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Abstract One major challenge in multidisciplinary design
optimization (MDO) is the presence of couplings among
state parameters, which demands an iterative and often
expensive system analysis (SA) process for each function
evaluation in optimization. This paper offers a new
perspective and proposes a corresponding method for
solving MDO problems. The proposed method, named the
boundary search and simplex decomposition method
(BSSDM), geometrically captures the relation among
coupled state parameters with a feasible state parameter
region. Given the feasible state parameter region, the SA
can be avoided during the optimization of the system
objective function. To identify the feasible state parameter
region, a search strategy is developed to find boundary
points of the region. In the boundary search process, a
collaboration model (CM) is applied to maintain the

feasibility of samples with respect to the SA. In search of
the system optimum in the feasible region, a robust simplex
decomposition algorithm is developed for convex and star-
like feasible state parameter regions. The BSSDM is tested
with two numerical cases, one of which is an MDO
problem constrained by a convex state parameter region,
and the other is a SA problem with a star-like state
parameter region. All results are then validated, and the
results show the promising capability of the proposed
BSSDM.

Keywords Multidisciplinary design optimization .

Collaboration model . Convex/nonconvex state parameter
region . Boundary search . Simplex decomposition

1 Introduction

Multidisciplinary design optimization (MDO), which is also
called multidisciplinary design synthesis, is an important
design methodology in industry today. A general MDO
problem is defined as

min
xs;x

f xs; xcs; yð Þ
subject to : yi ¼ Yi xi; xcsi; ycið Þ; i ¼ 1; . . . ; n

g x; yð Þ � 0

ð1Þ

where

yi a state parameter/variable given by its corresponding
discipline

Yi function associated with yi
n number of state parameters
y {y1, ..., yi, ..., yn}, a vector of state parameters
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yci {yj}, j≠ i, a vector of state parameters output from
other discplines to discpline/subsystem i

f system objective function
xi a vector of disciplinary design variables of the state

parameter yi, and xi \ xj; i 6¼ j does not have to be ∅
xcsi a vector of system–subsystem design variables shared

by both yi and the objective function f
xcs {xcs1, ..., xcsi, ..., xcsn}, a union of xcsi, i=1, ..., n, and

xi \ xcs ¼ ∅
x {x1, ..., xi, ..., xn, xcs}, a union of the disciplinary

variables and system–subsystem design variables
xs a vector of system design variables of f, xs \ x ¼ ∅
g a vector of inequality constraints

In (1), y is governed by

y1 ¼ Y1 x1; xcs1; yc1ð Þ
. . .

yi ¼ Yi xi; xcsi; ycið Þ
. . .

yn ¼ Yn xn; xcsn; ycnð Þ

8>>>>>><>>>>>>:
: ð2Þ

A system analysis (SA) or the multidisciplinary analysis
(MDA) is described in (2). The solution of (2) is usually
calculated by an iterative procedure, such as the Gauss–
Seidel iterative method for linear equations and the steepest
descent method for nonlinear equations (see, e.g., Burden
and Faires 2000). State parameters y usually represent some
physical features in a physical discipline, and they are
usually calculated by computationally intensive processes.

The standard MDO formulation in (1) is also called the
multidisciplinary feasible (MDF) formulation in the nonlin-
ear programming community, or the “all-in-one” formulation
in the engineering community (Alexandrov and Lewis
2000c). It can be solved by conventional optimization
algorithms, such as gradient-based methods, treating the
SA/MDA as equality constraints. The main difficulty of
applying the “all-in-one” formulation in practice is that the
computational cost could be prohibitive because the SA/
MDA is frequently called during the optimization process.
Global sensitivity equations (GSE) were used to linearize
nonlinear couplings in the neighborhood of a feasible design
in the concurrent subspace optimization (CSSO) formulation
by Sobieszczanski-Sobieski (1988, 1990), Renaud and
Gabriele (1991, 1993), and Sellar and Batill (1996), and in
the Bi-level integrated system synthesis (BLISS) formulation
by Sobieszczanski-Sobieski et al. (2000). Based on the
similar idea of using slack variables in the “all-at-once”
formulation (Alexandrov and Lewis 2000c), Braun and Kroo
(1997) developed another decomposition-based MDO for-
mulation named collaborative optimization (CO) by using
slack variables for decoupling. In CO, the interdisciplinary
consistency is held in the system level by extra equality

constraints, which are the match between the slack variables
issued from the system level and their corresponding
variables evaluated and returned from disciplinary analyses.
Alexandrov and Lewis (1999, 2000a, b) found that CO has
difficulties preserving the standard Karush–Kuhn–Tucker
condition due to its formulation structure.

The main difficulties of solving MDO problems are
primarily raised by the couplings among state parameters
from different disciplines. When a discipline involves a
computationally expensive process, the computation of
MDO becomes cost-prohibitive. Reducing the turn-around
time of design and achieving the global optimal design are
the main goals of all MDO methodologies. This paper
proposes a new MDO method, named the boundary search
and simplex decomposition method (BSSDM). The
BSSDM can geometrically capture the relation among
coupled state parameters by exploring the feasible region
formed by state parameters, in which any point (a set of
state parameters) will satisfy (2). Given the captured
coupling information, a robust optimum solution of MDO
problems can be achieved easily and efficiently.

