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Abstract 

Computational tools such as finite element analysis and simulation are widely used in 

engineering. But they are mostly used for design analysis and validation.  If these tools can be 

integrated for design optimization, it will undoubtedly enhance a manufacturer’s 

competitiveness. Such integration, however, faces three main challenges: 1) high computational 

expense of simulation, 2) the simulation process being a black-box function, and 3) design 

problems being high dimensional. In the past two decades, metamodeling has been intensively 

developed to deal with expensive black-box functions, and has achieved success for low 

dimensional design problems. But when high dimensionality is also present in design, which is 

often found in practice, there lacks of a practical method to deal with the so-called High-

dimensional, Expensive, and Black-box (HEB) problems. This paper proposes the first 

metamodel of its kind to tackle the HEB problem. This work integrates Radial Basis Function 

(RBF) with High Dimensional Model Representation (HDMR) into a new model, RBF-HDMR. 

The developed RBF-HDMR model offers an explicit function expression, and can reveal the 1) 

contribution of each design variable, 2) inherent linearity/nonlinearity with respect to input 

variables, and 3) correlation relationships among input variables.  An accompanying algorithm to 

construct the RBF-HDMR has also been developed. The model and the algorithm fundamentally 
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change the exponentially growing computation cost to be polynomial.  Testing and comparison 

confirm the efficiency and capability of RBF-HDMR for HEB problems. 

 

Key words: response surface, metamodel, large-scale, high dimension, design optimization, 

simulation-based design 

 

1. Introduction 

Metamodel is a “model of model,” which is used to approximate a usually expensive analysis or 

simulation process; metamodeling refers to the techniques and procedures to construct such a 

metamodel. In the last two decades, research on metamodeling has been intensive and roughly 

along one of the four directions, including sampling and evaluation, metamodel development and 

evaluation, model validation, and metamodel-based optimization. Recently the authors [1] 

reviewed the applications of metamodeling techniques in the context of engineering design and 

optimization. Chen [2] summarized pros and cons of the design of experiments methods and 

approximation models.  Simpson et al. [3] reviewed the history of metamodeling in the last two 

decades and presented an excellent summary on what have been achieved in the area thus far and 

challenges ahead. 

 

It can be seen from the recent reviews that metamodels have been successfully applied to solve 

low dimensional problems in many disciplines.  One major problem associated with these 

models (e.g., polynomial, RBF and Kriging) and metamodeling methodologies, however, is that 

in order to reach acceptable accuracy the modeling effort grows exponentially with the 

dimensionality of the underlying problem. Therefore, the modeling cost will be prohibitive for 



3 

 

these traditional approaches to model high-dimensional problems. In the context of design 

engineering, according to references [3-6], the dimensionality larger than ten ( 10 ) is 

considered high if model/function evaluation is expensive, and such problems widely exist in 

various disciplines [6-10].  Due to its computational challenge for modeling and optimization, 

the high dimensionality problem is referred as the notorious “curse of dimensionality” in the 

literature. For combating the “curse of dimensionality,” Friedman and Stuetzle [11] developed 

projection pursuit regression, which worked well with dimensionality 50 with large data 

sets.  Friedman [12] proposed multivariate adaptive regression splines (MARS) model, which 

potentially makes improvement over existing methodology in settings involving 203 ≤≤ d , with 

moderate sample size, 100050 ≤≤ N . Sobol [13] has proved the theorem that an integrable 

function can be decomposed into summands of different dimensions. This theorem indicates that 

there exists a unique expansion of high-dimensional model representation (HDMR) for any 

function   integrable in space Ωd. This HDMR is exact and of finite order and has a 

hierarchical structure. A family of HDMRs with different characters has since been developed, 

studied, and applied for various purposes [14-21].  

 

In our recent review of modeling and optimization strategies of high dimensional problems [22], 

it is found that the research on this topic has been scarce, especially in engineering. In 

engineering design, there is no metamodel developed to directly tackle HEB problems. Currently 

available metamodels are not only limited to low dimensional problems, and are also derived in 

separation from the characteristics of the underlying problem. A different model type is therefore 

needed for HEB problems. This paper proposes the RBF-HDMR model in response to such a 

need.   
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As part of the metamodeling methodology, an adaptive sampling method is also developed to 

support the proposed RBF-HDMR model. In the research of sampling for metamodeling, 

sequential and adaptive sampling has gained popularity in recent years, mainly due to the 

difficulty of knowing the “appropriate” sampling size a priori. Lin [23] proposed a sequential 

exploratory experiment design (SEED) method to sequentially generate new sample points.  Jin 

et a.l. [24] applied Enhanced Stochastic Evolution to generate optimal sampling points. Sasena et 

al. [25] used the Bayesian method to adaptively identify sample points that gave more 

information.  Wang [26] proposed an inheritable Latin Hypercube design for adaptive 

metamodeling.  Jin et al. [27] compared a few different sequential sampling schemes and found 

that sequential sampling allows engineers to control the sampling process and it is generally 

more efficient than one-stage sampling. In this work, we develop an adaptive sampling method 

that is rooted in the RBF-HDMR model format. Section 4 will describe the method in detail.  

 

Before we introduce the RBF-HDMR and its metamodeling method, the premise of this paper is 

that are given as below: 1) there exists a unique expansion of HDMR and the full expansion is 

exact for a high dimensional function, and 2) for most well-defined physical systems, only 

relatively low-order correlations among input variables are expected to have a significant impact 

upon the output; and high-order correlated behavior among input variables is expected to be 

weak [15]. The order of correlation refers to the number of correlated variables, e.g., bivariate 

correlation is considered low order while multivariate (e.g. five-variable) correlation is high. 

