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Abstract: Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall 

optimization and an iterative reliability assessment at each search point. Due to the double-loop procedure, the computational expense of 

RBDO is normally very high. Current RBDO research focuses on problems with explicitly expressed performance functions and readily 

available gradients. This paper addresses a more challenging type of RBDO problem in which the performance functions are 

computation intensive. These computation intensive functions are often considered as a “black-box” and their gradients are not available 

or not reliable. On the basis of the reliable design space (RDS) concept proposed earlier by the authors, this paper proposes a Reliable 

Space Pursuing (RSP) approach, in which RDS is first identified and then gradually refined while optimization is performed.  It 

fundamentally avoids the nested optimization and probabilistic assessment loop. Three well known RBDO problems from the literature 

are used for testing and demonstrating the effectiveness of the proposed RSP method. 
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Notations 
    f(·) —Objective function 

 gi(·) —The ith constraint function 

 gi
* —Boundary constraints of the reliable  

design space 

 k —Number of deterministic design variables 

 m —Number of random design variables  

 n —Number of constraints 

 q —Number of random parameters 

 dir  —Desired reliability of satisfying 
the ith constraint  

 Sr —Reliable design space  

 u —Standard normal distribution space 

 u
jv  —Standard normal distribution variable 

 x —Deterministic variable or a realization of  
random variableX  

 x —Vector of deterministic variables 

 X —Random variable 

 X —Vector of random design variables, m∈ RX  

 jα  —Direction cosine along the axis jx  

 diβ  —Index of the desired reliability of satisfying 
the ith constraint∗∗∗∗ 

 siβ  —Index of the success probability of satisfying 
the ith constraint 

                                                                 
* Corresponding author. E-mail: gary_wang@sfu.ca  
This project is supported by Natural Science and Engineering 

Research Council (NSERC) of Canada 

  
*

i
u
j

g
x

 ∂
 ∂ 

 —Partial derivative at the most probable point  

   —(MPP) in the standard normal distribution  

   —space 

    Lowerd  —Lower limit of deterministic design 

variables  

    Upperd  —Upper limit of deterministic design 

variables 
        d —Vector of deterministic design variables, 

k≤d R  
( , )X,PF X P  —Joint probability density function of all 

random variables and random parameters 
   Prob(·) —Probability function 

       P  —Vector of random parameters, q≤P R  

        V —Vector of random design variables and 
random parameters combined ( , )X P  

        Xµµµµ  —Mean vector of X  

        Pµµµµ  —Mean vector of P  

        Vµµµµ  —Mean vector of V  

        Xσσσσ  —Standard deviation vector ofX  

       Pσσσσ  —Standard deviation vector ofP  

        Vσσσσ  —Standard deviation vector of V  

       1Φ−  —Inverse transformation of Φ 

        Φ —Standard normal distribution function 

         ∗  —Values evaluated at MPP 
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1  Introduction 

 

Reliability-based design optimization (RBDO) is a new 
design methodology to optimize a product’s reliability with 
respect to various uncertainties. One of the most 
challenging issues for implementing RBDO is related with 
the intensive computational demand of the reliability 
assessment within the optimization process.  

For the purpose of improving computational efficiency, 
ANG, et al[1],  introduced the reliability index approach 
(RIA) to describe the probability and to simplify the 
reliability analysis. A performance measure approach 
(PMA) was proposed in Ref. [2] to enhance probabilistic 
constraint evaluation in RBDO. PMA was then improved to 
PMA+ [3] and the applications of PMA were in Refs. [4−5].   
DU, et al[6], developed a sequential strategy with a series of 
sequential deterministic optimization and reliability 
assessment processes. LIANG, et al[7], presented a 
single-loop RBDO algorithm in which the reliability at the 
current point was approximated by using the information at 
the previous search point. WU, et al[8],  converted 
reliability constraints to approximately- equivalent 
deterministic constraints, based on which a safety-factor 
based approach was developed [9].  YANG, et al[10], 
implemented and tested several approximate RBDO 
methods against a double loop algorithm with a number of 
design problems. SHAN, et al[11], developed a novel 
concept of reliable design space (RDS) within which every 
design point satisfies the reliability requirements, and 
proposed an analytic single loop RBDO approach by 
writing out the boundaries of RDS, which enables RBDO 
to be solved with any optimizer. This approach is suitable 
for RBDO problems with explicit objective and constraint 
functions. In contrast to most current methods, this 
approach follows an inverse procedure, i.e., the reliable 
space is identified before the optimization starts. The 
concept of RDS is illustrated in Fig. 1 by using a 2D case. 