In the following sections, the motivation of the BSSDM
will be elaborated first in Section 2. Then, a collaboration
model (CM) developed by Wang (2005a) for checking the
samples’ feasibility with respect to the SA/MDA will be
reviewed in Section 3. The infrastructure of the BSSDM
will be introduced in Section 4. Finally, the results of test
cases solved with the BSSDM will be shown and discussed
in Section 5.

2 Motivation

The BSSDM is developed to address dominant couplings
among state parameters in MDO problems. The relation
among coupled state parameters is not a one-to-one
mapping. Given the values of yc1 in (2), the value of y1
can vary within a certain range due to many feasible
combinations of x1 and xcs1. This fact indicates that one
state parameter cannot be approximated with a simple
fitting function of its own variables. In other words, such a
fitting function only captures part of the relation among
coupled state parameters. The relation among n-coupled
state parameters can be described by an nD feasible state
parameter region. Geometrically, the feasible state param-
eter region can be further classified into convex and
nonconvex types. Correspondingly, the SA/MDA can be
classified into convex and nonconvex problems.

It would be beneficial to know the feasible boundary of
state parameters when solving MDO problems. In the
BSSDM, the feasible state parameter region will be
approximated based on boundary points, which are itera-
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tively explored by a boundary search strategy through a
random sampling process. The approximated feasible state
parameter region can be further decomposed into simplexes
to show the relation among coupled state parameters
explicitly and geometrically. The BSSDM gives a novel
perspective of describing the interdisciplinary couplings
and obtaining the solution of an MDO problem.

The BSSDM focuses on certain MDO problems, in
which the system objective function, f, is only a function of
state parameters, y, and system design variables, xs. The
MDO problem formulation required by the BSSDM is
defined by

min
xs;x

f xs; yð Þ
subject to : yi ¼ Yi xi; ycið Þ; i ¼ 1; . . . ; n

gc x; yð Þ � 0

gs xs; yð Þ � 0

; ð3Þ

where gc is a vector of disciplinary constraints, gs is a
vector of system constraints, and x is a union of xi, i=1, ...,
n. The only difference between (3) and (1) is that the MDO
formulation defined in (3) does not involve the system–
subsystem variables, xcs. It is, thus, a limitation of the
BSSDM in terms of the applicability to MDO problems.
When the relation among coupled state parameters is
explicitly available, optimizing the system objective func-
tion does not need to call disciplinary analyses based on the
formulation defined in (3). In (3), having known the
feasible region of coupled state parameters, the SA/MDA
can be replaced by simple uncoupled constraints. Therefore,
the burden of calling the SA/MDA can be eliminated for
optimizing f. Also, the problem defined by (3) is assumed
to have a convex or star-like state parameter region at the
current development state of the BSSDM. In this paper, the
term, ‘convex region,’ is equivalent to the term ‘convex set’
in mathematics.

Fundamentally, the BSSDM is a sampling-based meth-
od. The feasible state parameter region is explored and
approximated by some selected samples from a sample
pool. In a sampling process, it is not certain if a sample can
produce feasible values of its coupled state parameters
governed by (2). A collaboration model (CM) is applied for
choosing feasible samples and will be reviewed in the next
section.

3 Review of CM

Wang (2005a) proposed a CM for checking the feasibility of
samples with respect to the SA/MDA. CM can output a
distribution of samples that differentiates samples in terms of
the possibility being feasible with respect to the SA/MDA. It

can be viewed as a filter for a sampling process. The CM is
illustrated by a two-state-parameter SA/MDA defined in (4)
according to the formation of MDO problems in (3).

y1 ¼ Y1 x1; y2ð Þ
y2 ¼ Y2 x2; y1ð Þ : ð4Þ

In (4), y1 is an explicit function of x1 and y2. The explicit
expression reflects the physical relation between y1 and its
variables, i.e., x1 and y2. Meanwhile, y1 is implicitly
affected by x2, which are the design variables from the
other discipline. The situation is similar for y2. Therefore,
mathematically, all state parameters, y, are affected by x, the
union of all associated design variables x1 and x2. The
mathematical function of a state parameter yi with respect to
x uncovers the intrinsic mathematical dependency among
coupled disciplines, and it plays an important role in the
CM. A linear radial basis function (RBF) shown below is
used to implement the CM:

eF Xð Þ ¼
XE
e¼1

αi X � X eð Þ�� �� ; ð5Þ

where eF is the approximation of F, such as yi and yi
defined in (6) and (7); X is a design variable vector, such asexi in (6), and yci and xi in (7); ϕ X � X eð Þ�� ��� �

; e ¼�
1; 2; . . . ; Eg is a set of E functions known as RBFs; �k k
denotes a norm, which is usually Euclidean; and αi are
unknown coefficients (weights) calculated by a set of
simultaneous linear equations, eF X eð Þ� � ¼ Fe. The reason
to choose the RBF is because the RBF approximation goes
through each experimental point and, therefore, gives better
accuracy in the neighborhood of experimental points. In
general, other approximation techniques can also be used,
such as Kringing modeling.

