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Abstract: Reliability-based design optimization (RBDO) is insicelly a double-loop procedure since it involves averall
optimization and an iterative reliability assesstrareach search point. Due to the double-loopgatore, the computational expense of
RBDO is normally very high. Current RBDO research fosume problems with explicitly expressed performafucetions and readily
available gradients. This paper addresses a maadleching type of RBDO problem in which the performanfunctions are
computation intensive. These computation intenfinetions are often considered as a “black-box” #mair gradients are not available
or not reliable. On the basis of the reliable desipace (RDS) concept proposed earlier by the ajttids paper proposes a Reliable
Space Pursuing (RSP) approach, in which RDS is ifilesttified and then gradually refined while optiation is performed. It
fundamentally avoids the nested optimization arababilistic assessment loop. Three well known RBD@blgms from the literature
are used for testing and demonstrating the effectgs of the proposed RSP method.
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Notations
f(-) —Objective function ag,
gi(-)—Theith constraint function (ayju
g —Boundary constraints of the reliable
design space

] —Partial derivative at the most probable point

(MPP) in the standard normal distribution

I . . space
k—Number of deterministic design variables L o L _
m—Number of random design variables d-o"*" —Lower limit of deterministic design
n—Number of constraints variables
q—Number of random parameters d"PPe" —Upper limit of deterministic design
ri —Desired reliability of satisfying variables o _ _
theith constraint d —Vector of deterministic design variables,
S—Reliable design space d<R*
uiStandard normal distribution space Fx,p(x, P)*\]Olnt probablllty denSlty function of all
v{ —Standard normal distribution variable random variables and random parameters
x—Deterministic variable or a realization of Prob(-) —Probability function
random variableX P —Vector of random parameters? < R
x—Vector of deterministic variables VvV —Vector of random design variables and
X—Random variable random parameters combingd, P)
X —Vector of random design variables{ JR™ Ux—Mean vector of X
a;—Direction cosine along the axis; up—NMean vector of P

Lsi—Index of the desired reliability of satisfying
theith constrainit

Ls —Index of the success probability of satisfying
theith constraint

My —Mean vector ofV

ox —Standard deviation vector &f
op —Standard deviation vector Bf
oy —Standard deviation vector of
&' —lInverse transformation otp

* Corresponding author. E-mail: gary_wang@sfu.ca @ —Standard normal distribution function
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. probability and is the subset of the design spdde
1 Introduction reliable design space is formed by the probability
constraints Prob(g(x) >0) >ry and is the subset of the
Reliability-based design optimization (RBDO) is ewn feasible design space. WheRrob(s) is the probability
design methodology to optimize a product’s relifépilvith  function that denotes the probability of satisfyimgector
respect to various uncertainties. One of the mosf constraints g(x)>0. rq is the vector of the desired
challenging issues for implementing RBDO is relatgth  reliability of satisfying the constraints. If theliable design
the intensive computational demand of the religbili Space can be identified before the optimizatiorcess, the
assessment within the optimization process. inner reliability assessment loop of RBDO can be
For the purpose of improving computational efficign eliminated because every point in the reliable glespace
ANG, et al, introduced the reliability index approachmeets the reliability requirement. In other wordbge
(RIA) to describe the probability and to simplifjiet optimization process is constrained by the bouedast the
reliability analysis. A performance measure apphoaceliable design space. Then, the RBDO problem bescn
(PMA) was proposed in Ref. [2] to enhance probstidi simple deterministic optimization problem consteanby
constraint evaluation in RBDO. PMA was then imprbte the boundaries of RDS.
PMA+ ¥l and the applications of PMA were in Refs. [4-5]. Ref. [11] dealt with inexpensive performance fuoiti
DU, et al¥, developed a sequential strategy with a seriesfar which gradients were readily available, whete t
sequential deterministic optimization and relighili boundaries of RDS could be expressed explicitly. afs
assessment processes. LIANG, et” alpresented a extension of Ref. [11], this paper addresses RBDO
single-loop RBDO algorithm in which the reliabiligt the problems with expensive performance functions whose
current point was approximated by using the infdfomaat gradients are not available (either because thepatation
the previous search point. WU, et®al converted expense is too high or the gradients cannot beraisty
reliability constraints to approximately- equivalencomputed). Related theories will be first introddide the
deterministic constraints, based on which a sd#stier next section. In section 3, the proposed methogolsg
based approach was develop€d YANG, et al'”, described. A few well known problems from the e
implemented and tested several approximate RBD&e used for testing the proposed method and shedsults
methods against a double loop algorithm with a remu§ are given in section 4. Section 5 is the conclusion
design problems. SHAN, et ", developed a novel
concept of reliable design space (RDS) within wreekry 2 Related Conceptsand Theories
design point satisfies the reliability requirementnd
proposed an analytic single loop RBDO approach by|n this section, we first introduce the concept of
writing out the boundaries of RDS, which enablesDRB reliability-based design optimization, and thencdis the
to be solved with any optimizer. This approachugable kriging model that is applied to model the constrai
for RBDO problems with explicit objective and ca@stt  functions. Finally the mode pursuing method (MP$) ve

