
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Canadian Research Knowledge Network]
On: 27 July 2009
Access details: Access Details: [subscription number 783016891]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Engineering Optimization
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713641621

Performance study of mode-pursuing sampling method
X. Duan a; G. G. Wang b; X. Kang a; Q. Niu a; G. Naterer c; Q. Peng a

a Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, MB, Canada b

School of Engineering Science, Simon Fraser University, Surrey, BC, Canada c Faculty of Engineering and
Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario

Online Publication Date: 01 January 2009

To cite this Article Duan, X., Wang, G. G., Kang, X., Niu, Q., Naterer, G. and Peng, Q.(2009)'Performance study of mode-pursuing
sampling method',Engineering Optimization,41:1,1 — 21

To link to this Article: DOI: 10.1080/03052150802345995

URL: http://dx.doi.org/10.1080/03052150802345995

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713641621
http://dx.doi.org/10.1080/03052150802345995
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Engineering Optimization
Vol. 41, No. 1, January 2009, 1–21

Performance study of mode-pursuing sampling method

X. Duana, G.G. Wangb*, X. Kanga, Q. Niua, G. Naterer c and Q. Penga

aDepartment of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, MB,
Canada R3T5V6; bSchool of Engineering Science, Simon Fraser University, 250-13450 102 Avenue,
Surrey, BC, Canada V3T03A; cFaculty of Engineering and Applied Science, University of Ontario

Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario

(Received 25 April 2008; final version received 14 July 2008 )

Since the publication of the authors’ recently developed mode-pursing sampling method, questions have
been asked about its performance as compared with traditional global optimization methods such as the
genetic algorithm and when to use mode-pursing sampling as opposed to the genetic algorithm. This work
aims to provide an answer to these questions. Similarities and distinctions between mode-pursing sampling
and the genetic algorithm are presented. Then mode-pursing sampling and the genetic algorithm are com-
pared via testing with benchmark functions and practical engineering design problems. These problems
can be categorized from different perspectives such as dimensionality, continuous/discrete variables or
the amount of computational time for evaluating the objective function. It is found that both mode-pursing
sampling and the genetic algorithm demonstrate great effectiveness in identifying the global optimum. In
general, mode-pursing sampling needs much fewer function evaluations and iterations than the genetic
algorithm, which makes mode-pursing sampling suitable for expensive functions. However, the genetic
algorithm is more efficient than mode-pursing sampling for inexpensive functions. In addition, mode-
pursing sampling is limited by the computer memory when the total number of sample points reaches a
certain extent. This work serves the purpose of positioning the new mode-pursing sampling method in
the context of direct optimization and provides guidelines for users of mode-pursing sampling. It is also
anticipated that the similarities in concepts, distinctions in philosophy and methodology and effective-
ness as direct search methods for both mode-pursing sampling and the genetic algorithm will inspire the
development of new direct optimization methods.

Keywords: mode-pursuing sampling; genetic algorithm; global optimization

1. Introduction

Practical engineering design problems are usually highly non-linear and involve many continuous
and/or discrete variables. Often it is difficult to define a design problem or to express it as a mathe-
matical model. In addition, the increasingly wide use of finite element analysis and computational
fluid dynamics tools brings new challenges to optimization. Finite element analysis and computa-
tional fluid dynamics simulations involve a large number of simultaneous equations and therefore
are considered computationally expensive and also ‘black box’functions. The gradients computed

*Corresponding author. Email: gary_wang@sfu.ca

ISSN 0305-215X print/ISSN 1029-0273 online
© 2009 Taylor & Francis
DOI: 10.1080/03052150802345995
http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
3
8
 
2
7
 
J
u
l
y
 
2
0
0
9



2 X. Duan et al.

from finite element analysis and computational fluid dynamics, which require extra computing
resources, are often not reliable (Haftka et al. 1998). Therefore, it is difficult to apply traditional
gradient-based optimization methods to these black box functions, thereby inhibiting solutions
of many practical design problems. Meta-modelling-based design optimizations have emerged as
a promising solution for expensive black box problems. Its essence is to use a computationally
simpler model for approximating the original expensive black box model. This approximation is
realized by sampling in the design space and performing model fitting for a chosen meta-model
type. The meta-model can then be optimized. Current research in meta-modelling-based design
optimizations focuses on developing better sampling methods, approximation models or the whole
global optimization strategy (Wang and Shan 2007). Recently, Wang et al. (2004) developed a
new mode-pursuing sampling (MPS)-based global optimization method for black box functions.
Its discrete variable version is given in Sharif et al. (2008). MPS has been found to be effective
and efficient in several applications (Wang et al. 2004, Liao and Wang 2008, Sharif et al. 2008).

The genetic algorithm (GA), on the other hand, has been widely used in engineering for global
optimization (Goldberg 1989). The development of GAs was inspired by the principles of genetics
and evolution. The GA employs the principal of ‘survival of the fittest’ in its search process for
generating and selecting chromosomes (design solutions) composed of genes (design variables).
Chromosomes that are more adaptive to their environment (design objectives/constraints) are
more likely to be chosen. Over a number of generations (iterations), desirable traits (design
characteristics) will evolve and remain in the population (set of design solutions generated at
each iteration). The GA begins its search from a randomly generated population of design. Three
operators are often used for propagating the populations from one generation to another to search
for the optimum solution, namely selection, crossover and mutation. The GA can be used for
problems that are not well defined, difficult to model mathematically or black box. It can also be
used when the objective function is discontinuous, highly non-linear, stochastic or has unreliable
or undefined derivatives. The limitation of the GA is that it usually demands a large number of
function evaluations.

When analysing the performance of MPS, it is found that there are many similarities between
the GA and MPS.

(1) The initial population is randomly created in the GA and the sampling points are randomly
generated in MPS.

(2) The chromosomes are chosen by a stochastic process in the GA and the probability of a
chromosome to be selected is determined by its fitness value, while in MPS the points are
sampled according to a probability determined by its objective function value.

(3) Both the GA and MPS are based on a set of solutions or population and render themselves
well suited for parallel computation.