The proposed CM is built based on two dependent
approximations of coupled state parameters with the RBF
in (5) as

yi ¼ Yi exið Þ; i ¼ 1; . . . ; n ð6Þ

yi ¼ Yi xi; ycið Þ; i ¼ 1; . . . ; n ; ð7Þ

where exi includes all the associated design variables of the
state parameter yi. The value of the approximate function of
yi is represented by yi in (6). The approximate value of yi
marked as yi can be explicitly evaluated by (7), given xi and
yci. Provided that the approximation is sufficiently accurate,
and a set of design variables, x, simultaneously satisfies (6)
and (7), the difference between yi and yi ought to be small;
otherwise, the difference will be large.
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For a given set of design variables, x, the interdisciplin-
ary consistency/discrepancy of state parameters, D, is
defined by

D ¼
Xn
i¼1

yi � yi
�� �� : ð8Þ

If the value of D is small, this set of design variables, x, is
likely feasible with respect to the SA/MDA.

The CM defined in (6), (7), and (8) gives a distribution
of the interdisciplinary discrepancy/consistency to a group
of samples with respect to the SA/MDA. It means that
samples with a smaller value of D are more likely feasible
with respect to the SA/MDA than those with a larger value
of D. The CM was also applied in a collaboration pursuing
method (CPM) for solving a general MDO problem defined
in (1) (by Wang et al. 2005). The effectiveness of the CM is
demonstrated by applying the CM to a problem, which is
the SA/MDA of test case 1 (in Section 5) defined by

y1 ¼ x1 þ x2 � 2þ y2=1:5ð Þ4

y2 ¼ x3 þ x4 � 2þ y1=1:8ð Þ4
subject to : 1 � x1; x2; x3; x4 � 1:9

: ð9Þ

One hundred samples are generated through a random
sampling process in the design variable space, (x1, x2, x3,
x4), for studying the effectiveness of the CM. Five
experimental points listed in Table 1 are randomly generated
and used for RBF approximations defined in (6) and (7).
After applying the CM for calculating the interdisciplinary
discrepancy/consistency value, D, of the 100 random
samples, the distribution of D over the 100 samples is
depicted in an ascending order in terms of the value of D in
Fig. 1. The feasibility of the 100 samples with respect to the
SA/MDA in Fig. 1 was determined based on the evaluations
of y of the 100 samples by calling the SA/MDA. Samples
marked with ‘&’ are feasible, and samples plotted with ‘+’
signs are infeasible. As expected, the samples with a small
value of D in Fig. 1 are more likely feasible with respect to
the SA/MDA than other samples with a large value of D.
The same study was also applied to cases with 500 and
1,000 random samples, as shown in Figs. 2 and 3.

The effectiveness of the CM was also intensively studied
by Wang (2005b). It was shown that the prediction of

feasible samples with respect to the SA/MDA based on the
D distribution given by the CM becomes more accurate
with more experimental points. In the next section, the
infrastructure of the BSSDM will be elaborated in detail.

4 Boundary search and simplex decomposition method

As shown in Fig. 4, the BSSDM consists of five modules,
which are the boundary search process (BSP), domain
decomposition, boundary refining, system optimization,
and disciplinary analysis. The BSP module involves
iterative processes to search for boundary points. The
domain decomposition module approximates the actural
feasible state parameter region based on the boundary
points from the BSP and divides the approximated region
into simplexes. The objective function f is optimized by the
system optimization module within each simplex individ-
ually, and the optimum solutions of xs and y can be
achieved by comparing solutions from each simplex. The
boundary refining module provides options to further
improve the approximation of the actual state parameter
region. Eventually, the optimum value of x is evaluated by
a trace back process in the disciplinary analysis module,
given the optimum solutions of xs and y from the system
optimization module. Before introducing the flow chart of
the proposed method as illustrated in Fig. 4, some key
techniques are first discussed, i.e., the boundary search
strategy and domain decomposition method.

4.1 Boundary search strategy

The boundary search strategy is applied after a limited
number of initial feasible points are identified. It explores
the boundary points of the actual feasible state parameter
region based on which the state parameter region can be
approximated with simplexes. How the initial feasible
points are obtained will be described later in Section 4.3.
Three boundary search strategies, which are the stair-
climbing strategy, strip-measure strategy, and explosion
strategy, were developed and discussed by Wang (2005a).
In the BSSDM, the explosion strategy is applied due to its
efficiency, which will be explained in this section.