functions. In contrast to most current methods,s thpriefly introduced as it is used for optimization this
approach follows an inverse procedure, i.e., tHable work.

space is identified before the optimization starfhie

concept of RDS is illustrated in Fig. 1 by usindlacase. 21 Concept of reliability-based design optimization
Atypical RBDO problem is formulated as follows:

Xs

Design space

g\Ln fd, ux ., up),
st. Prob(g@d.X,P)>0)>g i=1Mn., (1)

Lower Upper Lower Upper
d <sdsd VTS xS Uy

Feasible design space

Reliable design space
Prob (8(X)>0)>rq
g(x)<0
Where superscripts “Lower” and “Upper” denote tberdr
and upper limits, respectively. As per the traditib
notation, a bold letter indicates a vector, an upgase
letter indicates a random variable or a random rpater
Fig. 1. Concept of the reliable design space and a lower case letter indicates a realizatioa edindom
variable or random parameter.

In Fig. 1 there exist three spaces, i.e., the despace, Eq. (1) shows that RBDO involves a so-called
feasible design space, and reliable design spdmed&sign double-loop procedure where the optimization oldep
space is represented by the outer rectangle. Tésibfe includes inner loops of reliability analysis. Tineer loop
design space is separated from the design spadheby or reliability analysis is often treated as an wyzation
deterministic constraintsg(x) =0 without considering problem searching for the most probable point (MBPx

X1
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concept used for reliability assessment. The itexatearch to evaluating the deterministic constraint at theerse
of MPP accounts for the main computation expense fpp g(d, X' )=0. The essential task, as well as the

RBDO, \_Nh'Ch often mgkes the double-loop S'Frategfb(mdamental challenge, of RBDO is therefore to fiad
computationally challenging. In order to clearlysdebe ] o _ .
design point 1z, whose corresponding inverse MPP is

the nature of RBDO and reduce the computationadidyur
of RBDO, Ref. [11] proposed the reliable designcspaWithi” the deterministic feasible domain. In RBDO
(RDS) concept. After the reliability design spaes lbeen procedure, the outer optimization loop updatesdésign
introduced, the RBDO problem in Eq. (1) can be ested point ux at every iteration. The corresponding inverse
into a deterministic optimization problem by mearishe \pp, however, is not easy to find by directly usim (3).
reliable design space as follows: An iterative numerical process is required, either it
optimization or solving simultaneous equations, chhi

Ln;',rx] . px pe), forms the so-called inner-loop for reliability assment.

s.t. g d,ux ,p )> 0,i= 1IN , @ Recent research on RBDO focuses on this very isyue

gLower < < ¢ UpPer proposing approximation or iterative methods toidwvar

L < e < VPP re(?uce_the effort in solving Eqg. (3) when given esign
point ux .

