems, experimental data and other 

related experience can partly alleviate such a difficulty in initialization. 

 The efficiency and capability of sampling-based optimization methods are dependent on the range and number of 

design variables. As the range and number of design variables become large, CPM encounters difficulties caused by 

limited sample size, which can not effectively cover the entire design space. The Adaptive Sampling showed its 

advantage in this regard when solving Test Case 2. For large-scale design problems, the key to the sampling-based 

optimization methods is to effectively reduce the number and range of the design variables, while maintaining the 

optimization progress. Due to the nature of sampling, the capability and efficiency of CPM can be improved by 

applying parallel computing for generating a very large number of sample points. 

 It is observed that the Collaboration Model is effective for collaborating coupled subsystems. For MDO 

problems, the number of coupled state parameters is usually relatively low when compared with design variables. 

Based on this observation, the Collaboration Model could be still effective in dealing with a high degree of coupling. 

To test applicability of CPM in this regard, a conceptual aircraft design problem involving 10 design variables, 12 

constraints, and 3 nonlinear coupled disciplines was solved efficiently with CPM.
 27 

 CPM relies on SA/MDA rather than sensitivity analyses. From this perspective, CPM is an All-in-One/MDF-like 

MDO approach, which aims to reduce the total number of calls to SA/MDA. Its efficiency has been demonstrated 

through comparisons with the All-in-One/MDF in Refs.  27 and  39. In general, CPM has the same level of 

applicability for solving MDO problems as the All-in-One/MDF approach. The efficiency of CPM comes from an 

integration of collaboration modeling, metamodeling, and sampling-based optimizers.  A global search algorithm, 

MPS, is applied in CPM.  As MPS is a sampling-based search algorithm and only the number of expensive function 

evaluation is used as the efficiency measure (the cost of evaluating metamodels is negligible compared to the cost of 

expensive function evaluation), MPS is thus an efficient global search scheme for expensive black-box functions. 

Similarly, CPM is a sampling-based MDO approach for expensive SA/MDA processes. It selects promising points 

from a sample pool, which are determined from search or optimization methods, and only a few selected sample 
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points are evaluated expensively. Therefore as a global search scheme, CPM still demonstrates high efficiency from 

the perspective of the total number of expensive SA/MDA processes. 

 

VII. Conclusions 

 This paper proposed the Collaboration Model (CM), which is constructed by two mutually dependent 

approximation functions. The CM reflects both the physical and mathematical characteristics of couplings and 

effectively coordinates coupled subsystems for solving test cases. Based on the CM, the Collaboration Pursuing 

Method (CPM), as a sampling-based MDO method, is developed. CPM uses the Mode Pursing Sampling (MPS) 

method to search for the global optimum, and the Adaptive Sampling strategy to enhance its capability to converge 

to local optimum solutions. Four test cases have been successfully and robustly solved with CPM.  Future work will 

be focused on investigating the applicability and efficiency of CPM for MDO problems with a large scale of design 

variables and a fairly large number of state parameters. 
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Table 1. Experimental points for the RBF approximation. 

Experiments x1 x2 x3 x4 y1 y2 

1 1.306581 1.398711 1.007338 1.048180 0.705300 0.079091 
2 1.430430 1.504102 1.106891 1.172904 0.937613 0.353416 

3 1.472354 1.571369 1.160585 1.242747 1.058492 0.522912 

4 1.047014 1.668556 1.249554 1.318132 0.740550 0.596337 

5 1.108217 1.734028 1.302309 1.383587 0.904644 0.749696 

 

Table 2. Experimental points for the study of the Collaboration Model 

Experiments x1 x2 y1 y2 

1 3.503310 0.347277 35.114669 13.745608 

2 3.804635 0.199845 54.413245      30.829225 

3 3.687938 0.792564 45.010857      22.468824    

4 3.750904 0.903145 50.232818      27.700710 

5 3.618321 0.841266 40.904291      19.050912      

6 3.384046 0.334936 30.655226 10.795279 

 

Table 3. Results of Test Case 1. 

# of SA/MDA 

Infeasible Optimum Value of x Optimum Value of y No. 

of 

Run Feasible Initial 
After 

Ini. 