(4) Both methods use no gradient information and, thus, are called derivative-free methods or
direct methods.

The distinctions between the GA and MPS are also manifold. First they are based on different
philosophies. The GA has its root in evolutionary processes, while MPS is based on ‘discrimina-
tive’ sampling. Second, the GA explores the space through operations of genes: it is intuitively
a bottom-up approach from the perspective of exploring the entire design space. On the other
hand, MPS is like a top-down approach as the entire space is explored at every iteration. Specific
similarities and distinctions between the two methods are summarized in Table 1.

In order to understand the performance and the problems that are most amenable to MPS better,
this work studies the performance of MPS in parallel with the GA. The selection of the GA is
because of the similarities between the two algorithms and because GA is well known and widely
used by practitioners, which makes the performance study of MPS more relevant to real practice.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
3
8
 
2
7
 
J
u
l
y
 
2
0
0
9



Engineering Optimization 3

Table 1. Comparison of the features of the GA and MPS algorithms.

GA MPS

Similarities

Mechanism Generates more points around the current best point, uses probability in
searching/sampling and statistically cover the entire design space

Features Random process, derivative free and population-based searches
Capabilities Performs a ‘global’ optimization and supporting parallel computation

Distinctions

For discrete problem Discrete in nature and easily handles continuous
problems

Needs different treatments for
continuous and discrete problems

Input parameters Many parameters are set by the user, e.g. the
population size, reproduction operators,
crossover probability and mutation probability:
the parameters are problem dependent and
could be sensitive

Fewer parameters need to be changed
and it is not very sensitive

Efficiency Normally a large number of function evaluations
needed

Developed specially for expensive
functions to minimize the number
of function evaluations

Form of function values Usually coded form of the function values rather
than the actual values

Actual function values

Robustness Premature convergence may happen if the
operators are not set properly

For the problems with a large quantity
of local optima, it may be trapped
in a local optimum

The main purpose is thus to position MPS in the context of engineering global optimization in
order to provide some guidelines for MPS users. The comparison between MPS and the GA is
thus not to determine which algorithm is the winner, but rather to shed lights on characteristics
and the performance behaviour of MPS in reference to the GA.

2. Overview of MPS

MPS entails its continuous variable version (C-MPS) (Wang et al. 2004) and its discrete variable
version (D-MPS) (Sharif et al. 2008). This overview will focus on its original continuous variable
version and provide a brief description of the new discrete-variable version.

2.1. C-MPS method

The essence of MPS is the integration of meta-modelling and a novel discriminative sampling
method, which generates more sample points in the neighbourhood of the function mode (local
optimal) and fewer points in other areas as guided by a special sampling guidance function.

Fundamental to MPS is Fu and Wang’s (2002) algorithm, which is used for generating a sample
of an asymptotic distribution of a given probability density function (PDF). Given a d-dimensional
PDF g(x) with compact support S(g) ⊂ �d , Fu and Wang’s (2002) algorithm consists of three
steps. In the first step, the discretization step, a discrete space SN(g) is generated consisting of N

uniformly distributed base points in S(g). Usually N is large and should be larger if the dimension
of g(x), d , is higher. These uniform base points may be generated using either deterministic
or stochastic procedures. In the second step, the contourization step, the base points of SN(g)

are grouped into K contours {E1, E2, . . . , EK} with equal size according to the relative height
of the function g(x). For example, the first contour E1 contains the [N/K] points having the
highest function values among all base points, whereas the last contour EK contains the [N/K]

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
3
8
 
2
7
 
J
u
l
y
 
2
0
0
9



4 X. Duan et al.

points having the lowest function values. Also in this step, a discrete distribution {P1, P2, . . . , PK}
over the K contours is constructed, which is proportional to the average function values of the
contours. Finally, a sample is drawn from the set of all base points SN(g) according to the discrete
distribution {P1, P2, . . . , PK} and the discrete uniform distribution within each contour. As was
shown in Fu and Wang (2002), the sample drawn according to their algorithm is independent and
has an asymptotic distribution g(x). The approximation gets better for larger values of N and K .

For optimization, it is desired to minimize an n-dimensional black box function f (x) over a
compact set S(f ) ⊂ �n. Following the convention of engineering optimization, the minimum
is referred to as the function mode. To simplify notation, assume that S(f ) = [a, b]n, where
– ∞ < a < b < ∞ are known and f (x) is positive on S(f ) and continuous in a neighbourhood
of the global minimum. In general, if f (x) is negative for some x ∈ S(f ), a positive number
can always be added to f (x), so that it becomes positive on S(f ). Note that minimizing f (x) is
equivalent to maximizing −f (x).

The MPS algorithm consists of the following four steps:

(1) Step 1. Generate m initial points x(1), x(2), . . . , x(m) that are uniformly distributed on S(f )

(m is usually small).
(2) Step 2. Use the m function values f (x(1)), f (x(2)), . . . , f (x(m)) to fit a linear spline function

f̂ (x) =
m∑

i=1

αi‖x − x(i)‖, (1)

such that f̂ (x(i)) = f (x(i)), i = 1, 2, . . . , m, where ‖ • ‖ stands for the Euclidean norm.
(3) Step 3. Define g(x) = c0 − f̂ (x), where c0 is any constant such that c0 ≥ f̂ (x), for all x in

S(f ). Since g(x) is non-negative on S(f ), it can be viewed as a PDF, up to a normalizing
constant, the modes of which are located at those x(i)s where the function values are the lowest
among {f (x(i))}. Then apply the sampling algorithm of Fu and Wang (2002) to draw a random
sample x(m + 1), x(m + 2), . . . , x(2m) from S(f ) according to g(x). These sample points have
the tendency to concentrate about the maximum of g(x), which corresponds to the minimum
of f̂ (x).

(4) Step 4. Combine the sample points obtained in step 3 with the initial points in step 1 to form
the set x(1), x(2), . . . , x(2m) and repeat steps 2–3 until a certain stopping criterion is met.