In this work all constraint functions, or perfornean

Given the definition of the reliability design spadhe fynctions, are assumed to be black-box functioneseh
next question is how to find this reliable desigmee. gradients are not available. It is thus impossibldirectly
Ref. [11] clearly described the key equation of RBD solve Eq. (3) at each design point . The proposed

which formulates the relation between a design tpaimd  approach applies metamodeling to approximate tmt i

its MPP in theX-space, as shown in Eq. (3): state functiong; (x) =0, and its partial derivatesdg; /dx; ,
on the deterministic feasible space boundary. Meruse
a9 Eq.(3) to obtain functions ofigx, denoted by function
_ _2 (6?1- ) 3) g =0, which form the boundaries of the reliable design
P =X + fy, Oy~ space. Then a deterministic optimization problem ba
Z(axj g%) formed as described in Eq. (2), which is used émating
j 1 the optima and in the mean time improve the acgucdc

the metamodel. The kriging model is chosen in tiisk
where * denotes the MPP in the original design spador the metamodel.
which is often referred as the inverse MPPThe

vectoru, is the design point an& s its inverse MPP. . . .
Hx gn p For a computational intensive problem or black-box

Ba is the index of the desired reliability of théh —g,ncion metamodeling is commonly used to appraten
constraint function, and; is the standard deviation f&t  the expensive or black-box function. The metamodel
The vector X =(X, P)T = (Xl, Xo .l %n, B, P 0 p4)T chosen to construct the constraint functions in thork is
includes all random variables and parameters (tef@ig. the kriging model as defined beldt# %

2.2 Kriging model

2 for an illustration of a two-variable problem kvibne K
constraing(xy, Xo)). Y(X) =D ai fi (X) + 2 X). (4)
i=1
"} Deterministic Probabilistic Kriging model consists of two parts. The first perta
g constraint simple linear regression of the data. The secomtlipaa

Prob(g,(d, X >>0)=ry;

) random process. The coefficients,, are regression
or &%(Hy,, Hy,)=0

parameters; f;(X) is the regression model. The random
_______ process z(X) is assumed to have mean zero and
ﬁ_*(i‘x_vﬁnjj(j_: covariance,v(%, %) =0 R ¥, x). The process variance
is given by ¢?and its standard deviation is. The
smoothness of the model, the influence of otherhyea

(:U.\‘y’iu.\’: )

Borx=0) points, and differentiability of the response scefaare

0 x‘ controlled by the spatial correlation functioriR(e).

Fig. 2. lllustration of deterministic, probabilist Kriging is flexible to approximate different and maplex
and approximated constraints response functions. The response surface of krigindel

interpolates sample points, and the influence dfeiot
As revealed in Ref. [6], the evaluation ofnearby points is controlled by the spatial corietat
Prob(g(d, X)>0)= g at design pointfzz is equivalent function. On the basis of these features, the tgighodel
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is chosen in this work. be built, §(x, %) =0 andd (4, 4, ) =0, respectively.

A kriging toolbox is given by Ref. [15]. It provide The metamodeling process first generates pointsinaro
regression models with polynomials of orders Oardd 2, g(x, %)=0 to buildg(x, %) =0. The process iterates
as well as 7 spatial correlation functions for stda. until it converges with a reasonably accuradéx, %) =0.
This work uses the regression model with polynosn@fl Then Eqg. (3) is called to generate points on
order 0, and the Gaussian correlation model. Aildeta g (i, 1) =0 where the gradients in Eq. (3) are
description of kriging is in the corresponding auts calculated by the finite difference methodd{m, x,) = 0.

previous work®®!. The model § (uy, #x,) =0 is then constructed using the
calculated points fromg(x,, %) =0.
2.3 Mode pursing sampling method In specific, the steps at this approximation stage

This work uses the mode pursing sampling (MPS)escribed below. For clarity, points evaluated laylirg
method for the optimization constrained by RDShaligh expensive constraint functions are referred asuevad
other standard optimization routines are equalbeptable points or expensive points. In contrast, pointcwdated
for the proposed method. MPS is a type of statistitom metamodels are referred as cheap points.
sampling optimization meth8f. MPS generates more (1) Initially sampling a few points in the desigpase
sample points in areas having lower objective fiomct and evaluating all deterministic constraint funefoat
value and fewer points in other areas. MPS firsistruicts these points (expensive points).
an approximation model from a few sample pointshén (2) Building an approximation model for each deti&im
generates a large number of points from the appratkbn stic constraint using the evaluated points.
model, sorts the points, and constructs a cumuaativ (3) Generating a large number of points, for exanpl
function analogous to cumulative density functi@D§) 10 000, in the design space and predicting valfigdbese
by adding up all the function values listed befdhe points by the approximation models (cheap points).
current point in the sorted point set. A sampléhén drawn (4) Filtering out points that cannot satisfy altetenini-
from the point set according to this cumulative diimn stic constraints as predicted by the approximatiardels
using the inverse CDF sampling method. As a resulire and keeping the rest of the points.
new sample points are generated around the curren{5) For each constraint, sorting the leftover pmiimt an
minimum and less in other regions in a design spaascending order according to their predicted famcti
MPS is an iterative process and the optimum isdaasthe values, constructing a cumulative function analegdo
sampling process proceeds. MPS is in essence CBF by adding up all the function values listeddsefthe
discriminative sampling method with approved robhass current point in the sorted point set. New sammes

and convergence property. drawn from the point set according to this cumuati
function. The sampling process is discriminativetes in