Premise 1 was proven in Sobol [13]. Broad evidence supporting Premise 2 comes from the 

multivariate statistical analysis of many systems where significant covariance of highly-

correlated input variables rarely appears [6, 15]. Owen [28] observed that high dimensional 
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functions appearing in the documented success stories did not have full d-dimensional 

complexity.  The rapid dying-off of the order of correlations among input variables does not, 

however, eliminates non-linear influence of variables, or strong variable dependence, or even the 

possibility that all the variables are important. These premises pave the way for this work to 

tackle the “curse of dimensionality”.  

 

This paper is organized as follows. Section 2 introduces HDMR. Section 3 proposes the RBF-

HDMR model. Section 4 discusses how we address the high dimensionality challenge and 

describes in detail the metamodeling approach for RBF-HDMR. A modeling example is also 

given for the ease of understanding of RBF-HDMR and its metamodeling approach. Section 5 

studies the behavior of RBF-HDMR with respect to dimensionality through a study problem and 

testing on a suite of high dimensional problems. The test results are also compared with those 

from other metamodels based on Latin Hypercube samples. Conclusions are drawn in Section 6. 

 

2. Basic Principle of HDMR 

A HDMR represents the mapping between input variables , , ,  defined in the 

design space and the output . A general form of HDMR [13,15] is shown as follows: 

∑ ∑ , ∑ , ,

 ∑ , , , , , ,                         (1) 

Where the component is a constant representing the zero-th order effect to ; the 

component function  gives the effect of the variable  acting independently upon the 

output  (the first order effect), and may have an either linear or non-linear dependence on . 

The component function ,  describes the correlated contribution of variables  and 
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 upon the output   (the second order effect) after the individual influences of  and  are 

discounted, and ,  could be linear or nonlinear as well. The subsequent terms reflect the 

effects of increasing numbers of correlated variables acting together upon the output . The 

last term , ,  represents any residual dependence of all the variables locked 

together to influence the output  after all the lower-order correlations and individual 

influence of each involved xi (i =1,…,d) have been discounted. As the order of the component 

function increases, the residual impact of higher correlations decreases.  If the impact of an l-th 

order component function is negligible, the impact of higher order (>l-th) component functions 

will be even smaller and thus negligible as well. For example if ,   is negligible, then 

, ,  will be negligible since it is the residual impact after the influences of  and 

,  are modeled. It is known that the HDMR expansion has a finite number of terms 2d (d 

is the number of variables, or dimensionality) and is always exact [13].  

 

There is a family of HDMRs with different features [14, 18-20].  Among these types, the Cut-

HDMR [15, 16] involves only simple arithmetic computation and presents the least costly model 

with similar accuracy as other HDMR types. Therefore Cut-HDMR is chosen as our basis for the 

proposed RBF-HDMR. A Cut-HDMR [14-15] expresses  by a superposition of its values on 

lines, planes and hyper-planes (or cuts) passing through a “cut” center  which is a point in the 

input variable space. The Cut-HDMR expansion is an exact representation of the output   

along the cuts passing through . The location of the center   becomes irrelevant if the 

expansion is taken out to convergence [15].  On the other hand, if HDMR expansion did not 

reach convergence, i.e., the model omits significant high order components in the underlying 
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function, a poor choice of x0 may lead to large error [21].  Sobol [21] suggests using the point as 

x0 that has the average function value; the average is taken from function values of a certain 

number of randomly sampled points. The component functions of the Cut-HDMR are listed as 

follows: 

                                                                                       (2) 

  ,                                                                (3) 

    , , ,                               (4) 

   , , , , , , , ,

               (5) 

. . . 

  , ∑ ∑ ,                 (6) 

where , , and  are respectively  without elements ; , ;  and , , . For the 

convenience of later discussions, the points  , , , , , , , ,  

, , , , , , , , , , … , are respectively called as the zero-th order, 

first order, second order model-constructing point(s), respectively. Accordingly,  is the 

value of  at ; ,  is the value of  at point , .  

 

The HDMR discloses the hierarchy of correlations among the input variables. Each component 

function of the HDMR has distinct mathematical meaning. At each new order of HDMR, a 

higher order variable correlation than the previous level is introduced. While there is no 

correlation among input variables, only the constant component  and the function terms   

exist in the HDMR model. It can be proven that  is the constant term of the Taylor 
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series; the first order function  is the sum of all the Taylor series terms which only contain 

variables , while the second order function ,  is the sum of all the Taylor series terms 

which only contain variables  and , and so on [14]. These component functions are optimal 

choices tailored to  over the entire d-dimensional space because these component functions 

are orthogonal to each other, the influence of each component term is independently captured by 

the model, and the component functions lead to minimum approximation error defined by ||f(x)-

fmodel(x)||2 [14, 15].  

 

Although Cut-HDMR has demonstrated good properties, the model at its current stage only 

offers a check-up table, lacks of a method to render a complete model, and also lacks of 

accompanying sampling methods to support it. This work proposes to integrate RBF to model 

the component functions of HDMR.  