 

  

Fig. 1.  Concept of the reliable design space 

 
In Fig. 1 there exist three spaces, i.e., the design space, 

feasible design space, and reliable design space. The design 
space is represented by the outer rectangle. The feasible 
design space is separated from the design space by the 
deterministic constraints ( ) =g x 0  without considering 

probability and is the subset of the design space. The 
reliable design space is formed by the probability 
constraints d( ( ) )Prob > >g x 0 r and is the subset of the 
feasible design space. Where Prob(•) is the probability 
function that denotes the probability of satisfying a vector 
of constraints ( ) >g x 0 . dr  is the vector of the desired 
reliability of satisfying the constraints. If the reliable design 
space can be identified before the optimization process, the 
inner reliability assessment loop of RBDO can be 
eliminated because every point in the reliable design space 
meets the reliability requirement. In other words, the 
optimization process is constrained by the boundaries of the 
reliable design space. Then, the RBDO problem becomes a 
simple deterministic optimization problem constrained by 
the boundaries of RDS. 

Ref. [11] dealt with inexpensive performance functions 
for which gradients were readily available, where the 
boundaries of RDS could be expressed explicitly. As an 
extension of Ref. [11], this paper addresses RBDO 
problems with expensive performance functions whose 
gradients are not available (either because the computation 
expense is too high or the gradients cannot be accurately 
computed). Related theories will be first introduced in the 
next section. In section 3, the proposed methodology is 
described. A few well known problems from the literature 
are used for testing the proposed method and the test results 
are given in section 4. Section 5 is the conclusion. 

 
2  Related Concepts and Theories 

 
In this section, we first introduce the concept of 

reliability-based design optimization, and then discuss the 
kriging model that is applied to model the constraint 
functions. Finally the mode pursuing method (MPS) will be 
briefly introduced as it is used for optimization in this 
work. 

 
2.1  Concept of reliability-based design optimization 

A typical RBDO problem is formulated as follows: 

 

,
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Where superscripts “Lower” and “Upper” denote the lower 
and upper limits, respectively. As per the traditional 
notation, a bold letter indicates a vector, an upper case 
letter indicates a random variable or a random parameter 
and a lower case letter indicates a realization of a random 
variable or random parameter. 

Eq. (1) shows that RBDO involves a so-called 
double-loop procedure where the optimization outer loop 
includes inner loops of reliability analysis.  The inner loop 
or reliability analysis is often treated as an optimization 
problem searching for the most probable point (MPP) [1], a 
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concept used for reliability assessment. The iterative search 
of MPP accounts for the main computation expense for 
RBDO, which often makes the double-loop strategy 
computationally challenging. In order to clearly describe 
the nature of RBDO and reduce the computational burden 
of RBDO, Ref. [11] proposed the reliable design space 
(RDS) concept. After the reliability design space has been 
introduced, the RBDO problem in Eq. (1) can be converted 
into a deterministic optimization problem by means of the 
reliable design space as follows: 
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 (2) 

Given the definition of the reliability design space, the 
next question is how to find this reliable design space.  
Ref. [11] clearly described the key equation of RBDO 
which formulates the relation between a design point and 
its MPP in the X-space, as shown in Eq. (3): 
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∑

 (3) 

where * denotes the MPP in the original design space, 

which is often referred as the inverse MPP[6]. The 

vector
X
µ  is the design point and *x  is its inverse MPP. 

diβ  is the index of the desired reliability of the ith 

constraint function, and jxσ is the standard deviation for xj. 

The vector ( ) ( )TT
1 2 1 2, , , , , , , ,m qx x x p p p= = ⋅⋅⋅ ⋅ ⋅⋅X X P  

includes all random variables and parameters (refer to Fig. 

2 for an illustration of a two-variable problem with one 

constraint g(x1, x2)).  

 

Fig. 2.  Illustration of deterministic, probabilistic, 
and approximated constraints 

 

As revealed in Ref. [6], the evaluation of 

d( ( , ) 0)Prob g r> =d X  at design point Xµµµµ  is equivalent 

to evaluating the deterministic constraint at the inverse 

MPP, ( , ) 0.*g X =d  The essential task, as well as the 

fundamental challenge, of RBDO is therefore to find a 

design point ,Xµµµµ  whose corresponding inverse MPP is 

within the deterministic feasible domain. In RBDO 

procedure, the outer optimization loop updates the design 

point Xµ  at every iteration. The corresponding inverse 

MPP, however, is not easy to find by directly using Eq. (3).  

An iterative numerical process is required, either be it 

optimization or solving simultaneous equations, which 

forms the so-called inner-loop for reliability assessment.  