For ease of understanding, the MPS method is illustrated with the well-known six-hump camel-
back (SC) problem (Branin and Hoo 1972). The mathematical expression of the SC problem
is

fsc = 4x2
1 − 21

10
x4

1 + 1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2 , (x1, x2) ∈ [−2, 2]2 (2)

A contour plot of the SC function is shown in Figure 1, where the Hs represent local optima. H2

and H5 are two global optima at points (−0.090, 0.713) and (0.090, −0.713), respectively, with
an equal function value fmin = −1.032.

The first step of the MPS algorithm starts with m = 6 initial random points x(1), x(2), . . . , x(6) ∈
[−2, 2]2. Then f̂ (x) is computed by fitting Equation (1) to f (x(1)), f (x(2)), . . . , f (x(6)). Further,
the function g(x) is obtained by using the maximum of {f (x(i)), i = 1, . . . , 6} as c0.

Now Fu and Wang’s (2002) algorithm is applied to draw a sample as follows. First, N = 104

uniformly distributed base points are generated to form SN(g), the discretized version of the
sample space [−2, 2]2. Note that the base points in SN(g) are cheap points, in contrast to the
original m = 6 expensive points used to build f̂ (x). Further, without loss of generality, suppose
the points in SN(g) are sorted in ascending order of the values of function f̂ (x). The sequence of
the corresponding function values of f̂ (x) is plotted in Figure 2(a), whereas the function g(x) is
plotted in Figure 2(b).

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
3
8
 
2
7
 
J
u
l
y
 
2
0
0
9



Engineering Optimization 5

Figure 1. Contour plot of the SC function.

Figure 2. A screen shot of the ranked point distribution of f̂ , g, g̃, G and
�

G for the SC problem.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
3
8
 
2
7
 
J
u
l
y
 
2
0
0
9



6 X. Duan et al.

According to Fu and Wang’s (2002) method the ordered 104 base points are grouped into
K = 102 contours {E1, E2, . . . , E100}, with each having N/K = 100 points. For example, the
first contour E1 contains the 100 points at which the values of function f̂ (x) are the lowest,
whereas the last contour E100 contains the 100 points at which the values of f̂ (x) are the highest.
Let g̃(i) be the average of g(x) over Ei , i = 1, 2, . . . , 100. The function g̃(i), i = 1, 2, . . . , 100
is plotted in Figure 2(c) and its cumulative distribution function G(i) is displayed in Figure 2(d).

Finally, m = 6 contours are drawn with replacement according to distribution {G(i)} and, if
the contour Ei occurs mi > 0 times in these draws, then mi points are randomly drawn from Ei .
All such points form the new sample x(m+1), x(m+2), . . . , x(2m).

As can be seen from Figure 2(d), the contours from E80 ∼ E100 (corresponding to high f̂ values)
have lower selection probabilities for further sampling than other contours, since the G curve is
relatively flat in this area. However, such a probability for each contour is always larger than zero.
On the other hand, it is generally desired to increase the probability of the first few contours as
they correspond to low f̂ values. To better control the sampling process, a speed control factor is
introduced. Figure 2(e) shows { �

G(i)}, which is obtained by applying the speed control factor to
{G(i)} in Figure 2(d). From Figure 2(e), one can see that the first few contours have high selection
probabilities for next-step sampling, while the contours from E40 ∼ E100 have low probabilities.
This curve shows an aggressive sampling step, as many more new sample points are close to the
current minimum of f (x) as compared to the sampling based on Figure 2(d).

The whole procedure is repeated eight times, so that a total of 48 sample points are generated.
Figure 3 shows these 48 sample points, where the circles indicate attractive design points having
a function value less than −0.5. Even with only 48 sample points, many attractive points have
already shown up around H2 and H5. It can also be seen that points spread out in the design space
with a high density around function mode H2 (global minimum). In the MPS step, every point has

Figure 3. Sample points of the SC problem generated by the MPS method, where ‘o’ indicates its function value less
than −0.5 and H2 and H5 are the locations of two global optima.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
3
8
 
2
7
 
J
u
l
y
 
2
0
0
9



Engineering Optimization 7

a positive probability of being drawn, so that the probability of excluding the global optimum is
zero. As the iteration process continues, more and more sample points will be generated around
the minimum of function f (x).

2.2. D-MPS method

D-MPS inherits the meta-modelling and discriminative sampling ideas from C-MPS. For the
discrete variable space, sample points are mapped from a continuous space to the discrete variable
space. The main difference between C-MPS and D-MPS lies on their convergence strategies.

In C-MPS (Wang et al. 2004) a local quadratic meta-model is employed for identifying a sub-
area adaptively, with which a local optimization is called to search for the local optimum. For
a discrete variable space there is no continuous sub-area to be approximated. Even if one could
build a continuous function in a discrete space, the local optimum on a continuous function might
not be a valid or optimal solution in the discrete space. Therefore, local quadratic meta-modelling
does not apply to discrete variable optimization problems.

A ‘double sphere’ method is used for discrete problems. This method includes two areas (or
‘spheres’) of dynamically changing radius. One sphere controls the ‘exploration’ and the other
controls ‘exploitation’. Recall that the C-MPS is composed of three main steps, i.e. generating
cheap points, approximation and discriminative sampling. In D-MPS these main steps will be
performed on the domains provided by the double-sphere. For the objective function f (x) on
domain S[f ], the double sphere strategy dynamically provides a domain D1 ∪ D2 ⊂ S[f ]: D1 is
the domain inside the smaller hyper-sphere and D2 is the domain between the smaller hyper-sphere
and bigger hyper-sphere. The three main steps of D-MPS are performed on both D1 and D2. The
discriminative sampling is performed independently in the two spheres until the optimum is found
or the maximum number of iterations is reached. D-MPS thus does not call any existing local
optimization routine and there is no local meta-modelling. The optimum is found by sampling
alone (Sharif et al. 2008).