 

3. RBF-HDMR 

In order to overcome the drawbacks of HDMR, this work employs RBF to model each 

component function of the HDMR. Among a variety of RBF formats, this work chooses the one 

composed of a sum of thin plate spline plus a linear polynomial. The details of the chosen RBF 

format are in the Appendix. Without losing generality, the simple linear RBF format is used for 

the ease of description and understanding. In RBF-HDMR, RBF models are used to approximate 

component functions in Eqs. (3-6), as follows: 

  ∑ , , , where , , , , , ,        (7) 

            , ∑ , ,  , ,   , where                                                  
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     , , , , , , , , , ,                              (8)  

… 

  , , , ∑ | |                                 (9) 

Where , , 1, … ,  are points , , , , , , evaluated at 

1, … ,  along each xi component; similarly  , ,  , 1, ,  are points 

, , , , , , ,  evaluated at xi, i=1,…,mi, and xj, j=1,…,mj, that are used to 

construct the first-order component functions; xk= , , , , , , , , 

k=1,…, , are the points built from  evaluated x components for lower order component 

functions. 

 

Eqs. (7-9) are referred as the modeling lines, planes, and hyper-planes. Substituting the above 

approximation expressions into the HDMR in Eq. (1), we have the following: 

∑ ∑ , , ∑ ∑ , ,

 , , ∑ | |           

  

(10) 

The above approximation in Eq. (10) is called the RBF-HDMR model. Inheriting the hierarchy 

of HDMR, RBF-HDMR distinctly represents the correlation relationship among the input 

variables in the underlying function, and provides an explicit model with a finite number of 

terms. The component functions of multiple RBFs in the model approximate the univariates, 

bivariates, triple-variates, etc., respectively. The RBF-HDMR approximation of the underlying 

function  is global. Since the HDMR component functions are orthogonal in the design 

space [14], approximation of HDMR component functions such as RBF-HDMR likely provides 
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the simplest and also the most efficient model to approximate  over the entire d-dimensional 

design space.  

 

For typical underlying functions, RBF-HDMR expands to the second order as follows 

            ∑ ∑ ,  

 ∑ ∑ , , ∑ ∑ , ,  , ,

            (11) 

The RBF-HDMR in Eq. (11) neglects higher order component terms based on the assumption 

that the residual impact of the high order correlation is small after the impact of individual 

variables and their lower order correlations has been captured. The second model, however, does 

include all input variables and is capable of capturing high nonlinearity of the underlying 

function through nonlinear component functions.   

 

As we know RBF is an interpolative function, each component function will go through its own 

model construction points. But since RBF-HDMR is a summand of these component functions, 

the question is: “will the resultant RBF-HMDR go through all of the evaluated model 

construction points?” 

 

Lemma: 

A RBF-HDMR model passes through all the prescribed sample points used for constructing 

zero-th order to the current order component functions. 

For clarity, the prescribed, as compared to arbitrarily selected, model-constructing points are 

explained as follows. For the zero-th order component, the model-constructing point is  ; for 
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the first order components, the model-construction points include  and  , ; for the 

second order components, its model-construction points are , , , ,  and 

 , , , . 

 

The lemma is proved as follows. Assuming  is the cut center, the RBF-HDMR at first-order is 

defined as . Its first order component function  is approximated by one 

dimensional RBF function ∑ , ,  by using the function values computed 

from , , where  is the k-th model-constructing point along xi, and 

,  is the true function value at point , . Since  is a constant and  

interpolates all model constructing points, the RBF-HDMR model  will interpolate all the 

model constructing points   and , .  

 

For the second order components, the function values of these components are computed from 

, , , , and ,  is then approximated by a two-

dimensional RBF function ∑ , ,  , ,
 
 with points  , , , 

, , and , , , . It is easy to see ,  pass through all the evaluated 

points since they all participated in modeling , .  For first order component functions, 

which are functions of only  and orthogonal to each other, they will have zero error at 

, ,  since each  goes through .  Therefore all first-order component functions, 

and therefore the resultant  RBF-HDMR model, will pass through all model constructing points 

to the second order component function, i.e., , , , , , and , , ,  . 
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Similarly the RBF-HDMR model passes their model-constructing points till the d-th component. 

As the RBF-HDMR has a finite number of terms and each of its component function is exact on 

these prescribed model-constructing (or evaluated sample) points, the RBF-HDMR model will 

pass through all sample points. The lemma is proved. 

 

The above lemma not only reveals an important feature of RBF-HDMR, it is also a great help to 

answer the following question, “if the RBF-HDMR model is built at the l-th order, how to 

identify if there is still (l+1)-th order component that need to be modeled?”  

 

Let’s start with l=1, which indicates that all the zero-th and first order component functions have 

been modeled using points  and , .  If the second order component functions are to be 

built, we will use the elements in these existing points to create new sample points  , ,  

for modeling. According to the lemma, the to-be-built second order RBF-HDMR model is then 

expected to go through these sample points , , .  If the first-order RBF-HDMR model 

cannot accurately predict the function value at the new sample point , , , it indicates 

that there must exist second order and/or higher order correlation that has not been modeled, 

since the approximation error is zero for the first order component functions at points ,  

and , ..  

 

To generalize the above discussion, we create a point 

, , , , , , , , 0 by random combining the sampled values  in 

the first order component construction for each input variable (i.e., , di ...,,1= and evaluated at 
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, , respectively). According to the lemma, the complete RBF-HDMR model in Eq. (10) 

should interpolate this point, .  If an l-th order RBF-HDMR model does not interpolate this 

point, it indicates that there is higher order (>l-th) component functions need to be modeled to 

decrease the prediction error, and the metamodeling should therefore continue until convergence. 

This fact has been incorporated in the metamodeling algorithm, which is to be detailed in Section 

4.2. 

 

4. Metamodeling for RBFHDMR 

4.1 Strategies for High Dimensionality 

From the recent review [22], the authors find that the cost of modeling an underlying function is 

affected by multiple factors including the function’s dimensionality, linearity/nonlinearity, 

ranges of input variables, and convergence criteria. Generally speaking, the cost increases as the 

dimensionality and nonlinearity rise, the ranges of input variables become larger, and as the 

convergence criteria become stricter. This section describes four strategies associated with the 

proposed metamodeling method for RBF-HDMR that help to circumvent/alleviate the 

computational difficulty brought by the increase of dimensionality without the loss of sampling 

resolution. 