Recent research on RBDO focuses on this very issue by 

proposing approximation or iterative methods to avoid or 

reduce the effort in solving Eq. (3) when given a design 

point Xµ . 
In this work all constraint functions, or performance 

functions, are assumed to be black-box functions whose 
gradients are not available. It is thus impossible to directly 
solve Eq. (3) at each design point Xµ . The proposed 
approach applies metamodeling to approximate the limit 
state function, ( ) 0ig x = , and its partial derivates, i jg x∂ ∂ , 
on the deterministic feasible space boundary. Then we use 
Eq. (3) to obtain functions of ,Xµµµµ denoted by function 

0*
ig = , which form the boundaries of the reliable design 

space. Then a deterministic optimization problem can be 
formed as described in Eq. (2), which is used for locating 
the optima and in the mean time improve the accuracy of 
the metamodel. The kriging model is chosen in this work 
for the metamodel. 

 
2.2  Kriging model 

For a computational intensive problem or black-box 
function, metamodeling is commonly used to approximate 
the expensive or black-box function. The metamodel 
chosen to construct the constraint functions in this work is 
the kriging model as defined below [12−14]: 

 ˆ( ) ( ) ( ).
k

i i

i 1

y X α f X z X
=

= +∑  (4) 

Kriging model consists of two parts. The first part is a 
simple linear regression of the data. The second part is a 
random process. The coefficients,iα , are regression 
parameters; ( )if x  is the regression model. The random 
process ( )z X  is assumed to have mean zero and 
covariance, 2( , ) ( , )i j i jv x x R x xσ= . The process variance 
is given by 2σ and its standard deviation is σ. The 
smoothness of the model, the influence of other nearby 
points, and differentiability of the response surface are 
controlled by the spatial correlation function, R(•).  
Kriging is flexible to approximate different and complex 
response functions. The response surface of kriging model 
interpolates sample points, and the influence of other 
nearby points is controlled by the spatial correlation 
function. On the basis of these features, the kriging model 
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is chosen in this work. 
A kriging toolbox is given by Ref. [15]. It provides 

regression models with polynomials of orders 0, 1, and 2, 
as well as 7 spatial correlation functions for selection.   
This work uses the regression model with polynomials of 
order 0, and the Gaussian correlation model. A detailed 
description of kriging is in the corresponding author’s 
previous work [13]. 

 
2.3  Mode pursing sampling method 

This work uses the mode pursing sampling (MPS) 
method for the optimization constrained by RDS, although 
other standard optimization routines are equally acceptable 
for the proposed method. MPS is a type of statistic 
sampling optimization method[16]. MPS generates more 
sample points in areas having lower objective function 
value and fewer points in other areas. MPS first constructs 
an approximation model from a few sample points. It then 
generates a large number of points from the approximation 
model, sorts the points, and constructs a cumulative 
function analogous to cumulative density function (CDF) 
by adding up all the function values listed before the 
current point in the sorted point set. A sample is then drawn 
from the point set according to this cumulative function 
using the inverse CDF sampling method. As a result, more 
new sample points are generated around the current 
minimum and less in other regions in a design space.  
MPS is an iterative process and the optimum is found as the 
sampling process proceeds. MPS is in essence a 
discriminative sampling method with approved robustness 
and convergence property. 

 
3  Proposed Reliable Space Pursuing  

Methodology 
 

Given the concept of RDS, the proposed reliable space 
pursuing (RSP) method is to identify boundaries of RDS 
within the design space, based on which optimization is 
performed. The proposed methodology has two stages.  
The first stage is to construct metamodels of the constraint 
functions so that RDS boundaries can be approximated. 
The second stage is an optimization process with 
improvements to the metamodels of RDS boundaries. 

 
3.1  Approximating RDS boundaries 

Boundaries of RDS, d( ( ) )Prob r> =g X 0 or its 
equivalent 0*

ig = , are the probabilistic constraints, while 
0ig =  are the deterministic constraints, or the boundaries 

of the feasible space. For the ease of description, we 
assume two random variables X1 and X2 are involved in a 
RBDO problem and there is no random parameter P. The 
metamodeling process can be conceptually illustrated by 
Fig. 2.  

Fig. 2 shows both the deterministic constraints 

1 2( , )x x =g 0 and probabilistic constraints 1 2( , )*
x xµ µg =     

0. The dotted lines show their corresponding metamodels to 

be built, 1 2ˆ( , )x x =g 0  and 1 2
ˆ ( , ) ,*

x xµ µ =g 0  respectively. 
The metamodeling process first generates points around 

1 2( , )x x =g 0  to build 1 2ˆ( , ) .x x =g 0  The process iterates 
until it converges with a reasonably accurate 1 2ˆ( , ) .x x =g 0  
Then Eq. (3) is called to generate points on 

1 2( , )*
x xµ µ =g 0  where the gradients in Eq. (3) are 

calculated by the finite difference method on1 2ˆ( , ) .x x =g 0  
The model 1 2

ˆ ( , )*
x xµ µ =g 0  is then constructed using the 

calculated points from 1 2ˆ( , ) .x x =g 0  
  In specific, the steps at this approximation stage are 

described below. For clarity, points evaluated by calling 
expensive constraint functions are referred as evaluated 
points or expensive points. In contrast, points calculated 
from metamodels are referred as cheap points. 