Optimum 

Value of f 

x1 x2 x3 x4 y1 y2 

1 55 2 0 -9.070575e-1 1.001897 1.035303 1.526232 1.184495 0.087604 0.710732 
2 28 4 0 -9.111311e-1 1.002131 1.012684 1.355314 1.264257 0.043922 0.619571 

3 20 3 0 -9.093511e-1 1.008852 1.008468 1.078122 1.542187 0.046566 0.620309 

4 36 1 0 -9.343211e-1 1.011585 1.009576 1.594216 1.099452 0.066896 0.693671 

5 57 9 0 -9.154225e-1 1.000354 1.036599 1.312874 1.370380 0.080004 0.683258 

6 26 6 0 -9.014565e-1 1.001388 1.042767 1.296005 1.359486 0.080624 0.655495 

7 35 12 0 -9.322473e-1 1.016560 1.005368 1.489481 1.209155 0.068987 0.698638 

8 58 4 0 -9.409803e-1 1.000501 1.004792 1.451814 1.194624 0.039787 0.646438 

9 29 2 0 -9.198739e-1 1.012159 1.021370 1.506066 1.177620 0.076689 0.683689 

Ave.    -9.19e-1       

σ    1.37e-2       

10 79 6 0 -9.477366e-1 1.002180 1.005740 1.479164 1.223990 0.056208 0.703155 

 



 

American Institute of Aeronautics and Astronautics 

 

27 

Table 4. Results of Test Case 2. 

# of SA/MDA 

Infeasible Optimum Value of x Optimum Value of y No. of 

Run Feasible 
Initial 

After 

Initialization 

Optimum 

Value of f 

x1 x2 x3 y1 y2 

1 21 25 8 8.061338 3.016562 2.042900 2.046421 8.010318 5.893234 

2 23 20 9 8.066726 3.004791 2.157272 2.011495 8.027615 5.849590 

3 38 17 18 8.030440 3.020825 2.036224 2.019330 8.006974 5.869815 

Ave.    8.052835      

σ    0.019581      

4 33 34 10 8.021729 3.020842 2.048775 2.006903 8.009590 5.857867 

5 19 5 10 8.028838 3.013692 2.093780 2.005488 8.011675 5.849671 

6 68 36 14 8.034520 3.020577 2.071583 2.000979 8.025550 5.854496 

Ave.    8.028362      

σ    0.006409      

7 52 24 18 8.014559 3.024412 2.021236 2.007586 8.003674 5.861074 

8 49 5 16 8.013545 3.022309 2.029848 2.008772 8.001031 5.859690 

9 93 14 17 8.008876 3.026792 2.014285 2.000711 8.005100 5.856832 

Ave.    8.0123267      

σ    0.0030311      

10 161 21 7 8.075582 3.011512 2.118991 2.022045 8.036551 5.868438 

Results from Ref.  35  8.003 3.025 2.000 2.000   

 

Table 5. Accuracy Comparison between the CPM and the CSSO applied in Ref.  35. 

Method Optimum Value of f 
Optimum 

Design of x from Ref.  35 
Optimum Design of y 

CPM 2.984 
y1 = 1.4071 y2 = 1.4128 

y3 = 1.9920 y4 = 3.9919 

CSSO in Ref.  35  2.984 

x1 = 0.998 

x2 = 0.996 
N/A 
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Table 6. Results of Test Case 3. 

# of SA/MDA 

Infeasible 
No. 

of 

Run Feasible Initial 
After 

Initialization 

Optimum 

Value of f 

Optimum 

Value of x 
Optimum Value of y 

1 40 171 27 0.996646 
x1 = 0.522049 

x2 = 0.072530 

y1 = 0.073801 y2 = 1.028952 

y3 = 0.147079 y4 = 2.146778 

2 35 218 20 0.938502 
x1 = 0.447010 

x2 = 0.015635 

y1 = 0.014464 y2 = 0.976560 

y3 = 0.033348 y4 = 2.033509 

3 36 297 2 0.890401 
x1 = 0.398669 

x2 = 0.005149 

y1 = 0.004404 y2 = 0.946309 

y3 = 0.011567 y4 = 2.011850 

4 43 180 0 1.007149 
x1 = 0.516492 

x2 = 0.020540 

y1 = 0.020914 y2 = 1.013332 

y3 = 0.040829 y4 = 2.040768 

5 35 350 44 1.031431 
x1 = 0.562961 

x2 = 0.121428 

y1 = 0.128897 y2 = 1.059881 

y3 = 0.242341 y4 = 2.242294 

6 18 264 0 0.966130 
x1 = 0.477408 

x2 = 0.024440 

y1 = 0.023621 y2 = 0.994687 

y3 = 0.050652 y4 = 2.050567 

7 20 295 25 0.983973 
x1 = 0.499534 

x2 = 0.036815 

y1 = 0.036586 y2 = 1.009014 

y3 = 0.075030 y4 = 2.074819 

8 28 69 30 0.973706 
x1 = 0.488703 

x2 = 0.034050 

y1 = 0.033357 y2 = 1.002736 

y3 = 0.070074 y4 = 2.069790 

9 15 308 20 0.991809 
x1 = 0.515382 

x2 = 0.062673 

y1 = 0.063319 y2 = 1.023085 

y3 = 0.127323 y4 = 2.127136 

10 16 46 45 1.129521 
x1 = 0.628626 

x2 = 0.252015 

y1 = 0.282756 y2 = 1.119979 

y3 = 0.502852 y4 = 2.502753 

Ave.    0.990927   

σ    0.062325   

 

Table 7. Design variables of the power converter problem. 