Table 1 Experimental points for the RBF approximation

Experiment x1 x2 x3 x4 y1 y2

1 1.306581 1.398711 1.007338 1.048180 0.705300 0.079091
2 1.430430 1.504102 1.106891 1.172904 0.937613 0.353416
3 1.472354 1.571369 1.160585 1.242747 1.058492 0.522912
4 1.047014 1.668556 1.249554 1.318132 0.740550 0.596337
5 1.108217 1.734028 1.302309 1.383587 0.904644 0.749696
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Fig. 2 Distribution of D—inter-
disciplinary consistency/discrep-
ancy of 500 random samples

Fig. 1 Distribution of D—inter-
disciplinary consistency/discrep-
ancy of 100 random samples
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Fig. 3 Distribution of D—inter-
disciplinary consistency/discrep-
ancy of 1,000 random samples

Fig. 4 Architecture of the
boundary search and simplex
decomposition method
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Based on (3), y is constrained by

y1 ¼ Y1 x1; yc1ð Þ
. . .

yi ¼ Yi xi; ycið Þ
. . .

yn ¼ Yn xn; ycnð Þ

:

8>>>>>>>>><>>>>>>>>>:
ð10Þ

Literally, the explosion strategy is analogous to an
explosion process. The search procedure starts with some
initial feasible design points obtained in the state parameter
space and explores the furthest point with respect to a
geometric center along different directions. Given K
feasible state parameter points in the state parameter space,
e.g., points marked with ‘filled squares’ in a two-state
parameter case in Fig. 5, the geometric center ce is defined
by

yce;i ¼
max yk;i; k ¼ 1; . . . ; K

� �þmin yk;i; k ¼ 1; . . . ; K
� �

2
;

i ¼ 1; . . . ; n ;

ð11Þ

First, the space of state parameters can be divided into
quadrants with respect to the geometric center ce. For
example, four quadrants in a 2D space can be defined by

Quadrant 1 : y1 � yce;1 and y2 � yce;2
Quadrant 2 : y1 � yce;1 and y2 � yce;2
Quadrant 3 : y1 � yce;1 and y2 � yce;2
Quadrant 4 : y1 � yce;1 and y2 � yce;2

: ð12Þ

The number of quadrants, Q, is equal to 2n. Then, in
each quadrant, the feasible boundary is pursued in (13) by
searching for a sample point (from a large sample pool)
with the longest Euclidean distance with respect to the
geometric center ce.

max L1; . . . ; Ls; . . . ; LpqÞ ;
� ð13Þ

where Pq is the number of samples in quadrant q. Ls

denotes the Euclidean distance between sample s and ce
and is defined by

Ls ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ys;i � yce;i
� �2s

; ð14Þ

where ys;i is the approximate value of yi calculated by (6).
Meanwhile, the center ce will be dynamically refreshed in
the next boundary search iteration (BSI) with more feasible
design points. Finally, the furthest vertex in each quadrant
is found, e.g., points marked with ‘filled circles’ in Fig. 5.

All available feasible points are considered to be boundary
point candidates and will be connected by facets to build up
a convex hull in the domain decomposition module, which
is explained in the next section.

4.2 Domain decomposition

Suppose that (10) has a feasible convex state parameter
region. Given boundary points of the feasible convex state
parameter region, the boundary of the feasible region can
be tessellated with facets. Each facet consists of n vertices.
In the 2D state parameter space [n=2 in (10)], a facet is a
straight line segment, while in a 3D space, it is a triangle. A
facet and an interior point in the feasible region construct a
simplex, which is, for example, a triangle in the 2D space
and a tetrahedron in the 3D space. In this way, a convex
region can be uniquely decomposed into simplexes cen-
tered about a common interior point in the region.
Geometrically, each simplex is confined by its facets. In
an nD space, a facet can be described by

a1y1 þ . . . ; þanyn ¼ anþ1 ; ð15Þ
where ai (i=1, ..., n+1) can be uniquely determined by n
points. For example, in Fig. 6, the facet AB can be defined
by state parameter points A and B. For constructing a

C
+

Sj

A

B

Fig. 6 Simplex convex decomposition method for a 2D state
parameter case

ce

Fig. 5 Explosion strategy applied in a 2D state parameter region
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simplex, the equal sign in (15) will be changed to either “≤”
or “≥” by substituting a vertex of the simplex into a facet
(of the same simplex), which does not pass through the
vertex, e.g., substitution of point C into facet AB in Fig. 6.
Eventually, in the nD state parameter space, a simplex can
be defined with (n+1) linear constraints by

a1;1y1 þ a2;1y2 þ . . .þ an;1yn � or � anþ1;1

. . .

a1;nþ1y1 þ a2;nþ1y2 þ . . .þ an;nþ1yn � or � anþ1;nþ1

:

ð16Þ

A Quickhull algorithm is used to find boundary points
from all feasible state parameter points prepared by the
explosion strategy and to connect all boundary points to
generate facets enclosing the smallest convex hull that
contains all feasible state parameter points (Barber et al.
1996). This process was implemented using a function
named convhulln in MATLAB® 6.0 (MathWorks, Natick,
MA, USA). The convhulln function returns the indices of
the boundary points in a data set that comprises of the
facets of the convex hull for the set.