(1) Initially sampling a few points in the design space 
and evaluating all deterministic constraint functions at 
these points (expensive points).  

(2) Building an approximation model for each determini- 
stic constraint using the evaluated points. 

(3) Generating a large number of points, for example,           
10 000, in the design space and predicting values of these 
points by the approximation models (cheap points). 

(4) Filtering out points that cannot satisfy all determini- 
stic constraints as predicted by the approximation models 
and keeping the rest of the points.   

(5) For each constraint, sorting the leftover points in an 
ascending order according to their predicted function 
values, constructing a cumulative function analogous to 
CDF by adding up all the function values listed before the 
current point in the sorted point set. New samples are 
drawn from the point set according to this cumulative 
function. The sampling process is discriminative as that in 
MPS [16] and the authors’ other work [17−19]. As a result, 
more new sample points are around the boundaries of the 
feasible space 1 2( , )x x =g 0  and less in other regions in 
the feasible design space.  

(6) Evaluating the new sampling points from step (5) and 
these points become expensive points.  

(7) Checking the convergence of metamodels. 
(8) Updating the metamodels.  
(9) If none of the convergence condition is reached, back 

to step (2) with the new expensive points. Otherwise 
temporarily end up the metamodeling stage and enter the 
optimization stage. There are two convergence criteria. The 
first convergence criterion is  

 

 1 2 1 2

1 2

ˆ( , ) ( , )
max 0 0001

( , )
i i

i

g x x g x x
.

g x x

 −
≤  

 
   

 
on the current new sample points for all constraints. The 
second convergence criterion is the maximum number of 
metamodeling iterations, e.g., 50. Once either of the two 
criteria is satisfied for all constraints, the metamodeling 
stage temporarily ends. These two criteria can be adjusted 
according to specific needs. 
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(10) Generating cheap points from 1 2ˆ( , ) ,x x =g 0  using 
Eq. (3) to compute points on 1 2( , ) .*

x xµ µ =g 0  With the 
computed points, we can use the kriging model to build 

1 2
ˆ ( , )*

x xµ µ =g 0  for optimization in the next stage. 
Recognizing that the metamodel 1 2ˆ( , )g x x  will 

inevitably have errors as compared to the true expensive 
performance function 1 2( , )g x x , and so its gradients, this 
work introduces a feedback step at the second stage.  That 
is, assuming 1 2

ˆ ( , )*
x xµ µ =g 0  calculated from Eq. (3) by 

using 1 2ˆ( , )g x x and its gradients has certain error, the 
obtained optimum (usually constrained optimum) will be 
evaluated by calculating its corresponding inverse MPP to 
see whether the MPP satisfies g*>0. If the optimum and 
corresponding inverse MPP fail to satisfy the actual 
constraints due to the use of metamodels, this evaluated 
optimum (an expensive point) and corresponding inverse 
MPP (an expensive point) will be added to the existing set 
of expensive points and the metamodels are to be updated.  
Therefore, the accuracy of metamodels can be further 
improved. Such a step provides a degree of error 
compensation and the compensation is well observed in 
testing problem 2, which will be described in section 4.2. 

 
3.2  Optimization with metamodels of probabilistic  

 constraints 
Once the metamodels of probabilistic constraints are 

constructed, we use the metamodels as surrogates for the 
actual constraints in Eq. (2) and apply the MPS method in 
Ref. [16] to solve the optimization problem. As discussed 
in the last section, the obtained optimum and corresponding 
inverse MPP will be verified by calling the actual 
expensive constraint functions. The flowchart of the 
proposed method is illustrated in Fig. 3. The two major 
stages are enclosed in a dotted box, respectively. Special 
attentions need to be paid to the expressions of metamodels 
for different constraint functions. 

 
4  Numerical Studies 

 
In this section, three problems are employed to test          

the proposed methodology. We assume the constraint 
functions are computation intensive and thus treated as 
black-box functions. For each problem, ten independent 
runs are carried out to test the robustness of the proposed 
method.  