Range 
Variable Name Description 

Lower Bound Upper Bound 

x1 Cw Core center leg width 0.001 0.1 

x2 Turns Inductor turns 1.0 10. 

x3 Acp Copper size 7.29e-8 1.0e-5 

x4 Lf / PINDUC Inductance 1.0e-6 1.0e-5 

x5 Cf Capacitance 1.e-5 0.01 

x6 Ww Core window width 0.001 0.01 

 

 

 

Table 8. Dependency matrix of the power converter problem. 

 y1 y2 y3 y4 y5 y6 y7 y8 x1 x2 x3 x4 x5 x6 

y1 / f  x    x x  x x x  x X 

y2   x  x x x x    x x X 

y3  x             

y4  x             

y5         x x x    

y6         x      

y7         x      

y8   x   x    x     

g1          x x   x 

g2   x         x   

g3    x  x    x  x   

g4    x        x   
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Table 9. Accuracy Comparison between CPM and the CSSO method applied in Ref.  36. 

Method Optimum Value of f 
Optimum 

Design of x from Ref.  36 
Optimum Design of y 

CPM 1.4856 

y2 = 0.8302 y3 = 0.5929 

y4 = 0.4535 y5 = 0.0018 

y6 = 0.0003648 y7 = 0.0300 y8 = 0.0128 

CSSO used in Ref.  36 1.48 

x1 = 0.0191 x2 = 4.91 

x3 = 0.00000677 

x4 = 0.00000524 

x5 = 0.00263 

x6 = 0.00759 

y2 = 0.830 y3 = 0.593 

y4 = 0.453 y5 = 0.00182 

y6 = 0.000367 y7 = 0.0301 y8 = 0.0128 

Table 10. Results of Test Case 4. 

# of SA/MDA 

Infeasible 
No. 

of 

Run Feasible Initial 
After 

Ini. 