Due to its complexity, this paper has no intention to
handle a general nonconvex region. For certain situa-
tions, namely star-like regions, a star-like decomposition
algorithm is proposed and studied in test case 2 in
Section 5. A set S is star-like with respect to some bx∈S iff
the segment from bx to any other point in S is contained in
S. A star-like region case is shown in Fig. 7. The pseudo-
code of the proposed star-like decomposition algorithm is
elaborated as follows by using Fig. 7 as an example:

1. Given all current available feasible points, e.g., points
A, B, C, D, E, and F, apply the Quickhull algorithm to
construct a convex hull and decompose the region into
simplexes, such as S1.

2. Find a point (representing the furthest vertex in a
quadrant) not listed on any facet given by step 1, e.g.,
C. Locate this point in one of the current simplexes

based on (16). For example, substitute this point into
(16). If (16) is satisfied, this point must be located in
the simplex, i.e., S1. Break up this simplex and
reconstruct it by new facets made of any different n−
1 vertices of S1 (excluding the interior vertex), i.e., B or
D, and this boundary point, i.e., C. Update all
simplexes and repeat step 2 until all vertices in
quadrants are listed on one of the facets.

With the understanding of the boundary search strategy
and boundary decomposition, the flow chart of the BSSDM
will be explained next.

4.3 Procedure of the BSSDM

The BSSDM starts with the BSP module to search for
boundary points. As shown in Fig. 4, an initialization
procedure first creates some initial experimental points
through a random sampling process. These experimental
points are obtained by calling the expensive SA/MDA, and
therefore, they are referred to as expensive points. Using
these expensive points, two different RBF models, yi and yi,
are then constructed for each discipline based on the CM
defined in (6) and (7). Then a larger number of sample
points, e.g., p=104, are randomly generated in the design
variable space, [xLb, xUb]. The state parameters of the p
random samples are approximated with the RBF models.
These random points with approximated state parameters
are referred to as cheap points. Therefore, we have

yq;i ¼ Yi exq;i� �
; i ¼ 1; . . . ; n; q ¼ 1; . . . ; p ð17Þ

yq;i ¼ Yi xq;i; yq;ci
� 	

; i ¼ 1; . . . ; n; q ¼ 1; . . . ; p : ð18Þ

The interdisciplinary discrepancy of state parameters for
each sample point is evaluated by

Dq ¼
Xn
i¼1

yq;i � yq ;i
�� ��; q ¼ 1; . . . ; p : ð19Þ

Based on the RBF approximation models, the constraint
check (for each sample) is implemented by

gc;q xq; yqÞ � 0; q ¼ 1; . . . ; p
�

ð20Þ

gc;q xq; yq
� 	

� 0; q ¼ 1; . . . ; p ð21Þ

Samples violating constraints defined in (20) and (21)
are eliminated from the sample set. Then, the discrepancy
check takes place to filter out infeasible samples with

Fig. 7 Illustration of the star-like decomposition algorithm for a 2D
state parameter case
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respect to SA/MDA according to a pre-set threshold1 of
the interdisciplinary discrepancy D, e.g., 1,000. The
remaining samples, e.g., p1 samples, will be allocated into
each quadrant according to (11) and (12). Finally, a
sample with the largest Euclidean distance as defined in
(13) and (14) in each quadrant is chosen to be evaluated
expensively by calling the SA/MDA, and a BSI is ended.
True feasible points will then be used as new expensive
points, which are combined with existing expensive points
to construct more accurate approximation models in the
next BSI, as shown in Fig. 4. The BSP stops if the position
of the geometric center of the explored state parameter
region stays stationary according to a movement criterion
over a certain number of consecutive BSIs, e.g., two. The
movement criterion of ce is defined byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

y tð Þ
ce;i � y tþ1ð Þ

ce;i

� 	2
s

� 1e�3 ð22Þ

or

ce tð Þ � ce tþ1ð Þ�� �� � 1e�3 ; ð23Þ
where t indicates the tth BSI.

Once the BSP is terminated, one would have a collection
of expensive points including boundary points. Then, a
convex hull can be constructed by applying the Quickhull
method in the domain decomposition module. Also a
nonconvex region check follows. As a result, geometrically,
the feasible state parameter region is decomposed into
simplexes confined by linear constraints as defined in (16).

As points in the feasible state parameter region will
satisfy (10) and the equality constraints in (3) can be
replaced by simplexes defined by (16), the optimization of
the system objective function f can then be performed
within each simplex with respect to y and xs in the system
optimization module. The system optimization, thus,
becomes

min
xs;y

f xs; yð Þ
subject to : a1;1y1 þ a2;1y2 þ . . .þ an;1yn � or � anþ1;1

. . .

a1;nþ1y1 þ a2;nþ1y2 þ . . .þ an;nþ1yn � or � anþ1;nþ1

gs ¼ Gs xs; yð Þ � 0

:

ð24Þ
As a result, the system optimization module outputs optimum
values: y*, f*, and x�s . It is to be noted that the expensive SA/
MDA process is not called at all when optimizing (24).