 
4.1  Problem 1 

Problem 1 was first introduced in Ref. [20] and then used 
by others [7, 10]. It has two random variables X1, X2, which 
are normally distributed, and three non-linear constraints, 
g1, g2 and g3. There is no deterministic design variable and 
no random parameter. The objective function is simply the 
sum of the mean of the two random variables. The RBDO 
problem is described as follows: 
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Where 1 2,µ µ  and 1 2,σ σ  are the mean values and 
standard deviations, respectively, of the two design random 
variables 1X  and 2X . iR  is the target reliability of ith 
constraint. For demonstration purposes, the same target 
reliability index 3β =  is used for all three constraints. In 
general, a different target reliability index may be used for 
each constraint. 

 

Fig. 3.  Flowchart of the proposed methodology 

 
By applying the proposed methodology, the obtained 
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results are listed in Table 1. Columns ( )ig x  and ( )*
ig x  

represent the deterministic and corresponding probabilistic 
constraint function values, respectively. The number of 
iterations, nit, and the number of function evaluations, nfe, 
are used as an indication of the time and resources required 
in the computation for expensive function evaluations. The 
number of function evaluations, nfe, for each constraint 

includes all evaluations in two stages (nfe is the same for all 
constraints). As can be seen from Table 1, the proposed 
method robustly captures the same RBDO optimum with 
ten independent runs, which is almost identical to the 
theoretical optimum at (3.44, 3.28) with the minimum 
objective function value 6.720 5 [11]. The computational 
expense, as indicated by nfe, is modest. 
 

Table 1.  Test results for problem 1 

gi

 
*
ig  nit nfe Run 

No. 
*
Xµ  ( )*

Xf µ  
g1

 
g2

 
g3

 
1
*g  2

*g  3
*g  First stage Second stage f gi

 

1 [3.440 6, 3.280 0] 6.720 5 0.000 0 0.000 0 0.511 7 0 0 >0 6 2 13 45 

2 [3.440 5, 3.280 0] 6.720 5 0.000 0 0.000 0 0.511 7 0 0 >0 4 3 16 38 
3 [3.440 6, 3.280 0] 6.720 5 0.000 0 0.000 0 0.511 7 0 0 >0 7 3 16 55 
4 [3.440 6, 3.280 0] 6.720 5 0.000 0 0.000 0 0.511 8 0 0 >0 4 3 16 37 
5 [3.440 6, 3.280 0] 6.720 5 0.000 0 0.000 0 0.511 8 0 0 >0 9 2 12 64 
6 [3.440 6, 3.280 0] 6.720 5 0.000 0 0.000 0 0.511 8 0 0 >0 5 3 15 43 
7 [3.440 6, 3.280 0] 6.720 5 0.000 0 0.000 0 0.511 8 0 0 >0 8 2 12 59 
8 [3.440 6, 3.280 0] 6.720 5 0.000 0 0.000 0 0.511 8 0 0 >0 9 2 12 65 
9 [3.440 6, 3.280 0] 6.720 5 0.000 0 0.000 0 0.511 8 0 0 >0 6 3 15 50 
10 [3.440 6, 3.280 0] 6.720 5 0.000 0 0.000 0 0.511 8 0 0 >0 10 2 12 71 

 
Fig. 4 plots the identified reliable design space by using 

the proposed method, shown as the shaded area. The 
shaded area is enclosed by the theoretical RDS boundaries 
plotted with “×” symbols. It indicates that the reliable 
design space has been identified accurately. The dot “◆◆◆◆” 
represents the evaluated expensive points for metamodeling. 
The circle “○” represents the evaluated expensive points 
during the optimization stage, which are used to update the 
metamodels. These points fall inside the reliable design 
space. 

 

 

Fig. 4.  Graphical output of test results for problem 1 

 
4.2  Problem 2 

A cantilever beam in vertical and lateral bending was 
used in Refs. [2−5, 9, 21]. The beam is loaded at its tip by 
the vertical and lateral loads FY and FZ, respectively. Its 
length L is equal to 100 in (2.54 m). The width w  and 
thickness t  of the cross-section are random design 
variables. The objective is to minimize the weight of the 

beam. This is equivalent to minimizingf wt= , assuming 
that the material density and beam length are constant.  
Two non-linear failure modes are used. The first failure 
mode yields at the fixed end of the cantilever; the other 
failure mode is that the tip displacement exceeds the 
allowable value 0 2.5D = in (63.5 mm). The RBDO 
problem is formulated as follows: 
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Where 1g  and 2g  are the two constraints 

corresponding to the two failure modes. The design 
variables w  and t  are deterministic, while , ,Y ZF F S 
and E  are normally distributed random parameters with 