3. Testing functions and problems

Given the focus on examining the performance of MPS, in this work a real-value GA is employed.
The implementation from Houck et al. (1995) is selected for a number of reasons. First, this
implementation has commonly used operators and it demonstrates good performance. Second, it is
based on Matlab™, which renders a common basis for computational cost (CPU time) comparisons
because MPS is also based on Matlab™. Last, since a large number of GA implementations and
algorithms exist, this work is not intended to draw any general conclusion with regard to the GA
as a whole. It is intended to obtain certain qualitative insights into MPS and provide guidelines to
users of MPS, which should largely be insensitive to the choice of specific GA implementation.

The selected implementation (Houck et al. 1995) forces the design variable to only take values
within its upper and lower bounds to ensure the feasibility of solutions. It uses three selection
operators, namely the normGeom selection (a ranking selection based on the normalized geometric
distribution), the roulette selection (a traditional selection with the probability of surviving equal
to the fitness of an individual over the sum of the fitness of all) and the tournament selection
(choosing the winner of the tournaments as the new population). It also has three crossover
operators, namely the simple crossover, the heuristic crossover and the arithmetic crossover.
Finally, it uses four optional mutation operators called the boundary mutation, multi-non-uniform
mutation, non-uniform mutation and uniform mutation. Details of these operators are in Houck
et al. (1995). Two termination criteria are used in the GA implementation. The first is based

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
3
8
 
2
7
 
J
u
l
y
 
2
0
0
9



8 X. Duan et al.

on the maximum number of generations, which is suitable for problems without knowing the
analytical optimum a priori. The second termination criterion occurs when the analytical optimum
is reached. The GA optimization process will be terminated whenever one of these two criteria is
met. For constrained optimization problems, the discard method was used in order to satisfy the
constraints. Three constraint checks are performed on the initial population, with new children
generated from crossover, as well as from mutation operations at each iteration. Any chromosome
that does not pass the constraint check will be discarded from the population. For discrete variable
problems, if all of the variables are integers, a simple rounding function is used for rounding a
number to its closest integer. If the discrete variable values are picked from a set, for example,
x ∈ [16.2, 17.1, 18.5, 19.3], the possible values, e.g. index = {1, 2, 3, 4}, are first indexed and
then a random number is generated and rounded to the closest index. For example, if the index is
3, then x = 18.5 is used. For mixed variable problems only the discrete variables are handled as
described above.

Nine problems were tested for a performance comparison of the chosen GA implementation and
MPS optimization algorithms. The characteristics of these problems are summarized in Table 2.
In Table 2 only optimization problems with constraints other than bounds are referred to as
constrained problems.

As can be seen from Table 2, the test functions and problems present different challenges to
the optimization algorithms. This section briefly describes each test problem.

3.1. The SC problem

The SC problem is a well-known benchmark test problem. It appeared in Branin and Hoo
(1972) and has been used by many other researchers. The mathematical expression is shown in
Equation (2). The SC function has six local optima. A contour plot of the SC function is shown in
Figure 1.

3.2. The Corana function

The Corana function is a well-known benchmark test function (Corana et al. 1987). It was also
tested in Humphrey and Wilson (2000). The Corana function is a paraboloid with axes parallel to
the coordinate direction with the exception of a set of open disjoint rectangular flat ‘pockets’. Let
the domain of the function f (x)in an n-dimensional space be

Df ≡ {x ∈ Rn : −ai ≤ xi ≤ ai; ai ∈ Rn
+, i = 1, 2, . . . , n}

Table 2. Characteristics of the test functions and problems.

Function Characteristics

SC problem (n = 2) Multiple local optima
Corana function (n = 2) Flat bottom multiple local optima
Hartman function (n = 6) Multiple local optima
Gear train problem (n = 4) Discrete multiple local optima
F16 function (n = 16) High dimension
R10 function (R10) (n = 10) Flat bottom relatively high-dimension multiple local optima
Insulation layer design (n = 2) Constrained engineering problem
Pressure vessel design (n = 4) Constrained engineering problem
FJP design (n = 4) Constrained expensive black box function

Note: n is the number of variables.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
3
8
 
2
7
 
J
u
l
y
 
2
0
0
9



Engineering Optimization 9

Let Dm represent the set of ‘pockets’ in Df :

dk1,...,kn
=

{
x ∈ Df : kisi − ti < xi < kisi + ti; ki ∈ Z; ti , si ∈ Rn

+; ti <
si

2
, i = 1, 2, . . . , n

}

Dm =
⋃

k1,...,kn

dk1··· ,kn
− d0,0,...,0.

The Corana function can then be defined as

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

n∑
1

dix
2
i , x ∈ Df − Dm, di ∈ Rn

+

cr

∑
diz

2
i , x ∈ dk1,...,kn

, (k1, . . . , kn) �= 0

(3)

where

zi =

⎧⎪⎨
⎪⎩

kisi + ti , ki < 0

0, ki = 0

kisi − ti , ki > 0

The parameters in this test are set to n = 4, ai = 100, si = 0.2, ti = 0.05, cr = 0.15 and di =
e(i−1). A less extreme weight di is used as compared to the standard representation, 10(i−1).
The searching space is xi = [−100, 100]. The four-dimensional Corana function has its global
minimum f ∗ = 0 at x∗ = (0, 0, 0, 0). A difficulty arises from the fact that the optimum is located
in a deep valley and several deep flat bottoms exist along the space. Figure 4 shows a two-
dimensional Corana function in the range of [−0.5, 0.5].

Figure 4. Two-dimensional Corana function in [−0.5, 0.5].

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
3
8
 
2
7
 
J
u
l
y
 
2
0
0
9



10 X. Duan et al.

3.3. The Hartman function

The Hartman function with n = 6 was tested in Wang et al. (2004). It can be expressed as

fHN(x) = −
4∑

i=1

ci exp

⎡
⎣−

n∑
j=1

αij (xj − pij)
2

⎤
⎦ , xi ∈ [0, 1], i = 1, . . . , n (4)

where αij and pij are listed in Table 3.