3 Proposed Reliable Space Pursuing MPS % and the authors’ other worlk’*?. As a result,

M ethodology more new sample points are around the boundari¢seof

feasible spaceg(x, %) =0 and less in other regions in
Given the concept of RDS, the proposed reliablespathe feasible design space.
pursuing (RSP) method is to identify boundariesRafS (6) Evaluating the new sampling points from stepa(ad
within the design space, based on which optimizat® these points become expensive points.
performed. The proposed methodology has two stages(7) Checking the convergence of metamodels.
The first stage is to construct metamodels of thestaint (8) Updating the metamodels.
functions so that RDS boundaries can be approxinate (9) If none of the convergence condition is reachedtk
The second stage is an optimization process with step (2) with the new expensive points. Otheswis
improvements to the metamodels of RDS boundaries.  temporarily end up the metamodeling stage and ehter
optimization stage. There are two convergencer@itd he

3.1 Approximating RDSboundaries first convergence criterion is
Boundaries of RDS, Prob(g(X)>0)=1 or its
equivalent g; =0, are the probabilistic constraints, while .
0; =0 are the deterministic constraints, or the bourdari ma ['gi(xl’ %)~ 9%, Xﬁ'}g Q000:
of the feasible space. For the ease of descriptios, |gi(xl' X2)|

assume two random variabl¥s and X, are involved in a

RBDO problem and there is no random paramBtefhe on the current new sample points for all constsaifithe

metamodeling process can be conceptually illusirétg second convergence criterion is the maximum nunatber

Fig. 2. metamodeling iterations, e.g., 50. Once eitherhef two
Fig. 2 shows both the deterministic constraintgriteria is satisfied for all constraints, the mmetaleling

g(x, %) =0 and probabilistic constraintsy (1, y,) = stage temporarily ends. These two criteria candjested
0. The dotted lines show their corresponding metat®od  according to specific needs.
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(10) Generating cheap points from(x, x) =0, using
Eq. (3) to compute points oy (g, Hyx,) =0. With the min f = 14 + 45,
computed points, we can use the kriging model tiddbu  |“**2 .
§ (1, 11x,) =0 for optimization in the next stage. st P@(X)202 R, =13,

Recognizing that the metamodelg(x, %) will 0(X) zﬁ_l
inevitably have errors as compared to the true msipe ' 20 ’
performance functiong(x, %), and so its gradients, this (X1 + X5=5)2 (X — Xp—12)
work introduces a feedback step at the second .staljeat 92(X) = 30 * 120 Lo
is, assuming g’ (4x . tx,) =0 calculated from Eq. (3) by 80
using §(x, %) and its gradients has certain error, the 9:(X) :><12TX2+5_
obtained optimum (usually constrained optimum) o 0<p;<10,j=1- 2,

evaluated by calculating its corresponding invevieP to
see whether the MPP satisfigs>0. If the optimum and
corresponding inverse MPP fail to satisfy the dctua
constraints due to the use of metamodels, thisuated
optimum (an expensive point) and corresponding rswe
MPP (an expensive point) will be added to the éxgsset i X C
variables X; and X,. R is the target reliability ofth

of expensive points and the metamodels are to Hateg. i ,
onstraint. For demonstration purposes, the samgetta

Therefore, the accuracy of metamodels can be furthe

improved. Such a step provides a degree of err[)erhabnny index g =3 is used for all three constraints. In

. L . eneral, a different target reliability index mag bsed for
compensation and the compensation is well obsenvedg g y e

i , , G . h traint.
testing problem 2, which will be described in sect4.2. each consfrain

3.2 Optimization with metamodels of probabilistic

constraints

Once the metamodels of probabilistic constraints ar | Sampling inital points in design space |
constructed, we use the metamodels as surrogatdbefo
actual constraints in Eq. (2) and apply the MPShoetin
Ref. [16] to solve the optimization problem. Asalissed
in the last section, the obtained optimum and epwading
inverse MPP will be verified by calling the actual
expensive constraint functions. The flowchart ofe th
proposed method is illustrated in Fig. 3. The twajon
stages are enclosed in a dotted box, respecti@glgcial
attentions need to be paid to the expressions tdmulels
for different constraint functions.

og,=0,=0.3,
L =3fori=123.