(1000,100) , (500,100) ,Y ZF ~ N lb F ~ N lb (40 000S ~ N ,, 
2 000)psi and 6 6(29 10 , 1 45 10 )E ~ N . psi.× ×  The para- 

metery  is the random yield strength; ZF  and YF  are 
mutually independent random loads in the vertical and 
lateral directions respectively, and E  is the Young’s 
modulus. iR  is the target reliability of the ith constraint. A 
reliability index 3β =  is used for both constraints. In this 
case, only two deterministic design variables exist in the 
objective function, and only these deterministic design 
variables and four random parameters exist in the 
probability constraints. No random design variable exists in 
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either the objective or probability constraint functions. Test 
results are listed in Table 2 in a format similar to Table 1. 
One can see that the proposed method consistently reaches 
almost the theoretical optimum at (2.45, 3.89) with the 
minimum function value 9.52[11]. The number of evaluation 
of the constraints, however, increases as compared to 
problem 1 due to the complex form of constraints of 
problem 2. A similar graphical plot is also generated as 
shown in Fig. 5 (the symbols meaning is the same to those 
in Fig. 4). As one can see, the two theoretic probabilistic 

constraints are in a certain distance from their respective 
deterministic constraints. The shaded area is identified as 
the reliable design space by the proposed method. This area 
is not entirely enclosed by the theoretical probabilistic 
constraints. This indicates the error of the metamodels. 
Through iterations, it is observed that the initially obtained 
optimum does not satisfy the reliability constraint. 
However, the metamodel is gradually improved according 
to the algorithm and the final optimum satisfies the 
constraints and is close to the theoretical optimum. 
 

Table 2.  Test results for problem 2 

g *
ig  nit nfe Run  

No. 
*
Xµ  ( )*

Xf µ  
1g  2g  1

*g  2
*g  First stage Second stage f ig  

1 [2.457 1, 3.871 5] 9.512 9 0.825 3 0.301 1 0.000 0 0.310 2 72 6 64 320 

2 [2.439 2, 3.902 5] 9.518 9 0.713 5 0.257 7 0.000 8 0.254 3 160 8 76 673 

3 [2.385 9, 3.981 8] 9.500 4 1.332 3 0.233 3 0.000 0 0.310 2 100 4 53 427 

4 [2.450 7, 3.884 4] 9.519 3 1.184 4 0.260 3 0.000 0 0.310 2 146 6 65 610 

5 [2.450 7, 3.884 4] 9.519 3 1.184 4 0.260 3 0.000 0 0.310 2 146 6 65 610 

6 [2.465 6, 3.860 9] 9.519 4 0.713 5 0.275 9 0.000 8 0.252 2 146 6 64 610 

7 [2.377 6, 4.004 6] 9.521 2 9.112 9 0.196 8 0.000 9 0.280 8 44 5 56 206 

8 [2.411 8, 3.940 8] 9.504 5 1.606 8 0.260 4 0.000 9 0.240 3 115 6 69 489 

9 [2.461 1, 3.861 7] 9.504 1 0.803 7 0.315 7 0.000 0 0.310 2 82 8 80 365 

10 [2.449 5, 3.882 8] 9.515 9 0.707 9 0.254 4 0.000 8 0.250 0 103 7 74 465 

 

 

Fig. 5.  Graphical output of test results for problem 2 

4.3  Problem 3 
A vehicle crashworthiness study has been extensively 

used to test the accuracy and efficiency of RBDO methods 
in the past a few years [4,6−7, 10]. Regarding to its engineering 
background, please refer to the references.  Here omitting 
the engineering background, the RBDO vehicle model for 
crashworthiness is given as follows:  

 

1 2

3 4 5

7

min ( , ) 1 98 4 90 6 67

6 98 4 01 1 78

2 73 ,

s.t. ( ) , 1 10.

x x

x x x

x

i i

f . . µ . µ

. µ . µ . µ

. µ

g R i

= + + +

 + + +


 ≥ = −

x
x p

µ
µ µ

X

  (7) 

 
Where ( )ig i  functions are listed in Appendix; iR  are the 

target reliabilities for each constraint; the 99.87% reliability  
( 3)β =  is used for all ten constraints. As shown in Table 3, 
the reliability-based design optimization increases slightly 
the vehicle weight to approximate 28.6 for ( 3)β =  but 
satisfies all probabilistic constraints with at least 99.87% 
reliability.  The proposed method robustly captures the 
same RBDO optimum with ten independent runs. The 
number of iterations, nit, and the number of the function 
evaluations, nfe, are used as an indication of the time and 
resources required in the computation for expensive 
function evaluations, which are found being modest. 

 
5  Conclusions 

 
(1) This work presents a reliability-based design 

optimization approach for problems involving expensive 
performance functions, for which the gradients of 
constraints are expensive to obtain or unreliable. 

(2) The proposed method, RSP, directly approximates 
RDS through the inherent relationship between the 
deterministic and probabilistic constraints. 