 

First, a RBF-HDMR model has a hierarchical structure from zero-th order to d-th order 

components. If this structure can be identified progressively, the cost of constructing higher-

order components in HDMR can be saved.  The computational cost (i.e. the number of sampling 

points) of generating a Cut-HDMR up to the l-th level is given by [15, 16] 
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  ∑ !
! !

1 1 1
1

2!
1 2 1 2

3!
1 3  

                                          
!

1                                                                        (12) 

Where s  is the number of sample points taken for each xi. The cost of Cut-HDMR is related to 

the highest order of the Cut-HDMR expansion where the convergence is reached. Each term in 

Eq. (12) represents the computational cost for constructing the corresponding order of 

component functions.  The cost relates to three factors—the dimensionality , the number of 

sampling points s for each variable (i.e., take s levels for each variable), and the highest order of 

the component functions . The highest order, l, of component functions represents the maximum 

number of correlated input variables. As mentioned before, only relatively low-order correlations 

of the input variables are expected to have an impact upon the output and high-order correlated 

behavior of the input variables is expected to be weak. Typically 3 has been found to be 

quite adequate [6]. Considering , a full space resolution 1/s is obtained at the 

computational cost less than 1 / 1 !. Thus the exponentially increasing difficulty 

 is transformed into a polynomial complexity, . This strategy exploits a superposition of 

functions of a suitable set of low dimensional variables to represent a high dimensional 

underlying function.  

 

Second, for components of the same order, e.g., at the second order with bivariate correlations, 

not all possible bivariate correlations may present in the underlying function. Therefore some of 

the non-existing correlations among input variables can be identified and eliminated from 

modeling to further reduce the cost. The coefficients in Eq. (12), for example, 
!

, 
!

, 

respectively denote the maximum number of probable combinations of the correlated terms at 
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second and third order component levels. While the number of dimensionality, , cannot be 

changed, the number of these coefficients can be reduced if the non-existing correlations can be 

identified and eliminated and the modeling cost associated with those terms can therefore be 

saved. The developed metamodeling algorithm for RBF-HDMR adaptively identifies such non-

existing correlations and models the underlying function accordingly, which will be described in 

the next section. 

 

Third, although the number of sample points, s, for each variable cannot be reduced in order to 

keep a certain sampling resolution 1/s, these sample points can be reused for modeling higher-

order component functions. For example, while modeling second-order component functions, 

sample points on the reference axes, or hyper-planes, such as  , , , and ,  are re-

used.   

 

Lastly, the number of sample points, s, relates to the degree of the nonlinearity of the underlying 

function with respect to the input variable  . The higher the degree of the nonlinearity, the more 

sample points along  are needed to meet the required accuracy. For a linear component, two 

sample points are enough to accurately model it.  The developed metamodeling algorithm for 

RBF-HDMR gradually explores the non-linearity of the component functions and thus 

conservatively allocates such cost.   

 

In summary, the RBF-HDMR model naturally helps to transform an exponentially increasing 

computational difficulty into a polynomial one by neglecting higher order component functions. 

The proposed metamodeling method will also adaptively explore the linearity/nonlinearity of 
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each component function, identify non-existing variable correlations, and reuse sample points to 

further reduce the modeling costs.  

 

4.2 Sampling and Model Construction 

Based on the proposed RBF-HDMR model, a sampling and model construction algorithm is 

developed. The algorithm steps are described as follows: 

1. Randomly choose a point , , , in the modeling domain as the cut center. 

Evaluating  at , we then have .  

2. Sample for the first order component functions  , , , , ,  in 

the close neighbourhood of the two ends of xi (lower and upper limits) while fixing the rest of xj 

(j i) components at . In this work, a neighborhood is defined as one percent of the variable 

range which is in the design space and near a designated point. Evaluating these two end points, 

we got the left point value , , , , ,  and the right point value 

, , , , ,  and model the component function as  by a 

one dimensional RBF model for each variable  . 

3. Check the linearity of  . If the approximation model  goes through the center 

point, ,  is considered as linear. In this case, modeling for this component terminates. 

Otherwise, use the center point  and the two end points to re-construct . Then a random 

value along  is generated and combined with the rest of xj (j i) components at  to form a 

new point to test . If  is not sufficiently accurate (the relative prediction error is larger 

than a given criterion, e.g. 0.1), the test point and all the evaluated points will be used to re-

construct . This sampling-remodeling process iterates till convergence.  This process is to 
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capture the nonlinearity of the component function with one sample point at a time. Step 3 

repeats for all of the first order component functions to construct the first order terms of RBF-

HDMR model. 

4. Form a new point, , , , , , , , , , , 0 by random 

combining the sampled value  in the first order component construction for each input variable 

(i.e., , di ...,,1= and evaluated at , , respectively). This new point is then evaluated by 

expensive simulation and the first order RBF-HDMR model. The function values from expensive 

simulation and model prediction are compared. If the two values are sufficiently close (the 

relative error is less than a small value, e.g. 0.1), it indicates that no higher-order terms exist in 

the underlying function, the modeling process terminates.  Otherwise, go to the next Step.  