3.4. The compound gear train design problem

This is a discrete variant problem involving a compound gear train design (Fu et al. 1991, Cai
and Thierauf 1996), as shown in Figure 5. It is desired to produce a gear ratio as close as pos-
sible to 1:6.931. For each gear, the number of teeth must be an integer between 14 and 60. The
integer design variables are the numbers of teeth x = [Td, Tb, Ta, Tf ]T = [x1, x2, x3, x4]T . The
optimization problem is formulated as:

Minimize GT (X) =
(

1

6.931
− x1x2

x3x4

)2

(5)

subject to 14 ≤ xi ≤ 60 with i = 1, 2, 3, 4.

Table 3. Coefficients for the Hartman function.

j

i 1 2 3 4 5 6 ci

αij

1 10 3 17 3.5 1.7 8 1
2 0.05 10 17 0.1 8 14 1.2
3 3 3.5 1.7 10 17 8 3
4 17 8 0.05 10 0.1 14 3.2

pij ,

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

Figure 5. Compound gear train.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
3
8
 
2
7
 
J
u
l
y
 
2
0
0
9



Engineering Optimization 11

3.5. A function of 16 variables (F16)

This high-dimensional problem was described in Wang et al. (2004). It can be expressed by

fF16(x) =
16∑
i=1

16∑
j=1

aij(x
2
i + xi + 1)(x2

j + xj + 1), i, j = 1, 2, . . . , 16, (6)

[aij ]row 1−8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1
0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[aij ]row 9−16 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.6. The ten-dimensional Rosenbrock function (R10)

The Rosenbrock function is a widely used benchmark problem for testing optimization algorithms
such as those in Bouvry et al. (2000) and Augugliaro et al. (2002). It can be expressed as

fRO(x) =
n−1∑
i=1

(100(xi+1 − x2
i )

2 + (xi − 1)2) (7)

The Rosenbrock function has its global minimum fmin = 0 at x∗ = (1, 1, . . ., 1).While attempt-
ing to find a global minimum, a difficulty arises from the fact that the optimum is located in a deep
parabolic valley with a flat bottom. In the present study, the 10-dimensional Rosenbrock function
will be used as another high-dimensional benchmark problem, in addition to F16. The searching
range for each variable is [−5, 5].

3.7. The two layer insulation design problem

This is a problem involving the design of a two-layer insulated steam pipe line, as shown in
Figure 6. The objective is to design r1 and r2 to minimize the total cost per unit length of pipe
($/m) in one year of operation. The total cost function includes the cost of heat loss, the cost of
insulation materials and the cost of fixed charges including interest and depreciation (with a rate
of 15%). The parameters in the design are as follows.

(1) An inner radius of r0 = 273 mm.
(2) A steam temperature of Tf = 400 ◦C and a temperature of the ambient air of Ta = 25 ◦C.
(3) The conductive resistance through the wall is neglected.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
3
8
 
2
7
 
J
u
l
y
 
2
0
0
9



12 X. Duan et al.

Figure 6. A steam pipe with two-layer insulation.

(4) The convective heat transfer rate at the inner surface has hf = 55 W/m2K.
(5) The first layer of insulation is rock wool, with a thermal conductivity k1 = 0.06 W/mK and

thickness δ1 = r1 − r0.
(6) The second insulation layer is calcium silicate with k2 = 0.051 W/mK and thickness of

δ2 = r2 − r1.
(7) The outside convective heat transfer coefficient is h0 = 10 W/m2K.
(8) The cost of heat is Ch = 0.02 $/kWh, the cost of rock wool is Ci1 = 146.7 $/m3 and the cost

of calcium silicate is Ci2 = 336 $/m3.

The constraints are determined by the insulation requirement and other practical considerations,
which are described in Zaki and Al-Turki (2000).

The total cost per unit length of pipe can be expressed as

Minimize

fIL(r1, r2)

= τCh

0.001(Tf − Ta)

(1/2πr0hf ) + (ln(r1/r0)/2πk1) + (ln(r2/r1)/2πk2) + (1/2πr2ho)

+ f π [Ci1(r
2
1 − r2

0 ) + Ci2(r
2
2 − r2

1 )] (8)

Subject to 38 mm < δ < 5r0; r1 > r0; r2 > r1;

Ta + (Tf − Ta)

(1/2πr0hf ) + (ln(r1/r0)/2πk1) + (ln(r2/r1)/2πk2) + (1/2πr2ho)

1

2πr2ho

< 60 (9)

The characteristic of this problem is its complexity in both the objective function and the last
constraint. The optimum solution is f ∗ = 5.5362 $/m at r1 = 0.311 m and r2 = 0.349 m.

3.8. Pressure vessel design problem

The design of a pressure vessel was used as a test problem in Wang et al. (2004) and is shown
in Figure 7. There are four design variables: radius R and length L of the cylindrical shell, shell
thickness Ts and spherical head thickness Th, all of which are in inches. They have the following
ranges of interest: 25 ≤ R ≤ 150, 1.0 ≤ Ts ≤ 1.375, 25 ≤ L ≤ 240 and 0.625 ≤ Th ≤ 1.0.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
3
8
 
2
7
 
J
u
l
y
 
2
0
0
9



Engineering Optimization 13

Figure 7. Pressure vessel (adapted from Wang et al. 2004).

The design objective is to minimize the total system cost, which is a combination of welding,
material and forming costs. The optimization model is then expressed as

Minimize fPV(R, Ts, Th, L) = 0.622TsRL + 1.7781ThR
2 + 3.1661T 2

s L + 19.84T 2
s R (10)

Subject to Ts − 0.0193 ≥ 0; Th − 0.00954R ≥ 0; πR2L + 4

3
πR3 − 1.296E6 ≥ 0 (11)

The optimum continuous solution is f ∗ = 7006.8 occurring at R∗ = 51.814 in, Ts = 1.0 in,
L∗ = 84.579 in and T ∗

h = 0.625 in.