Where u,u, and oy,0, are the mean values and
standard deviations, respectively, of the two desamdom

[ Expensive constraint evaluation g (-) ]

]

'——[ Building metamodel g (+) ]

T

[ Sampling on metamodel g (+) ]

f

T

[ Evaluating selected points J

4 Numerical Sudies

E Selection from cheap points ]

In this section, three problems are employed td tes
the proposed methodology. We assume the constraint
functions are computation intensive and thus tcbae
black-box functions. For each problem, ten indepand
runs are carried out to test the robustness optbhposed
method.

Optimization with g%(.) ]—

f

[Expensive evaluation of optimum with g (+)

—

4.1 Problem1

Problem 1 was first introduced in Ref. [20] andrthised
by others” ! It has two random variable§;, X,, which
are normally distributed, and three non-linear te@msts,
01 02 andgs. There is no deterministic design variableand ~ ; ~ ~ -~
no random parameter. The objective function is mtipe ig. 3. Flowchart of the proposed methodology
sum of the mean of the two random variables. Th©@B

problem is described as follows: By applying the proposed methodology, the obtained
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results are listed in Table 1. Columrgs(x) and g; (X)

represent the deterministic and corresponding fitistc
constraint function values, respectively. The numbé
iterations,n;, and the number of function evaluationg,
are used as an indication of the time and resouezpsred
in the computation for expensive function evaluagioT he

includes all evaluations in two stages (s the same for all
constraints). As can be seen from Table 1, the queg
method robustly captures the same RBDO optimum with
ten independent runs, which is almost identicalthe
theoretical optimum at (3.44, 3.28) with the minimu
objective function value 6.720 B". The computational

number of function evaluationsy., for each constraint expense, as indicated hy, is modest.

Tablel. Test resultsfor problem 1

Run . . gi g Nit MNte
No. Hx (ki) . — — ‘
O1 02 Js [¢]1 02 O3 First stage Second stage f g
1 [3.4406,3.2800] 6.7205 0.0000 0.0000 0.5117 0 0 >0 6 2 13 45
2 [3.4405,3.2800] 6.7205 0.0000 0.0000 0.5117 0 0 >0 4 3 16 38
3 [3.4406,3.2800] 6.7205 0.0000 0.0000 0.5117 0 0 >0 7 3 16 55
4 [3.4406,3.2800] 6.7205 0.0000 0.0000 0.5118 0 0 >0 4 3 16 37
5 [3.4406,3.2800] 6.7205 0.0000 0.0000 0.5118 0 0 >0 9 2 12 64
6 [3.4406,3.2800] 6.7205 0.0000 0.0000 0.5118 0 0 >0 5 3 15 43
7 [3.4406,3.2800] 6.7205 0.0000 0.0000 0.5118 0 0 >0 8 2 12 59
8 [3.4406,3.2800] 6.7205 0.0000 0.0000 0.5118 0 0 >0 9 2 12 65
9 [3.4406,3.2800] 6.7205 0.0000 0.0000 0.5118 0 0 >0 6 3 15 50
10 [3.4406,3.2800] 6.7205 0.0000 0.0000 0.5118 0 0 >0 10 2 12 71

Fig. 4 plots the identified reliable design spageubing

the proposed method, shown as the shaded area.

shaded area is enclosed by the theoretical RDSdawies
plotted with “x” symbols. It indicates that the ieddle
design space has been identified accurately. The'«do
represents the evaluated expensive points for nuetaling.

beam. This is equivalent to minimizirfg= wt, assuming
et the material density and beam length are aatst
Two non-linear failure modes are used. The firstufa
mode yields at the fixed end of the cantilever; ttier
failure mode is that the tip displacement excedus t
allowable value Dy =2.5in (63.5 mm). The RBDO

The circle ©” represents the evaluated expensive poinfgoblem is formulated as follows:

during the optimization stage, which are used tdatgp the
metamodels. These points fall inside the reliakdsigh
space.