5. Use the values of and ,  that exist in thus-far evaluated points ,

, , , , , ,  and , , , , , ,  to form new points of the 

form , , , , , , , , , . Randomly select one of the points from 

these new points to test the first-order RBF-HDMR model.  If the model passes through the new 

point, it indicates that xi and xj are not correlated and the process continues with the next pair of 

input variables. This is to save the cost of modeling non-existing or insignificant correlations. 

Otherwise, use this new point and the evaluated points ,  and ,  to construct the 

second order component function, , . This sampling-remodeling process iterates for all 

possible two-variable correlations until convergence (e.g., the relative prediction error is less 

than 0.1). Step 5 is repeated for all pairs of input variables. 
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Theoretically, Step 5 applies to all higher-order terms in RBF-HDMR model, Eq. (10), in a 

similar manner. In this work, the process proceeds towards the end of the second order terms 

based on the Premise 2 in the introduction section.  The identification of correlations in Steps 4 

and 5 is supported by the discussions in Section 3. 

 

4.3 An Example for Metamodeling RBF-HDMR 

For the ease of understanding, consider the following mathematical function with d = 3 

  4, 0 1                                              (13) 

Table 1 shows the modeling processes – finding , modeling the first order components 

, 1, ,3,  detecting and exploiting linearity and correlation relationship in the 

underlying function, and modeling higher order components, , , if they exist. This process 

continues until convergence. The first and last rows list the original function and the 

corresponding RBF-HDMR model, respectively. Each middle row demonstrates the modeling 

process in hierarchy.  The detailed steps are as follows. 

 

Step 1. Randomly sample the cut center   in the neighbourhood of the center of the design 

space, in this case, 0.5, 0.5, 0.5  and then find . 

Step 2. Randomly sample  at its two ends, and form two new points ,  (one per end) and 

evaluate them. Model the component functions using the two end points. For example, for x1, 

two values 0 and 1 are sampled; we can use the function values [f (0, 0.5, 0.5)-f0] and [f (1, 0.5, 

0.5)-f0] as their function values for 0 and 1, respectively to model f1(x1). Note that the special 
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RBF format as in the Appendix is used rather than the simple linear spline format to avoid matrix 

singularity. 

Step 3. Detect the linearity of the output function with respect to each variable  by comparing 

 and . If nonlinearity exists, model , 1, ,3  till convergence. The f2(x2) 

component function, for instance, is a nonlinear function.  In addition to the two end points 0 and 

1, two more new sample points are generated at 0.19 and 0.81 to capture its nonlinearity.  All of 

the component functions are plotted with a distance  in the last column in Table 1. 

Step 4. Identify if correlation exists. If no, terminate modeling. Otherwise, go to Step 5. In this 

case, since there exists correlation between x1 and x3, the modeling process continues. 

Step 5. Identify the correlated terms according to Step 5 of the algorithm described in Section 4.2. 

If correlation exists in the underlying function, model the identified correlated terms. In this case, 

only the correlated term  exists, which needs to be modeled as a component function. Repeat 

Step 5 until convergence.  

 

To better understand Table 1, let us take modeling  as an example.  When 

modeling , five values along  are generated, i.e., 0, 1, 0.5, 0.19, 0.81, according to the 

sampling algorithm described in Section 4.2.  By combining these values with other  

component values except for , we have five new points and their function values are evaluated.  

Deducted the  value from their function values, we obtain the component function  

values for these five points are, respectively, -0.25, 0.75, 0.0, -0.2139, 0.4061.  Employing these 

five points and their function values to fit the RBF function as defined in the Appendix, one can 

have the RBF model for , with five nonlinear terms and two polynomial terms, as shown 

in the last row of Table 1. 
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In Table 1,  is especially noteworthy.  One can see from the original function expression 

that there is no separate x3 term in the function, but an x1x3 term.  Why is  not zero?  This 

is because HDMR first finds the first order influence of , the residual then goes to the second 

order component function , . Therefore, it would be wrong to mechanically match the 

component functions with the terms in the underlying function. As a matter of fact, the x1x3 term 

in the original function has been expressed by  and , , as well as partially by 

. 

 

Figure 1 shows the distribution of all sample points in the modeling space. It can be seen that 

most sampled points are located on the lines and planes across the cut center  . Points  

, ,  and  were used to identify the correlation among the variables, respectively 

between  and ,   and ,  and , as well as the existence of correlations among all 

variables  ,  and  of the underlying function. It is to note that these sample points are 

generated as needed according to the aforementioned sampling and model construction method.   

 

 

 

Fig. 1 Distribution of sample points for the example problem 
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Table 1 Process of modeling RBF-HDMR for the example problem 

Function 4, 0 1 
 0.5, 0.5, 0.5 3 

 
 
 
 
 

 
 

Linearity Samples ix  Observed 
0),( fxxf i

i −  RBF 
coefs 

Component 
Function Plot 

 
 

(linear) 

0 
1 
0.5 

-3.75 
-2.25 
-3 
 

-0.75 
 0.75 
 0 

  0 
  0   
  0 
 -0.75 
  1.5 

 

 
 

(non-linear) 

0 
1 
0.5 
0.19     
0.81 

-3.25 
-2.25 
-3 
-3.2139 
-2.5939 

-0.25 
 0.75 
 0 
-0.2139 
 0.4061 

  0.6796 
  0.6796 
 -0.1754 
 -0.5918 
 -0.5918 
 -0.3977 
  1 

 
 

 
(linear) 

0 
1 
0.5 

-3.25 
-2.75 
-3 

-0.25 
 0.25 
 0 

 0  
 0  
 0 
-0.25 
 0.5 

 

 
 
 
 
 
 
 