Optimum 

Value of 

f 

Optimum Value of x Optimum Value of y 

1 35 1 3 1.40026 

x1 = 0.011965 x2 = 5.137405 

x3 = 0.000008 x4 = 0.000002 

x5 = 0.008793 x6 = 0.008656 

y2 = 0.841751 y3 = 0.584688 

y4 = 0.032096 y5 = 0.447247 

y6 = 0.001006 y7 = 0.000143 

y8 = 0.018794 

2 30 3 1 1.46960 

x1 = 0.018990 x2 = 3.261643 

x3 = 0.000007 x4 = 0.000002 

x5 = 0.006239 x6 = 0.007036 

y2 = 0.840183 y3 = 0.585882 

y4 = 0.019873 y5 = 0.448082 

y6 = 0.001126 y7 = 0.000361 

y8 = 0.029829 

3 20 0 7 1.46435 

x1 = 0.015288 x2 = 4.819028 

x3 = 0.000007 x4 = 0.000003 

x5 = 0.007675 x6 = 0.007685 

y2 = 0.836584 y3 = 0.588444 

y4 = 0.020638 y5 = 0.450009 

y6 = 0.001384 y7 = 0.000234 

y8 = 0.024015 

4 33 6 2 1.48278 

x1 = 0.019377 x2 = 2.581968 

x3 = 0.000009 x4 = 0.000002 

x5 = 0.007388 x6 = 0.008073 

y2 = 0.845515 y3 = 0.582134 

y4 = 0.024302 y5 = 0.445256 

y6 = 0.000766 y7 = 0.000375 

y8 = 0.030437 

5 22 31 0 1.44344 

x1 = 0.017046 x2 = 3.373527 

x3 = 0.000008 x4 = 0.000003 

x5 = 0.007254 x6 = 0.008487 

y2 = 0.843580 y3 = 0.583488 

y4 = 0.023968 y5 = 0.446277 

y6 = 0.000903 y7 = 0.000291 

y8 = 0.026776 

6 25 0 4 1.49415 

x1 = 0.020723 x2 = 3.178963 

x3 = 0.000006 x4 = 0.000004 

x5 = 0.004352 x6 = 0.005940 

y2 = 0.833817 y3 = 0.590396 

y4 = 0.016946 y5 = 0.451502 

y6 = 0.001568 y7 = 0.000429 

y8 = 0.032552 

7 29 2 3 1.44674 

x1 = 0.016082 x2 = 5.453818 

x3 = 0.000007 x4 = 0.000003 

x5 = 0.004478 x6 = 0.007960 

y2 = 0.832009 y3 = 0.591687 

y4 = 0.016351 y5 = 0.452484 

y6 = 0.001694 y7 = 0.000259 

y8 = 0.025262 

8 26 9 3 1.39168 

x1 = 0.012810 x2 = 5.567491 

x3 = 0.000008 x4 = 0.000002 

x5 = 0.006761 x6 = 0.009895 

y2 = 0.840247 y3 = 0.585794 

y4 = 0.025761 y5 = 0.448048 

y6 = 0.001109 y7 = 0.000164 

y8 = 0.020122 

9 27 5 0 1.43167 

x1 = 0.012973 x2 = 7.524132 

x3 = 0.000008 x4 = 0.000003 

x5 = 0.005366 x6 = 0.009920 

y2 = 0.832640 y3 = 0.591244 

y4 = 0.018234 y5 = 0.452141 

y6 = 0.001669 y7 = 0.000168 

y8 = 0.020378 

10 29 1 0 1.396361 

x1 = 0.015761 x2 = 3.054849 

x3 = 0.000007 x4 = 0.000002 

x5 = 0.007356 x6 = 0.007650 

y2 = 0.843796 y3 = 0.583243 

y4 = 0.031227 y5 = 0.446163 

y6 = 0.000866 y7 = 0.000248 

y8 = 0.024757 

Ave.    1.442103   

σ    0.036716   
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Figure 1. Distribution of D - interdisciplinary discrepancy of 100 random sample points. 

 

 

Figure 2. Distribution of D of 100 random sample points with 2 experiments. 
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Figure 3. Distribution of D of 100 random sample points with 4 experiments. 

 

 

Figure 4. Distribution of D of 100 random sample points with 6 experiments. 

 

L = 78 

Sample Ranking Number 

D
 –
 D
is
cr
ep
an
cy
 

r = 53/25 = 2.12 

Feasible point: . 
Infeasible point: x 

L = 49 

Sample Ranking Number 

D
 –
 D
is
cr
ep
an
cy
 

r = 41/8 = 5.125 

Feasible point: . 
Infeasible point: x 



 

American Institute of Aeronautics and Astronautics 

 

32 

 

Figure 5. Construction of the Sampling Guidance Function. 

 

 
 

 
 

Figure 6. Architecture of the Collaboration Pursuing Method. 

 

 

 

End 

 

Global 
Sampling 

RBF 

Approximation 

Database of 

Experiments 

Design 
Space, x 

 

Yes 

 

Adaptive 
Sampling 

Local Design 
Space around, x* 

Collaboration 

Model 

Update  f * 

 

Current Best 

Solution, x* 

Local 

Seed 
Global 
Seeds 

SA/MDA 

 

MPS 

No 

 

SA/MDA 

 

start 

C
P
M
 I
te
ra
ti
o
n
 #
 +
 1
 

 

Ini. 

C
o
n
v
er
g
e?
 

 

 

(a) GF 

(b) GF  

(c) CG 

(d) CG  

 

Sample Ranking Number 
600 

0.4899 



 

American Institute of Aeronautics and Astronautics 

 

33 

 
 

Figure 7. Flowchart of the Collaboration Pursuing Method. 
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Figure 8. Description of the Adaptive Sampling for a minimization problem. 

 

 
 

Figure 9. The optimization process of Test Case 1 solved with CPM. 
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Figure 10. Intermediate best objective function values over 32 CPM iterations of Runs No. 1 – 10 in Test Case 1. 

 

Figure 11. Intermediate best objective function values over 37 CPM iterations of Runs No. 7 – 9 in Test Case 2. 

 

Figure 12. Intermediate best objective function values over 12 CPM iterations of Runs No. 1 – 10 in Test Case 3. 
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Figure 13. A schematic of the power stage of the power converter.
 37
 

 

Figure 14. Geometry of the transformer core.
 37
 

 

Figure 15. Intermediate best objective function values over 18 CPM iterations of Runs No. 1 – 10 in Test Case 4. 
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Figure 16. Cumulative number of the SA/MDA processes over 18 CPM iterations of Run No. 4 in Test Case 4. 
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