The best value of the system objective can be further
improved in the boundary refining module by continu-
ally exploring undiscovered regions between current
facets and the actual boundary. In the BSSDM, the
undiscovered region between a facet (belonging to the
simplex containing the current best value of f) and its
corresponding actual boundary segment, e.g., the cross
hatched area in Fig. 6, is chosen for further investigation.
This is because the actual optimum solution might be in a
small neighborhood of the current best solution in the state
parameter space for continuum problems. Ideally, all
undiscovered regions could be further explored if the cost
is of little concern. The boundary refining module geomet-
rically defines the undiscovered regions by switching the
sign of facets defined in (16), e.g., facet AB in Fig. 6. With
defined undiscovered regions, the actual boundary of the
undiscovered regions will be explored over a number of
BSIs in a new BSP. The convergence criterion of BSSDM
is the area difference between approximated regions from
two adjacent BSPs. It means that the boundary refining
process stops if the new discovered area is small enough
subject to time and budget.

Given y* and f*, the optimum value of disciplinary design
variables, x*, can be traced back by running an optimization
process in the disciplinary optimization module as follows:

min
x

S ¼
Xn
i¼1

y�i � yi
� �2

subject to : yi ¼ Yi xi; y
�
ci

� �
; i ¼ 1; . . . ; n

gc x; y�ð Þ � 0

: ð25Þ

When xi \ xj 6¼ ∅ i 6¼ jð Þ, the computational expense of
solving (25) is close to calling the SA/MDA once. In the
case where xi \ xj ¼ ∅ i 6¼ jð Þ, xi can be evaluated
independently with an optimization process in each
subsystem as follows:

min
xi

y�i � yi
� �2

subject to : yi ¼ Yi xi; y
�
ci

� �
gc;i xi; y

�ð Þ � 0

; ð26Þ

where gc,i is a sub-vector of gc. Eventually, the optimum
solution is given as y*, x*, x�s , and f*. A detailed flow chart
of the BSSDM is shown in Fig. 8. Two test cases are solved
successfully with the BSSDM, and test results are shown
and discussed in the next section.

5 Test problems and discussion

The BSSDM is tested with two cases. The authors formulated
the first numerical test case by placing two coupled state
parameters into the well-known six-hump camelback prob-

1 The value of the threshold depends on the problem. In general, a
small threshold results in a conservative filtering process; a large one
could take some infeasible samples. The threshold value can be
determined based on users’ judgment by referring to the D distribution
given by (19).
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lem. Two BSPs were implemented in test case 1. Test case 2 is
a problem of the SA/MDA in Tappeta et al. (1998) and is
applied to demonstrate the ability of the BSSDM in dealing
with a star-like state parameter region. One BSP is
implemented in this problem. Both cases are validated by
enumerations. The ‘fsolve’ function in MATLAB® 6.0
(MathWorks) was applied to solve the SA/MDA with its
default convergence tolerance value, 10−4, and the ’fmin-
con’ function in MATLAB® 6.0 (MathWorks) is used for
optimization in disciplinary optimization module. Based on
the authors’ experience of using BSSDM and CPM, 104

random samples are usually enough for solving MDO
problems with the number of design variables up to ten. In
step 3, in Fig. 8, p is set to 104 for both test cases.

5.1 Test case 1

Test case 1 is formulated as follows:

min f ¼ 4y21 � 2:1y41 þ
y61
3
þ y1y2 � 4y22 þ 4y42

subject to : y1 ¼ x1 þ x2 � 2þ y2=1:5
� �4

y2 ¼ x3 þ x4 � 2þ y1=1:8
� �4

y1 � 1:0

y2 � 1:0

1 � x1; x2; x3; x4 � 1:9

ð27Þ

In total, ten independent runs are carried out for test
case 1 to examine the robustness of the BSSDM. For

Fig. 8 Flow chart of the bound-
ary search and simplex decom-
position method
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each run, the BSSDM started with five initial expensive
points that are feasible, with respect to both the SA/MDA
and the other constraints. All runs were terminated after
two BSPs. All runs’ first BPS is converged when there is
no further movement of the geometric center ce after two
consecutive BSIs. The second BSPs of runs 1–5, 6–7, and
8–10 are converged after 2, 3, and 4 consecutive BSIs,
respectively, without further movement of the geometric
center ce. The results of test case 1 given by the BSSDM
are shown in Table 2. In Table 2, each BSP output one
best experimental point; then, f was optimized within
simplexes after each BSP, and the optimal solutions of x
were evaluated by (25), given y* after two BSPs. For run

1, the complete process information of solving test case 1
is depicted in Fig. 9, which shows all experimental points
for exploring the actual boundary, the actual state
parameter region given by enumeration, the boundary of
the feasible state parameter region approximated by the
BSSDM, and the contour of f. Also, the cumulative
number of the SA/MDA and the convergence history of
each BSP are shown in Figs. 10 and 11, respectively. The
optimal value given by the BSSDM is very close to the ac-
tual optimum according to the contour of f. Besides the
optimum solution of f, the BSSDM almost gives a full
geometric description of the relation between coupled state
parameters.