3.9. Fixture and joining positions (FJP) optimization problem

Liao and Wang (2008) studied simultaneous optimization of fixture and joining positions for a
non-rigid sheet metal assembly. This is a black box function problem involving finite element
analysis, which makes it computationally expensive. The optimization problem can be described
as follows. In the presence of part variation and fixture variation, as well as the constraints from the
assembly process and designed function requirements, the best locations of fixtures and joining
points are found so that the non-rigid sheet metal assembly can achieve the minimal assembly
variation. The assembly of two identical flat sheet metal components by lap joints shown in
Figure 8 is optimized. Assuming that these two components are manufactured under the same
conditions, their fabrication variations are expected to be the same. The size of each flat sheet metal
part is 100 mm × 100 mm × 1 mm, with Young’s modulus E = 2.62e + 9 N/mm2 and Poisson’s
ratio ν = 0.3. The finite element computational model of the assembly is created in ANSYS™.

Figure 8. An assembly of two sheet metal parts (note that the symbol ‘p’ indicates the fixture location and ‘s’ indicates
the joint positions).

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
3
8
 
2
7
 
J
u
l
y
 
2
0
0
9



14 X. Duan et al.

The element type is SHELL63. The number of elements and the number of nodes are 1250 and
1352, respectively.

The mathematical optimization model for this specific example can be written as follows:

Minimize �(x) = abs(U 1
z (x)) + abs(U 2

z (x)) (12)

Subject to (x1 − x3)
2 + (x2 − x4) ≥ 100; 20 ≤ x1, x2, x3, x4, ≤ 80; 10 ≤ x5 ≤ 40 (13)

where U is the deformation of critical points in an assembly. It is obtained by modelling the
assembly deformation using the finite element analysis throughANSYS™. In this study,ANSYS™

and Matlab™ are integrated to implement the optimization on a finite element analysis process
for both MPS and the GA.

4. Results and discussion

4.1. Performance criteria

Two main performance criteria are used for evaluating the two algorithms, namely effectiveness
and efficiency. The effectiveness includes the robustness of the algorithm and the accuracy of the
identified global optimum. For robustness, 10 independent runs are carried out for each problem
and each algorithm, except for the expensive FJP problem, where only five runs are performed.
The range of variation and median value of the optima are recorded and compared against the
analytical or known optimum. If the known solution of a problem is not zero, the accuracy of an
algorithm is quantified by

Qsol = 1 −
∣∣∣∣ solution − known solution

known solution

∣∣∣∣ (14)

If the known solution is zero, the deviation of the solution from zero is examined. When there is
no analytical or known optimum, the optima found by the GA and MPS are compared by their
values. The second criterion for comparison is efficiency. In this study, the number of iterations
and number of function evaluations was used for evaluating the efficiency of an algorithm in
solving a problem, as well as the CPU time required for solving the problem. Again, the average
(arithmetic mean) and median values of these values in 10 (or five) runs were used.

4.2. Effects of tuning parameters

As discussed previously, there are several optimization operators to be set in the GA program. In
testing the same problems, these factors were found to have significant effects on the efficiency.
Figure 9 shows the variation in the GA’s performance under different crossover rates (Pc) when
solving the SC function (with a population size of 100 and a mutation rate of Pm = 0.01). A
general trend can be observed in Figure 9, whereby an increasing Pc implies that the number
of function evaluations increases and the number of iterations decreases, while the computation
time remains at a similar level. With a small Pc, the GA needs more generations to establish the
optimum and, therefore, more iterations are needed. When the value of Pc is set to be very large,
the number of function evaluations increases sharply because almost all parents are replaced and
few good solutions are inherited.

Similarly, the effect of the mutation rate Pm on the GA’s performance in solving the SC problem
(with a population size of 100 and crossover rate of Pc = 0.6) is studied. It is observed that the

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
3
8
 
2
7
 
J
u
l
y
 
2
0
0
9



Engineering Optimization 15

Figure 9. Performance evaluation with different crossover rates in solving the SC problem.

minimum of number of function evaluations occurs at Pm = 0.1 and the number of function
evaluations increases with Pm > 0.1.

In the MPS program there is a tuneable parameter (the difference coefficient k), which was also
found to have a noticeable effect on the performance of the MPS. The difference coefficient k

(denoted as cd in Wang et al. (2004)) is used for a convergence check in quadratic model detection.
A smaller difference coefficient makes the MPS have a more accurate solution, but it may cause
more computational expense, as shown in Table 4. By examining the MPS performance in several
problems in this study, it is found that k = 0.01 is a good choice for most problems. However, for
the discrete gear train problem and the R10 problem, a larger coefficient (k > 0.5) must be used
for establishing an acceptable solution.

Both the random characteristic and the effects of their tuning parameters necessitate the method
of using results of multiple runs in this comparison study. Crossover rates of 0.6 or 0.7 and mutation
rates of 0.05 or 0.1 for the GA were used specifically for the comparison in this work. A difference
coefficient of 0.01 was used for most problems for MPS, but a coefficient larger than 0.5 was used
for the gear train and R10 problems. Different combinations of parameters for a problem were
first tested for both MPS and GA and the set of parameters that yielded the best solution was then
used for comparison. Hence, for each test problem the best results of the GA were compared with
the best results of MPS.

Table 4. Efficiency of MPS with different k values on the SC and pressure vessel problems.

Average CPU Average of the Average of the number
Coefficient (k) time (s) number of iterations of function evaluations

SC problem
0.001 15.3531 17.9 67.1
0.01 4.6312 9.6 34.7
0.1 3.5311 6.9 27.8

Pressure vessel problem
0.001 46.6891 8.8 51.8
0.01 26.2938 5.2 37.2
0.1 31.2279 5.8 39.9

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
3
8
 
2
7
 
J
u
l
y
 
2
0
0
9



16 X. Duan et al.

Figure 10. Mean quality ratings of solutions obtained by the GA and MPS for five testing problems.

4.3. Effectiveness comparison of the GA and MPS

For those problems with known optima of non-zero (the SC, Hartman, F16, insulation layer
and pressure vessel problems), the qualities of the solutions (using the median solution) were
compared based on Equation (14). The results are shown in Figure 10. It can be seen that, for all
of these five problems, both the GA and MPS methods can find solutions of high quality close to
100%. A lower quality of 98.7% was only obtained by the GA on the Hartman problem.