Fig. 4. Graphical output of test results for peshll

4.2 Problem2

mitn f =wit,
st P(@i20)= R, i=1 2,
600 600
) 1] t = - 5 +— 3
6(S B, R W s(wtz oo Ej
4.3 (6)
gZ(EyFZ;FYyW:t)zq °
Ewt
2 2
SRE
t? w2’
l<sw,t< 5.
Where g and g, are the two constraints

corresponding to the two failure modes. The design
variables w and t are deterministic, whileR,,F;,S
and E are normally distributed random parameters with
R ~ N(1000,100)b I, ~ N (500,100p S ~ N(40 000,
2000)psiand E ~ N(29x 10 , 1L 45 18 )psi. The para-
metery is the random vyield strengthF, and R, are
mutually independent random loads in the verticadl a
lateral directions respectively, an& is the Young’s

A cantilever beam in vertical and lateral bendingsw modulus. R is thetarget reliabilityof theith constraint. A

used in Refs. [2-5, 9, 21]. The beam is loadedsatip by

reliability index g =3 is used for both constraints. In this

the vertical and lateral loads, and Fz, respectively. Its case, only two deterministic design variables ekisthe
length L is equal to 100 in (2.54 m). The widttv and objective function, and only these deterministicsiga
thickness t of the cross-section are random desigmariables and four random parameters exist in the
variables. The objective is to minimize the weiglitthe probability constraints. No random design variabtists in
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either the objective or probability constraint ftinns. Test constraints are in a certain distance from thespeetive
results are listed in Table 2 in a format similarTable 1. deterministic constraints. The shaded area is iitkhtas
One can see that the proposed method consistesbhes the reliable design space by the proposed methuid.area
almost the theoretical optimum at (2.45, 3.89) witle is not entirely enclosed by the theoretical prolistin
minimum function value 9.8, The number of evaluation constraints. This indicates the error of the mete®
of the constraints, however, increases as comp#&wed Through iterations, it is observed that the ingiabtained
problem 1 due to the complex form of constraints adptimum does not satisfy the reliability constraint
problem 2. A similar graphical plot is also genedatas However, the metamodel is gradually improved adogrd
shown in Fig. 5 (the symbols meaning is the santhdse to the algorithm and the final optimum satisfiese th
in Fig. 4). As one can see, the two theoretic podiséic  constraints and is close to the theoretical optimum

Table2. Test resultsfor problem 2

Run . , g g N Me
Hx f(ux) . P

No. ¢ 92 [¢] [¢7] First stage Second stage f di
1 [2.457 1,3.8715] 9.5129 0.8253 0.3011 0.0000 0.3102 72 6 64 320
2 [2.439 2,3.9025] 9.5189 0.7135 0.2577 0.0008 0.2543 160 8 76 673
3 [2.3859, 3.9818] 9.500 4 1.3323 0.2333 0.0000 0.3102 100 4 53 427
4 [2.450 7, 3.884 4] 9.5193 1.1844 0.2603 0.0000 0.3102 146 6 65 610
5 [2.4507,3.884 4] 9.5193 1.1844 0.2603 0.0000 0.3102 146 6 65 610
6 [2.4656,3.8609] 9.5194 0.7135 0.2759 0.0008 0.2522 146 6 64 610
7 [2.377 6, 4.004 6] 9.5212 9.1129 0.1968 0.0009 0.2808 44 5 56 206
8 [2.411 8,3.9408] 9.5045 1.606 8 0.2604 0.0009 0.2403 115 6 69 489
9 [2.461 1,3.8617] 9.504 1 0.8037 0.3157 0.0000 0.3102 82 8 80 365
10 [2.449 5, 3.882 8] 9.5159 0.7079 0.2544 0.0008 0.2500 103 7 74 465

target reliabilities for each constraint; the 9%@ikliability

(8 =3) is used for all ten constraints. As shown in Tahle
the reliability-based design optimization increasbghtly

the vehicle weight to approximate 28.6 f¢§ =3) but
satisfies all probabilistic constraints with at 9£89.87%
reliability. The proposed method robustly captuthe
same RBDO optimum with ten independent runs. The
number of iterationsp;, and the number of the function
evaluations, are used as an indication of the time and
resources required in the computation for expensive
function evaluations, which are found being modest.