Table 2 Results of test case 1

No. of
run

No. of SA/MDA Solutions

Feasible Infeasible 1st boundary search process 2nd boundary search process

Initial After
initialization

Best experiment Intermediate Best experiment Optimum solution

1 55 10 1 y1=0.194433 y2=0.934829 y1=0.145198 y1=0.069245 y2=0.678303 y1=0.069245 y2=0.678303
f=−0.110784 x1=1.025010 y2=0.674395 f=−0.927530 x1=1.025179 f=−0.927530 x1=1.013715
x2=1.018566 x3=1.436627 f=−0.810511 x2=1.002251 x3=1.010931 x2=1.013715 x3=1.339150
x4=1.498066 x4=1.667369 x4=1.339150

2 42 8 2 y1=0.184069 y2=0.918080 y1=0.153910 y1=0.080887 y2=0.739779 y1=0.069443 y2=0.685478
f=−0.227642 x1=1.028258 y2=0.681099 f=−0.905142 x1=1.006350 f=−0.929529 x1=1.012915
x2=1.015479 x3=1.407857 f=−0.796379 x2=1.015375 x3=1.406123 x2=1.012915 x3=1.342738
x4=1.510113 x4=1.333652 x4=1.342738

3 60 16 9 y1=0.190143 y2=0.699300 y1=0.107519 y1=0.111801 y2=0.747984 y1=0.089601 y2=0.681040
f=−0.724663 x1=1.041600 y2=0.686665 f=−0.852553 x1=1.021980 f=−0.901763 x1=1.023553
x2=1.101305 x3=1.060560 f=−0.876963 x2=1.027991 x3=1.097539 x2=1.023553 x3=1.340517
x4=1.638615 x4=1.650430 x4=1.340517

4 50 10 5 y1=0.160730 y2=0.921624 y1=0.139306 y1=0.095167 y2=0.673956 y1=0.095530 y2=0.675328
f=−0.261631 x1=1.004504 y2=0.687412 f=−0.891423 x1=1.048804 f=−0.891437 x1=1.027222
x2=1.013714 x3=1.585420 f=−0.824386 x2=1.005610 x3=1.415693 x2=1.027222 x3=1.337660
x4=1.336140 x4=1.258255 x4=1.337660

5 47 15 11 y1=0.010465 y2=0.217387 y1=0.113781 y1=0.034693 y2=0.438807 y1=0.099327 y2=0.673386
f=−0.177382 x1=1.002001 y2=0.675806 f=−0.601868 x1=1.012382 f=−0.885187 x1=1.029356
x2=1.008023 x3=1.104855 f=−0.864179 x2=1.014987 x3=1.402943 x2=1.029356 x3=1.336688
x4=1.112532 x4=1.035864 x4=1.336688

6 39 17 0 y1=0.068446 y2=0.249638 y1=0.139213 y1=0.072176 y2=0.648805 y1=0.079895 y2=0.670979
f=−0.197962 x1=1.011269 y2=0.677038 f=−0.907395 x1=1.001643 f=−0.911030 x1=1.019928
x2=1.056410 x3=1.162730 f=−0.822084 x2=1.035531 x3=1.420962 x2=1.019928 x3=1.335487
x4=1.086906 x4=1.227841 x4=1.335487

7 48 1 4 y1=0.386583 y2=0.723602 y1=0.161793 y1=0.056208 y2=0.703156 y1=0.055455 y2=0.695945
f=−0.166042 x1=1.267575 y2=0.659253 f=−0.947736 x1=1.002180 f=−0.948145 x1=1.004558
x2=1.064854 x3=1.281192 f=−0.772962 x2=1.005740 x3=1.479164 x2=1.004558 x3=1.347972
x4=1.440282 x4=1.223990 x4=1.347972

8 82 2 6 y1=0.185760 y2=0.425766 y1=0.123827 y1=0.059706 y2=0.705744 y1=0.058771 y2=0.696113
f=−0.379029 x1=1.118326 y2=0.677300 f=−0.943615 x1=1.000716 f=−0.944346 x1=1.006194
x2=1.060944 x3=1.273765 f=−0.848481 x2=1.009987 x3=1.238280 x2=1.006194 x3=1.348056
x4=1.151887 x4=1.467463 x4=1.348056

9 66 14 5 y1=0.121406 y2=0.589304 y1=0.108950 y1=0.093389 y2=0.766968 y1=0.083716 y2=0.690573
f=−0.776659 x1=1.081105 y2=0.682429 f=−0.862502 x1=1.015831 f=−0.912122 x1=1.019396
x2=1.016478 x3=1.220964 f=−0.873761 x2=1.009207 x3=1.135758 x2=1.019396 x3=1.345284
x4=1.368320 x4=1.631203 x4=1.345284