However, the two algorithms show great differences in solving the other problems. For the
Corana problem (analytical optimum of zero), the GA finds very good solutions ranging from
0 to 0.003, while MPS only finds solutions from 34.25 to 5337.44. For the 10-dimensional R10
function (analytical optimum of zero), the GA also outperforms MPS. The solutions obtained by
the GA ranged from 0 to 0.013, while those obtained by MPS ranged from 73.92 to 128.79. It
was found while solving the R10 function that MPS reaches the computer memory limit when
the number of function evaluations reaches about 2500. This is because all of the 2500 points
participate in the construction of the meta-model defined by Equation (1). The GA, on the other
hand, can afford around 3,000,000 function evaluations. In a later comparison, both the GA and
MPS were allowed to run for 2500 points and it was found that the results were similar to those
of MPS, as shown in Table 5.

A particular interest in this study was to compare the effectiveness of the GA and MPS in solving
discrete problems. In this study, a well-known gear train problem was solved and the solutions
are compared. Table 6 shows the solutions of the gear train problem with different optimization
algorithms. The MPS outperforms most of the other approaches, including the GA. Table 7 shows

Table 5. Comparison of the effectiveness of the GA and MPS for the R10 and Corana problems.

Minimum

GA MPS

Function n Space Range of variation Median Range of variation Median

Corana 4 [−100,100] [0.000, 0.003] 0 [34.256, 5337.445] 306.019
R10 10 [−5,5] [0, 0.013] 0.003 [73.926, 128.794] 118.341
R10 10 [−5,5] [63.641,207.665]∗ 130.889∗ [73.926, 128.794] 118.341

Note: an asterisk represents solutions of the GA for 2500 number of function evaluations.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
3
8
 
2
7
 
J
u
l
y
 
2
0
0
9



Engineering Optimization 17

Table 6. Solutions for the gear train design problem: best results.

Approach Optimization solution GTmin

Penalty function approach (PFA)
(Cai and Thierauf, 1996)

14, 29, 47, 59 4.5 × 10−6

Two-membered evolution strategy
(2-ES) (Bouvry et al., 2000)

18, 15, 32, 58 1.4 × 10−6

GA 20, 20, 47, 59 9.75 × 10−10

MPS 16, 19, 43, 49 2.7 × 10−12

Table 7. Solutions of the gear train design problem: solutions of 10 runs.

Solutions

Algorithm Range of variation Median Average

GA [9.745 × 10−10, 1.683 × 10−6] 4.615 × 10−9 4.033 × 10−7

MPS [2.701 × 10−12, 1.827 × 10−8] 5.544 × 10−10 2.423e × 10−9

Table 8. Comparison of the optimal solutions of the FJP problem by the GA and MPS
with five runs.

Solutions

Algorithm Range of variation Median Average

GA [0.2177, 0.3451] 0.2468 0.2714
MPS [0.1515, 0.4104] 0.2187 0.2453

Table 9. Comparison of the optimal solutions of the FJP problem by the GA and MPS:
best results.

Algorithm Optimization solution �min

MPS P1 = (75.153, 31.709), P2 = (68.117, 59.831), S = 37.473 0.1515
GA P1 = (63.944, 65.459), P2 = (20.043, 27.741), S = 18.297 0.2177

the solutions with 10 runs of the both GA and MPS. The MPS outperforms the GA for the discrete
problem.

Another particular problem, the FJP problem, also deserves more explanation. It is an expensive
black box function problem that involves finite element analysis. When testing this problem
with the GA, the maximum number of generations was set as 60 and the population size was
100 with the normGeomSelect parameter, as well as the three crossover (Pc = 0.7) and four
mutation methods (Pm = 0.1), as described in section 2. For MPS, k = 0.01. The results are
shown in Tables 8 and 9. Both the GA and MPS gave good solutions in all five independent runs.
However, MPS provided a wider range of variation in the solutions and it gave a better optimum
of 0.1515.

4.4. Efficiency comparison of the GA and MPS

The efficiencies are compared in Figure 11 in terms of the number of function evaluations, the
number of iterations and the CPU times used for solving the problems. The number of function
evaluations and iterations needed by the GA were dramatically larger than those needed by MPS
for most problems, except the Hartman problem. For better illustration, Figure 11(a) scales the

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
3
8
 
2
7
 
J
u
l
y
 
2
0
0
9



18 X. Duan et al.

Figure 11. Computational expenses of MPS and GA for the solution of five testing problems (a) numbers of function
evaluations, (b) numbers of iterations, and (c) CPU time.

number of function evaluations of the GA by 0.1. It can also be found that the GA needed
more function evaluations and iterations for high dimensional problems and complex design
problems, such as the F16, pressure vessel and insulation layer problems. The lower number of
function evaluations of MPS occurred because of its discriminative sampling and meta-modelling
formulation in the algorithms. Only the expensive points were calculated using the objective
function, while the cheap points were calculated using an approximate linear spline function or
quadratic function. Since only several expensive points were generated in MPS, the number of
function evaluations was very low. However, for the GA, each individual in the population was
calculated using the objective function, so the number of function evaluations was very high.

As for the CPU time used for solving the problems, the MPS method used more CPU time than
the GA in all of the five problems, especially the Hartman problem, where MPS spent 100 times
more CPU time than the GA, as shown in Figure 11(c). The reason is that MPS needs to generate
10,000 points per iteration and calculate the function value of each point from the meta-model,
thereby leading to a large computing load and high CPU time. However, this was not counted
as a function evaluation since the fundamental assumption of MPS is that the objective function
evaluation is at least one magnitude more expensive than evaluation with a meta-model in MPS.

The computational expenses by the GA and MPS for the other functions/problems are listed
in Table 10. Generally, the GA performs better than MPS on the high-dimensional problems with
inexpensive functions. The efficiency advantage of MPS shows in the expensive function problem,
the FJP problem, in which MPS uses only half of the computational efforts of the GA and finds
better solutions.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
3
8
 
2
7
 
J
u
l
y
 
2
0
0
9



E
ngineering

O
ptim

ization
19

Table 10. Efficiency of the GA and MPS algorithms in some optimization problems.