X 5 Conclusions
Fig. 5. Graphical output of test results for peshl2

(1) This work presents a reliability-based design
optimization approach for problems involving expeas
eqerformance functions, for which the gradients of
constraints are expensive to obtain or unreliable.

(2) The proposed method, RSP, directly approximates
DS through the inherent relationship between the
deterministic and probabilistic constraints.

(3)Through the numeral tests, the RSP approaabuisdf
to be effective and robust. Its efficiency is aféetby the
complexity of the performance function.

(4) The proposed method, as an MPP-based approach,
6.98u,, +4 0y, + 1 78y + may have difficulties with highly-nonlinear constris
2.7%, (7)  where multiple MPP may exist.

T (5) The kriging modeling approach is also limiteml t
small scale design problems due to its high cost an
demand for exponentially increasing number of sampl
Where g;(+) functions are listed in AppendixR are the points.

4.3 Problem3

A vehicle crashworthiness study has been extensiv
used to test the accuracy and efficiency of RBDGhous
in the past a few yeals® " 1% Regarding to its engineering R
background, please refer to the references. Hmiting
the engineering background, the RBDO vehicle mdalel
crashworthiness is given as follows:

min f (uy, ) =198+ 49, + 6 67, +
Hx

sit. g X)=R,i=1-10.
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Table3. Test resultsfor problem 3

Run Nit Nre
No. HX flux) gi Qi First  Second ; _
stage  stage 9
0.8018 1.3500 0.436 4 0.0000
( ( (0.526 4 0.0002 1.6231
0.7147 1.5000 43359 35915 18724 00765 0.0729
1 0.8750 1.2000 28.566 4 0.0900 0.0900 0'016 2 0'000 0 0.380 6 51 7 140 1030
0.4000 0.3450 0.0275 0.0000 ’ 0 3'17 8) '
0.1920 0 0) 0.557 7 0.0133) ’
0.8008 1.3500 0.436 4 0.0000
( ( (0.526 6 0.0002 1.6159
0.7152 1.5000 43359 35915 18656 00766 00728
2 0.8750 1.2000 28.564 9 0.0900 0.0900 0'016 3 0'000 1 0'379 0 51 7 150 1035
0.4000 0.3450 0.0275 0.0000 ’ 0 2.88 8) '
0.1920 0 0) 0.557 7 0.013 3) ’
0.8018 1.3500 0.436 4 0.0000
(O 7147 1.5000 (4 3359 35915 (0.5264 0.0002 1.6231
’ ' ' ’ 1.8724 0.076 5 0.0729
3 0.8750 1.2000 28.566 4 0.0900 0.0900 00162 00000 0.3806 51 7 140 1030
0.4000 0.3450 0.0275 0.0000 ' 0 3;17 8) '
0.1920 0 0) 0.557 7 0.013 3] )
0.8008 1.3500 0.436 4 0.0000
(O 7152 1.5000 (4 3359 35915 (0.5266 0.0002 1.6159
4 0.8750 1.2000 28.564 9 0.0900 0.0900 ;giz g 88(7)2 i 82;; 2 51 7 150 1035
0.4000 0.3450 0.0275 0.0000 ' 0 2.88 8) '
0.1920 0 0) 0.557 7 0.013 3) )
0.8028 1.3500 0.436 4 0.0000
( ( (0.5245 0.0000 1.6261
0.716 4 1.5000 43359 35915 18698 00765 00729
5 0.8750 1.2000 28.583 3 0.0900 0.0900 0'016 2 0'000 3 0.381 3 51 7 150 1071
0.4000 0.3450 0.0275 0.0000 ’ 0 2.96 3) '
0.1920 0 0) 0.557 7 0.013 3) ’
0.8018 1.3500 0.436 4 0.0000
( ( (0.526 4 0.0002 1.6231
0.7147 1.5000 43359 35915 18724 00765 0.0729
6 0.8750 1.2000 28.566 4 0.0900 0.0900 0'016 N 0'000 0 0.380 6 51 7 140 1030
0.4000 0.3450 0.0275 0.0000 ’ 0 3'17 8) '
0.1920 0 0) 0.557 7 0.013 3) ’
0.8008 1.3500 0.436 4 0.0000
(O 7152 1.5000 (4 3359 35915 (0.5266 0.0002 1.6159
7 0.8750 1.2000 28.564 9 0.0900 0.0900 égi: g gggg 613 82;; g 51 7 150 1035
0.4000 0.3450 0.0275 0.0000 ' 0 2.88 8) '
0.1920 0 0) 0.557 7 0.013 3) )
0.8028 1.3500 0.436 4 0.0000
(O 7164 1.5000 (4 3359 35915 (0.5245 0.0000 1.626 1
8 0.8750 1.2000 28.583 3 0.0900 0.0900 ;gig 2 88(7)2 g gg;i g 51 7 150 1071
0.4000 0.3450 0.0275 0.0000 ' 0 2.96 3) '
0.1920 0 0) 0.5577 0.013 3) )
0.8018 1.3500 0.436 4 0.0000
( ( (0.526 4 0.0002 1.6231
0.7147 15000 43359 35915 18724 00765 0.0729
9 0.8750 1.2000 28.566 4 0.0900 0.0900 0'016 2 0'000 0 0.380 6 51 7 140 1030
0.4000 0.3450 0.0275 0.0000 ’ 0 3'17 8) '
0.1920 0 0) 0.557 7 0.013 3) ’
0.8018 1.3500 0.436 4 0.0000
( ( (0.526 4 0.0002 1.6231
0.7147 1.5000 43359 35915 18724 00765 0.0729
10 0.8750 1.2000 28.566 4 0.0900 0.0900 0'016 N 0'000 0 0.380 6 51 7 140 1030
0.4000 0.3450 0.0275 0.0000 ’ 0 3'17 8) '
0.1920 0 0) 0.557 7 0.013 3) ’
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Appendix
gi (x) Function
01(FaL <1 kN) 1.16- 0.371 %% — 0.0093%xo— 0.48¢x+ 0.013 A3