10 65 6 5 y1=0.151832 y2=0.745251 y1=0.118877 y1=0.086392 y2=0.654171 y1=0.065365 y2=0.671718
f=−0.783471 x1= 1.022522 y2=0.667192 f=−0.892977 x1=1.024698 f= −0.929517 x1=1.012575
x2=1.068378 x3=1.335046 f=−0.852541 x2=1.025519 x3=1.480990 x2= 1.012575 x3=1.335858
x4=1.410154 x4=1.173176 x4=1.335858

Boundary search and simplex decomposition method for MDO problems with a convex or star-like state parameter region 295



Fig. 9 Complete information of
the results of run no. 1 in test
case 1 given by the BSSDM

Fig. 10 Cumulative number of
the SA/MDA over 16 BSIs of
run no. 1 in test case 1
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5.2 Test case 2

Taken from Tappeta et al. (1998), test case 2 only involves
SA/MDA with the formulation as

y1 ¼ x21 þ x2 þ x3 � 4� 0:2y2

y2 ¼ x1 þ x3 � 2þ ffiffiffiffiffi
y1

p
subject to : 0 � x1 � 7

2 � x2 � 7

2 � x3 � 7

y1=8� 1 � 0

1� y2=10 � 0

ð28Þ

The actual feasible region of y is represented by a limited
number of dots, which were generated by calling the SA/
MDA based on different combinations of design variables
when given their ranges and intervals, as shown in Fig. 12.
The solution of test case 2 given by the BSSDM, depicted
in Figs. 12 and 13, takes 46 expensive feasible points and
21 expensive infeasible points, among which 11 are for
initialization. The number of initial feasible expensive
points is 5. Only one BSP is implemented. The BSSDM
stopped after two consecutive BSIs because the geometric
center ce does not move further. The cumulative number of
the SA/MDA and the convergence curve are shown in
Figs. 14 and 15, respectively. The result shows a good
approximation of a star-like state parameter region.

5.3 Discussion

The BSSDM can robustly solve MDO problems with a
feasible convex state parameter region. If the expense of
solving the SA/MDA is of primary concern, when the
feasible state parameter region is known, the rest of the
work becomes inexpensive. The optimization process can
be readily implemented by conventional optimization
techniques, such as a gradient-based algorithm. Also, the
feasible state parameter region shows a ‘global’ picture of
the relation among coupled state parameters. This informa-
tion gives designers freedom to choose a feasible design
from the region. However, it currently cannot deal with a
generic nonconvex region. The proposed star-like decom-
position shows possibilities that a generic nonconvex
region can be decomposed into local convex regions.
Further research on this issue is needed.

It is observed that the CM is effective for coordinating
coupled subsystems. The expensive sample points are
inheritable because all expensive points are collectively
used in the RBF models. Each call to the SA/MDA,
regardless of its feasibility with respect to constraints,
benefits the RBF approximations.

The proposed method is demonstrated effective for the
two test cases, which could be conveniently illustrated. The
method, however, is not limited to n=2. It is generally
applicable to any number of state parameters. The compu-
tational expense, however, exponentially increases with the
increase of the number of state parameters. It is fortunate
that, compared with the number of disciplinary design

Fig. 11 Convergence history
over 16 BSIs of run no. 1 in
test case 1
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variables, x, the number of state parameters, n, is usually
relatively small. For a pure convex state parameter region
problem, it is observed that the boundary search converges
quickly and no optimization method is required to explore
the boundary in terms of the Euclidean distance. This could
compensate the total computational cost for the boundary
exploration of a large number of state parameters.

This work does not aim to develop a method that is
competitive to the well-known MDO methods such as
BLISS and CO. The purpose of this work is to provide a
novel approach to better resolve the expensive coupling
issue in MDO. It is hoped that the concept of the state
parameter region and the BSSDM could lead to more
innovative MDO approaches.

Fig. 12 Complete process in-
formation of the results of test
case 2 given by the BSSDM

2

1

Fig. 13 Zoomed-in figure of
the solution of y of test
case 2 given by the BSSDM
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6 Concluding remarks

The couplings between disciplines characterize MDO
problems and remain a major computational challenge in
solving MDO problems. This paper proposes the concept of
a feasible state parameter region, which captures the

complex couplings among disciplinary analyses. Having
the information of the feasible state parameter region, the
expensive SA/MDA could be eliminated in search of the
system objective. Moreover, design engineers can choose
many design candidates that fall into the feasible region
and, thus, are freed up from the complex couplings among

Fig. 14 Cumulative number of
the SA/MDA over 14 BSIs of
test case 2

Fig. 15 Convergence history
over 14 BSIs of test case 2
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disciplines. The proposed BSSDM provides an innovative
way to capture the feasible state parameter region. To the
best of the authors’ knowledge, it is the first time that MDO
problems have been classified and solved in the context of
the convex and nonconvex state parameter regions. The
BSSDM, at its current embryonic stage, requires a specified
MDO formation and is restricted to MDO problems with a
convex or star-like state parameter region. The BSSDM is
considered promising for future research for more generic
MDO problems.
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