Number of function evaluations Number of iterations CPU time (s)

GA MPS GA MPS GA MPS

Function or problem Average Median Average Median Average Median Average Median Average Median Average Median

SC 418.8 408 27.8 27 5.9 6 6.9 7 0.5 0.5 4.6 3.9
Hartman 2837.1 2193.5 603.4 535 25.7 23.5 63.9 56.5 1.9 1.5 232.8 79.9
F16 5887 5889 191.8 163 106.8 107.5 2.2 4 4.5 4.5 5.1 3.9
Insulation layer 10821.2 10812.2 12.7 13 95.7 97 2 2 24.3 24.2 68.6 68.7
Pressure vessel 7566 4643.5 37.2 34 65.1 39.5 5.2 4.5 16.1 10.1 26.3 23.3
Corana 2854.7 2807.5 20.3 19 65.2 65.5 1.2 1 2.5 2.5 1.0 0.6
Gear train 291.7 283 1610 2000 4.5 4.5 402 500 0.5 0.5 3847.6 4846.3
R10 2928774.5 2928511 2231 2434 4963.8 4972.5 158.5 173 1648.9 1652.4 23830.9 26043.7
FJP 3421 3752 1371 1591 37 42 234.8 291 27595.9 11766.5 12393.2 4864.5

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
3
8
 
2
7
 
J
u
l
y
 
2
0
0
9



20 X. Duan et al.

5. Summary and remarks

This article studied the performance of the MPS method with reference to the widely used GA.
The following observations were made based on qualitative analysis of MPS and the GA and
quantitative comparisons on the test problems.

(1) MPS can robustly and accurately identify the global optimum for a majority of test problems,
including both continuous and discrete variable problems. However, it meets its limita-
tion when the number of function evaluations required for convergence is larger than a
certain value that exceeds the computer memory. In this regard, MPS is best suited for
low-dimensional problems and high-dimensional problems with simple functions. For high-
dimensional complex or expensive functions, large-memory computers are needed or a better
memory-management strategy needs to be developed for MPS.

(2) MPS is recommended for global optimization of expensive functions. MPS is developed
for expensive functions and it therefore does not bear advantages over the GA for global
optimization on inexpensive functions.

(3) The difference coefficient k is a sensitive parameter for MPS. It is recommended to set
k = 0.01 if the user has no a priori knowledge of the optimization problem.

(4) Common features of MPS and the GA, such as the group-based (or population-based) sam-
pling and selective generation of new samples, may be found in other recognized global
optimization methods, e.g. simulated annealing, ant colony optimization, particle swarm
optimization, etc. The unique philosophy behind MPS, namely, the top-down exploration
and discriminative sampling, may inspire the development of future algorithms.

Future research on MPS will enhance its capability for high-dimensional problems. One
possible method is to employ a more economical meta-modelling method in order to avoid using
all of the evaluated points in model fitting while still providing an overall guide for discriminative
sampling.

References

Augugliaro,A., Dusonchet, L., and Sanseverino, E.R., 2002.An evolutionary parallel Tabu search approach for distribution
systems reinforcement planning. Advanced Engineering Informatics, 16, 205–215.

Bouvry, P., Arbab, F., and Seredynski, F., 2000. Distributed evolutionary optimization in manifold: the Rosenbrock’s
function case study. Information Sciences, 122, 141–159.

Branin, F.H. and Hoo, S.K., 1972. A method for finding multiple extrema of a function of n variables. In: Lootsma, F.,
ed. Numerical methods for non-linear optimization. New York: Academic Press, 231–237.

Cai, J. and Thierauf, G., 1996. Evolution strategies for solving discrete optimization problems. Advances in Engineering
Software, 25, 177–183.

Corana, A., Marchesi, M., Martini, C., and Ridella, S., 1987. Minimizing multimodal functions of continuous variables
with the ‘simulated annealing’ algorithm. ACM Transactions on Mathematical Software, 13, 262–280.

Fu, J., Fenton, R.G., and Cleghorn, W.L., 1991. A mixed integer discrete–continuous programming method and its
application to engineering design optimization. Engineering Optimization, 17, 263–280.

Fu, J.C. and Wang, L., 2002. A random-discretization based Monte Carlo sampling method and its applications.
Methodology and Computing in Applied Probability, 4, 5–25.

Goldberg, G., 1989. Genetic algorithms in search, optimization and machine learning. Reading, MA: Addison-Wesley.
Haftka, R.T., Scott, E.P., and Cruz, J.R., 1998. Optimization and experiments: a survey. Applied Mechanics Review, 51

(7), 435–448.
Houck, C., Joines, J., and Kay, M., 1995. A genetic algorithm for function optimization: a Matlab implementation.

Technical Report NCSU-IE-TR-95-09, North Carolina State University, Raleigh, NC.
Humphrey, D.G. and Wilson, J.R., 2000. A revised simplex search procedure for stochastic simulation response surface

optimization. INFORMS Journal on Computing, 12 (4), 272–283.
Liao, X. andWang, G.G., 2008. Simultaneous optimization of fixture and joint positions for non-rigid sheet metal assembly.

International Journal of Advanced Manufacturing Technology, 36, 386–394.
Sharif, B., Wang, G.G., and ElMekkawy, T., 2008. Mode pursuing sampling method for discrete variable optimization on

expensive black-box functions. Transactions of ASME, Journal of Mechanical Design, 130 (2), 021402-1-11.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
3
8
 
2
7
 
J
u
l
y
 
2
0
0
9



Engineering Optimization 21

Wang, G.G. and Shan, S., 2007. Review of metamodeling techniques in support of engineering design optimization.
Transactions of ASME, Journal of Mechanical Design, 129 (4), 370–380.

Wang, L., Shan, S., and Wang, G.G., 2004. Mode-pursuing sampling method for global optimization on expensive
black-box functions. Journal of Engineering Optimization, 36 (4), 419–438.

Zaki, G.M. and Al-Turki, A.M., 2000. Optimization of multilayer thermal insulation for pipelines. Heat Transfer
Engineering, 21, 63–70.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
3
8
 
2
7
 
J
u
l
y
 
2
0
0
9