,  

Correlation 
Relationship Sampling 

,   
Observed 

 
, ,

 
RBF 
coefs 

,  null null null null 

,  
 

(0.5,0.5); 
(0,0.5); 
(1,0.5); 
(0.5,0); 
(0.5, 1); 
(0,0); 
(1,1); 
(0,1); 
(1,0); 
 

-3 
-3.75 
-2.25 
-3.25 
-2.75 
-3.75 
-1.75 
-3.75 
-2.75 
 

  0 
  0 
  0 
  0 
  0 
  0.25 
  0.25 
 -0.25 
 -0.25 

0;0;0;0;0; 
0.3607;   
0.3607; 
-0.3607;  
-0.3607;  
0;0;0 

,  null null null null 

 
3
0

0.75 1.5
1

 

0.6796| | log| | 0.6796| 1| log| 1| 0.1754| 0.5| log| 0.5| 0.5918| 0.19| log| 0.19| 0.5918| 0.81| log| 0.81| 0.3977
2

 

0.25 0.5

0.3607 log 0.3607 1
1 log 1

1 0.3607 0
1 log 0

1 0.3607 1
0 log 1

0  

  
 

 

0       0.5    1

-2.5 

-3 

-3.5 

0       0.5    1

-2 

-3 

-4 

0       0.5    1

-2 

-3 

-4 
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Given the metamodel as expressed in the last row of Table 1, one can observe that all first order 

functions are linear except for f2, which indicates that x2 has a nonlinear influence to the overall f 

function while others have linear effects. For the second order components, only a nonlinear f13 

is present, indicating other variables are not correlated.   

 

5. Testing of RBF-HDMR 

Problems from literature are used for testing the proposed RBF-HDMR and its metamodeling 

method. The modeling efficiency is indicated by the number of (expensive) sample points. The 

modeling accuracy is evaluated by three performance metrics. A comparison of the RBF-HDMR 

model with other metamodels is also given. 

 

5.1 Performance Metrics 

There are various commonly-used performance metrics for approximation models that are given 

in [22]. To the authors’ knowledge, however, there are no specially defined performance metrics 

for high dimensional approximation models in the open literature. In mathematics, where the 

high dimensional problems are mostly (and yet not adequately) studied, the percentage relative 

error is often used as a metric for model validation. It is found, however, when the absolute 

errors of the metamodels are quite small, their percentage relative errors could be extremely 

large when the function value is close to zero.  The percentage relative error measure is also 

dependent on the problem scale, which makes the comparison between problems disputable. In 

the engineering design, the cross-validation method is currently a popular method for model 

validation. However, Lin [23] found that the cross-validation is an insufficient measurement for 

metamodel accuracy.  The cross-validation is actually a measurement for degrees of insensitivity 
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of a metamodel to lost information at its data points, while an insensitive metamodel is not 

necessarily accurate.  To be consistent with Ref. [5], which will be used for result comparison, 

this work employs three commonly used performance metrics —R square, relative average 

absolute error (RAAE) and relative maximum absolute error (RMAE) —for validating 

approximation models.  After the RBF-HDMR modeling process is terminated, additional 10,000 

new random sample points are used to evaluate the model against the three performance metrics 

by Monte Carlo simulation. The values of these performance metrics show the prediction 

capability of the RBF-HDMR on new points.  It is to be noted that these three metrics all need a 

fairly large number of validation points to be meaningful but for High dimensional, Expensive, 

Black-box (HEB) problems such information are too costly to obtain. This is in contrast to high 

dimensional problems studied in mathematics where those are inexpensive problems and a large 

quantity of validation points is affordable. Validation methodology for HEB problems is 

therefore worth further research.  Since this work also chose mathematical problems for testing 

and comparison, we can still employ the three metrics with Monte Carlo simulations for 

validation. These metrics are described as below:   

1) R Square: 

         1 ∑
∑                                                                  (14) 

Where  denotes the mean of function on m sample points. This metrics indicates the overall 

accuracy of an approximation model. The closer the value of R square approaches one, the more 

accurate is the approximation model. Note that R2 is evaluated on the new validation points, not 

on the modeling points. The same is true for RAAE and RMAE. 

2) Relative Average Absolute Error (RAAE): 
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       ∑ | |                                                                      (15) 

where STD stands for standard deviation. Like R square, this metric shows the overall accuracy 

of an approximation model. The closer the value of RAAE approaches zero, the more accurate is 

the approximation model. 

3) Relative Maximum Absolute Error  (RMAE): 

 , , ,                        (16) 

This is a local metric. A RMAE describes error in a sub-region of the design space. Therefore, a 

small value of RMAE is preferred. 

 

5.2 Study Problem 

A problem for large-scale optimization in MatlabTM optimization toolbox is chosen to study the 

performance of RBF-HDMR and its metamodeling method as a function of the dimensionality, 

d.  

∑ ,  0 1               (17) 

This highly nonlinear problem was tested with d=30, 50, 100, 150, 200, 250 and 300. For each d, 

ten runs have been taken and the mean values of R square, RAAE and RMAE are charted in Fig. 

3. 

 

Fig. 2 Performance metrics mean with respect to d (x-axis) for the study problem 

 

As seen from Fig. 2, although the three accuracy performance metrics deteriorate slightly as d 

increases, they demonstrate that the RBF-HDMR model fits well the high dimensional 
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underlying function.  The minimum (worst) value of R square is close to 0.9, the maximum 

(worst) values of RAAE is about 0.32 and the maximum (worst) value of RMAE is about 0.54. 

The data explains the RBF-HDMR model has a good fit of the underlying function.   