92(Diow <32 mm)

46.36- 9.% — 12.% x5+ 0.110%x0

03(Dpig <32 mm) 33.86+ 2.95;+ 0.179%0— 5.050%- 11@%— 0.02%5,- 988¢+ 220
94(Dyp <32 mm) 28.98+ 3.818;— 4.2%+ 0.020%x0+ 6.68%— 7@%+ 0.32%

0.261- 0.015%% - 0.188%- 0.000x+ 0.0l4¢s+ 0.00087%%s+  0.080446
95(Viow <32 m/s)

0.0013% X1+ 0.000 015 BhoXys

0.214+ 0.0081% - 0.130x- 0.070¢o+ 0.0308%- 0.048&+ 00208  0%3¢
96 (Vimia <32 M/S) 0.003 645% + 0.000 771%%0— 0.000535@o+ 0.001@%:
97 (Vup < 32 m/s) 0.74- 0.6k, — 0.16%%+ 0.00123@%- 0.166%+ 0.2%
gs(Fps<4.01 kN) 4.72- 0.5 — 0.1%X%— 0.012%x%o+ 0.00932Fx,+ 0.0001%;
o (Va-pilar < 9.9 M/s) 10.58- 0.674% - 1.9%%+ 0.02054%0o- 0.01%@xs+ 0.028
010(Vaoor £ 15.69 m/s) 16.45- 0.48%:% — 0.84% %+ 0.0438x%o- 0.0556x—  0.000 78!

Note: (1) Fa.

is the dummy abdomen loadpup, Dmig and Dy, are the dummy upper rib, middle rib, and lowerd#flections; Vup , Vmig

and Vi are the dummy upper chest, middle chest, and lahest viscous criterion values, respectively; is the dummy public symphysis
force; vs_pilar is the velocity at the middle B-pillar positioneor is the B-pillar velocity at door belt line.

wep=n’ i=1-7,

(2){ s, Ho=10.345 or 0.192, enumerated variables denmnaterial propertie:

Lho, t11= 0.0, barrier height and position.

(3) All random variables and parameters are asguroemally distributed with standard deviatiomg-467=0.03, 05=0.05 0gg¢=0.006
and 010,11~ 10 [4].