(3)Through the numeral tests, the RSP approach is found 
to be effective and robust. Its efficiency is affected by the 
complexity of the performance function. 

(4) The proposed method, as an MPP-based approach, 
may have difficulties with highly-nonlinear constraints 
where multiple MPP may exist. 

(5) The kriging modeling approach is also limited to 
small scale design problems due to its high cost and 
demand for exponentially increasing number of sample 
points.              
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Table 3.  Test results for problem 3 

nit nfe Run  
No. 

*
Xµ  *

X( )f µ  ig  *
ig  First 

stage 
Second 
stage 

f ig  

1 

(0.801 8  1.350 0 
0.714 7  1.500 0 
0.875 0  1.200 0 
0.400 0  0.345 0 
0.192 0  0  0) 

28.566 4 

(0.436 4  0.000 0 
4.335 9  3.591 5 
0.090 0  0.090 0 
0.027 5  0.000 0 
0.557 7  0.013 3) 

(0.526 4  0.000 2  1.623 1 
1.872 4  0.076 5  0.072 9 
0.016 2  0.000 0  0.380 6 

0.317 8) 

51 7 140 1 030 

2 

(0.800 8  1.350 0 
0.715 2  1.500 0 
0.875 0  1.200 0 
0.400 0  0.345 0 
0.192 0  0  0) 

28.564 9 

(0.436 4  0.000 0 
4.335 9  3.591 5 
0.090 0  0.090 0 
0.027 5  0.000 0 
0.557 7  0.013 3) 

(0.526 6  0.000 2  1.615 9 
1.865 6  0.076 6  0.072 8 
0.016 3  0.000 1  0.379 0 

0.288 8) 

51 7 150 1 035 

3 

(0.801 8  1.350 0 
0.714 7  1.500 0 
0.875 0  1.200 0 
0.400 0  0.345 0 
0.192 0  0  0) 

28.566 4 

(0.436 4  0.000 0 
4.335 9  3.591 5 
0.090 0  0.090 0 
0.027 5  0.000 0 
0.557 7  0.013 3] 

(0.526 4  0.000 2  1.623 1 
1.872 4  0.076 5  0.072 9 
0.016 2  0.000 0  0.380 6 

0.317 8) 

51 7 140 1 030 

4 

(0.800 8  1.350 0 
0.715 2  1.500 0 
0.875 0  1.200 0 
0.400 0  0.345 0 
0.192 0  0  0) 

28.564 9 

(0.436 4  0.000 0 
4.335 9  3.591 5 
0.090 0  0.090 0 
0.027 5  0.000 0 
0.557 7  0.013 3) 

(0.526 6  0.000 2  1.615 9 
1.865 6  0.076 6  0.072 8 
0.016 3  0.000 1  0.379 0 

0.288 8) 

51 7 150 1 035 

5 

(0.802 8  1.350 0 
0.716 4  1.500 0 
0.875 0  1.200 0 
0.400 0  0.345 0 
0.192 0  0  0) 

28.583 3 

(0.436 4  0.000 0 
4.335 9  3.591 5 
0.090 0  0.090 0 
0.027 5  0.000 0 
0.557 7  0.013 3) 

(0.524 5  0.000 0  1.626 1 
1.869 8  0.076 5  0.072 9 
0.016 2  0.000 3  0.381 3 

0.296 3) 

51 7 150 1 071 

6 

(0.801 8  1.350 0 
0.714 7  1.500 0 
0.875 0  1.200 0 
0.400 0  0.345 0 
0.192 0  0  0) 

28.566 4 

(0.436 4  0.000 0 
4.335 9  3.591 5 
0.090 0  0.090 0 
0.027 5  0.000 0 
0.557 7  0.013 3) 

(0.526 4  0.000 2  1.623 1 
1.872 4  0.076 5  0.072 9 
0.016 2  0.000 0  0.380 6 

0.317 8) 

51 7 140 1 030 

7 

(0.800 8  1.350 0 
0.715 2  1.500 0 
0.875 0  1.200 0 
0.400 0  0.345 0 
0.192 0  0  0) 

28.564 9 

(0.436 4  0.000 0 
4.335 9  3.591 5 
0.090 0  0.090 0 
0.027 5  0.000 0 
0.557 7  0.013 3) 

(0.526 6  0.000 2  1.615 9 
1.865 6  0.076 6  0.072 8 
0.016 3  0.000 1  0.379 0 

0.288 8) 

51 7 150 1 035 

8 

(0.802 8  1.350 0 
0.716 4  1.500 0 
0.875 0  1.200 0 
0.400 0  0.345 0 
0.192 0  0  0) 