 

Regarding to modeling cost, assuming five samples are taken along each axes (s = 5), we list the 

number of evaluations for RBF-HDMR model, full second order expansion of the HDMR 

(polynomially increasing cost), and the full factorial design of experiments (exponentially 

increasing cost) for various dimensionality d in Table 2. The comparison clearly shows the 

computational advantage of the proposed RBF-HDMR. The efficiency of the proposed method 

will be further studied in comparison with Latin Hypercube samples in the next section. 
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Table 2 Comparison of modeling cost for the study problem 

 
d 

Cost of 
RBF-

HDMR 
(second 
order) 

Cost of a full second order 
expansion of HDMR  

1 1
1

2!
1  

(polynomial) 

Cost of full factorial 
design  

(exponential) 

30 819 7081 9.31 X 1020 

50 1830 19801 8.88 X 1034 

100 6116 79601 7.88 X 1069 

150 12807 179401 7.01 X 10104 

200 22042 319201 6.22 X 10139 

250 33762 499001 5.53 X 10174 

300 47979 718801 4.91 X 10209 

 

5.3 Testing and Comparison with Other Metamodels 

In order to test the effectiveness of various models (MARS, RBF, Kriging, and polynomial), Jin 

et al. [5] selected 14 problems which are classified into two categories: large scale and small 

scale. The large scale includes one 14-variable application, one 16-variable, and four 10-variable 

problems. The small scale includes five two-variable problems and three three-variable problems, 

among which one was repeated by adding some noise to form a new problem.  Therefore, in total 

Ref. [5] gives 13 unique problems, twelve are tested with RBF-HDMR except for the 14-variable 

application problem, which is unavailable to authors.  Since this work deals with high 

dimensional problems, only the test results for the large scale problems (Problems 1-5) are 

reported in Table 3 with the first and second order RBF-HDMR models. These problems are 

listed in the Appendix.  In our test, each problem runs ten times independently for robustness 

testing, and then takes the average of ten runs for each problem.  In Table 3, NoE indicates the 

number of all evaluated expensive points, which include modeling points and detecting points 
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that used for correlation identification. The NoE for the second order modeling includes the NoE 

for the first order modeling. 

Table 3 Modeling results for the test suite. 

 

 

 

 

 

 

 

 

It is can be seen from Table 3 that all results of the first order RBF-HDMR are good enough for 

large scale problems, even though Problems 1 and 3 are highly nonlinear.  The results of the 

second-order models show slight improvement over the first-order models for all the problems 

except for Problem 3, which indicates a certain degree of over fitting. Theoretically when 

convergence criteria or numeric tolerance for nonlinearity and correlation identification is 

sufficiently tight, the second order model should be more accurate than the first order.  In 

practice, however, the errors in nonlinearity and correlation identification and RBF model 

construction may be larger than the influence of higher order components. In such 

circumstances, over-fitting of RBF may occur.  

 

To understand the test results in Table 3, we compare the results with those from Ref. [5] in 

Figure 3.  Ref. [5] used three different Latin Hypercube Design (LHD) sample sets for the large 

Problem R Square RAAE RMAE NoE 
1 

(d=10) 
First 0.90 0.233 1.66 95 
Second 0.92 0.211 1.16 321 

2 
(d=10) 

First 1.00 0.006 0.04 40 
Second 1.00 0.006 0.02 232 

3 
(d=10) 

First 0.99 0.049 0.59 121 
Second 0.96 0.129 1.16 408 

4 
(d=10) 

First 0.98 0.110 0.33 34 
Second 0.98 0.107 0.28 40 

5 
(d=16) 

First 0.96 0.150 0.91 59 
Second 0.99 0.088 0.25 297 

Mean First 0.97 0.109 0.71 70 
Second 0.97 0.113 0.65 250 
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scale problems. Their average numbers are 34, 112, and 250 for scarce, small, and large data sets, 

respectively. From Figure 3, one can see that the first order RBF-HDMR modeling requires a 

data set of a size falling in between those of the scarce and small data sets. 

 

 

Figure 3 Comparison of NoE with Latin Hypercube points from Reference [5]. 

 

 

Figure 4 Model accuracy comparison. Data for models other than RBF-HDMR are from Ref. [5];  

R2 values are for large-scale problems only, while RMAE and RAAE values are for all 14 test 

problems. 

 

Figure 4 shows the mean value of the same three metrics — R square, RAAE and RMAE — for 

the aforementioned four models applied to test problems.  From Fig. 4, it can be seen that while 

the mean R2 for RBF-HDMR models is 0.97, the maximum (best) value of the four models in the 

reference is about 0.78.  Because that the exact RAAE and RMAE data for only the large-scale 

problems are not available in Ref. [5], we use the mean for all 14 test problems as a comparison. 

The RAAE and RMAE values for the 14 problems should be lower than that for the large scale 

problems alone.  Even with these comparison values, RBF-HDMR has much smaller RAAE and 

RMAE values.  It is also to be noted that the accuracy data from Ref. [5] is based on the average 

results for all data sets.  The highest R2 value for large sample sets (250 points) for the four 

models is slightly above 0.90, still significantly lower than 0.97, which is the R2 value of RBF-

HDMR with only 70 points. 
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In summary, from the comparison with the reference, the proposed RBF-HDMR model and its 

metamodeling method generates more accurate models with fewer sample points than 

conventional models such as MARS, RBF, Kriging, and polynomial functions with Latin 

Hypercube designs.  