28.583 3 

(0.436 4  0.000 0 
4.335 9  3.591 5 
0.090 0  0.090 0 
0.027 5  0.000 0 
0.557 7  0.013 3) 

(0.524 5  0.000 0  1.626 1 
1.869 8  0.076 5  0.072 9 
0.016 2  0.000 3  0.381 3 

0.296 3) 

51 7 150 1 071 

9 

(0.801 8  1.350 0 
0.714 7  1.500 0 
0.875 0  1.200 0 
0.400 0  0.345 0 
0.192 0  0  0) 

28.566 4 

(0.436 4  0.000 0 
4.335 9  3.591 5 
0.090 0  0.090 0 
0.027 5  0.000 0 
0.557 7  0.013 3) 

(0.526 4  0.000 2  1.623 1 
1.872 4  0.076 5  0.072 9 
0.016 2  0.000 0  0.380 6 

0.317 8) 

51 7 140 1 030 

10 

(0.801 8  1.350 0 
0.714 7  1.500 0 
0.875 0  1.200 0 
0.400 0  0.345 0 
0.192 0  0  0) 

28.566 4 

(0.436 4  0.000 0 
4.335 9  3.591 5 
0.090 0  0.090 0 
0.027 5  0.000 0 
0.557 7  0.013 3) 

(0.526 4  0.000 2  1.623 1 
1.872 4  0.076 5  0.072 9 
0.016 2  0.000 0  0.380 6 

0.317 8) 

51 7 140 1 030 
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Appendix 

        ( )ig x  Function 

1 AL( 1 kN)g F ≤  2 4 2 10 3 9 6 101.16 0.3717 0.009 31 0.484 0.013 43x x x x x x x x− − − +  

2 low( 32 mm)g D ≤  2 1 8 3 1046.36 9.9 12.9 0.110 7x x x x x− − +  

3 mid( 32 mm)g D ≤  3 10 1 2 2 8 5 10 7 8 8 933.86 2.95 0.179 2 5.057 11.0 0.0215 9.98 22.0x x x x x x x x x x x x+ + − − − − +  

4 up( 32 mm)g D ≤  3 1 2 5 10 6 9 7 8 9 1028.98 3.818 4.2 0.020 7 6.63 7.7 0.32x x x x x x x x x x x+ − + + − +  

5 low( 32 m/s)g V ≤  
1 2 1 8 2 7 3 5 5 10 6 9

8 11 10 11

0.261 0.015 9 0.188 0.019 0.014 4 0.000 875 7 0.080 45

0.00139 0.000 015 75

x x x x x x x x x x x x

x x x x

− − − + + + +
+

 

6 mid( 32 m/s)g V ≤  
5 1 8 1 9 2 6 2 7 3 8 3 9

5 6 5 10 6 10 8 11

0.214 0.00817 0.131 0.070 4 0.030 99 0.018 0.020 8 0.121

0.003 64 0.000 7715 0.000 535 4 0.001 21

x x x x x x x x x x x x x

x x x x x x x x

+ − − + − + + −
+ − +

 

7 up( 32 m/s)g V ≤  2
2 3 8 3 10 7 9 20.74 0.61 0.163 0.001 232 0.166 0.227x x x x x x x x− − + − +  

8 ps( 4.01 kN)g F ≤  2
4 2 3 4 10 6 10 114.72 0.5 0.19 0.012 2 0.009 325 0.000191x x x x x x x x− − − + +  

9 B Pillar( 9.9 m/s)g v − ≤  1 2 2 8 3 10 4 10 6 1010.58 0.674 1.95 0.020 54 0.019 8 0.028x x x x x x x x x x− − + − +  

10 door( 15.69 m/s)g v ≤  2
3 7 5 6 9 10 9 11 1116.45 0.489 0.843 0.043 2 0.055 6 0.000 786x x x x x x x x x− − + − −  

Note: (1) ALF  is the dummy abdomen load; upD , midD  and lowD  are the dummy upper rib, middle rib, and lower rib deflections; upV , midV  
and lowV  are the dummy upper chest, middle chest, and lower chest viscous criterion values, respectively;psF  is the dummy public symphysis 
force; B Pillarv −  is the velocity at the middle B-pillar position; doorv  is the B-pillar velocity at door belt line. 

(2  )

L U

8 9

10 11

, 1 7,
(2) , 0.345 or 0.192, enumerated variables denote material properties,

, 0.0, barrier height and position.

i i i iµ µ µ
µ µ
µ µ

 ≤ ≤ = −
 =
 =

 

 

   (3) All random variables and parameters are assumed normally distributed with standard deviations 1 4,6,7 0.03,σ − =  5 0 05,.σ =  8 9 0 006, .σ =  

and 10 11 10,σ = [4].  