 

5.4 Discussion  

This work employs RBF to model component functions of the HDMR, so that HDMR is no 

longer a check-up table but rather a complete equation. The proposed metamodeling approach 

takes advantages of properties of HDMR to make the sampling efficient.  RBF was chosen 

because of 1) its simplicity and robustness in model construction 2) the ease of obtaining an 

explicit function expression, and 3) its ability to interpolate the sample points (this could be a 

problem for noisy data, which will be a topic of our future research).  The integration of HDMR 

with the interpolative feature of RBF supports the developed lemma and the sampling method, 

especially on identification of nonlinearity, variable correlations, and higher order components. 

Therefore RBF helps to reduce the sample size.  The choice of a specific RBF form, as shown in 

the Appendix, is deliberate as it is better than a simple linear spline for avoiding singularity. 

Exploration of other interpolative metamodels and selection of the best metamodel for 

component functions may be a topic for future research.  

 

The proposed metamodeling approach takes advantage of the hierarchical structure of HDMR, 

adaptively models its component functions while exploring its inherent linearity/nonlinearity and 

correlation among variables. The sample points are thus limited and well controlled. The realized 
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samples spread in the design space (refer to Fig. 1), but unevenly, according to complexity of 

regions in the space.  Regions of high nonlinearity or correlation will have more sample points 

while linear regions have fewer points, all according to the needs to capture the behavior of the 

underlying function. In contrast, the Latin Hypercube Design (LHD) has only one-dimensional 

uniformity and it is “blind” to the function characteristics.  It is also worth noting that the 

metamodeling process only involves fast and simple algebraic operations, which also lends itself 

well for parallel computation at each order of component levels. The outputs are multitude, i.e., 

an explicit RBF-HDMR model, function linearity/non-linearity, correlations among variables, 

and so on. 

 

The RBF-HDMR at currently stage, however, only models to the second-order components.  If 

an underlying function has significant multivariate correlation, the method may be limited.  New 

approaches are needed to extend beyond the second-order, whereas keeping the modeling cost 

low.  Secondly, the proposed RBF-HDMR adaptively determines the location of sample points, 

which is attractive when there is no existing data and the goal is to reduce the number of function 

evaluations.  In real practice, however, there are situations that some expensive data may have 

already been generated. Strategies needed to be developed to take advantage of the existing data 

when constructing RBF-HDMR.  Thirdly, RBF-HDMR at its current stage only deals with 

deterministic problems while in practice the expensive model may be noisy. Future research is 

needed to deal with these issues.  

 

6. Conclusion 
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This work proposes a methodology of metamodeling High dimensional, Expensive, and Black-

box (HEB) problems. The methodology consists of the proposed RBF-HDMR metamodel, and 

its accompanying metamodeling method. The RBF-HDMR model inherits hierarchical structural 

properties of HDMR, provides an explicit expression with RBF components, and needs neither 

any knowledge about the underlying functions nor assumes a priori a parametric form. The 

modeling process automatically explores and makes use of the properties of the underlying 

functions, refines the model accuracy by iterative sampling in the subspace of nonlinearity and 

correlated variables, and involves only fast and simple algebraic operations that can be easily 

parallelized. The developed methodology alleviates or circumvents the “curse of dimensionality.” 

Testing and comparison with other metamodels reveal that RBF-HDMR models high 

dimensional problems with higher efficiency and accuracy.  Future research aims to extend the 

modeling approach to efficiently model high-order components, to use existing data, and to deal 

with noisy samples. 
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Appendix 

1. RBF model 

A general radial basis functions (RBF) model [2,5] is shown as follows. 

      ∑ | |                                                          (A.1) 
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Where iβ  is the coefficient of the expression and  are the sampled points of input variables or 

the centers of RBF approximation. .  is a distance function or the radial basis function. .  

denotes a p-norm distance.  A RBF is a real-valued function whose value depends only on the 

distance from center points .  It employs linear combinations of a radically symmetric function 

based on the distance to approximate underlying functions. Its advantages include: the number of 

sampled points for constructing approximation can be small and the approximations are good fits 

to arbitrary contours of response functions [2].  Consequently, RBF is a popular model for 

multivariate data interpolation and function approximations. 

 

The key of RBF approach is to choose a p-norm and a radial basis function (.)φ , both of which 

have multiple formats. One of the goals for choosing a format is to make the distance matrix 

( , for 1 , , n is the number of sample points) non-singular. The 

singularity of the distance matrix relates to the distribution of the sample points. It can be seen 

that there are many works on choosing a p-norm and a radial basis function .  to avoid the 

singularity of the distance matrix [29]. This research uses a sum of thin plate spline (the first 

term) plus a linear polynomial  (the second term) as follows. 

| | | |  

∑ , , , , , , ,        (A.2) 

Where xi are the vectors of evaluated n sample points; the coefficients , , ,  and 

α are parameters to be found.  is a polynomial function, where p consists of a vector of 

basis of polynomials. In this work,  is chosen to be 1, , ,  including only linear variable 
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terms and therefore q=d+1; The side condition ∑ 0 is imposed on the coefficients  

to improve an under-determined system, i.e., the singularity of distance matrix A [29].  To 

calculate the coefficients  and , Eq. (A.2) may be written in the matrix form as below 

     
    

                                                      (A.3) 

Where, ,   , 1, ,  

            , 1, , ;   1, , 1 ; 

and xi and xj are the vectors of evaluated n sample points. The theory guarantees the existence of 

a unique vector  and a unique polynomial   satisfying Eq.(A.2) [29].  
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2. Test Problems 

No. Function  Variable Ranges 
1 

ln 2 ln 10 .
2.1 9.9,

1, ,10 

2  1 6
10, 1, ,10 

3 exp ln exp  
10 10,

1, ,10 
4 14 16 10 4 5

3 2 1 5 7 11
2 10 7 45

10 11,
1, ,10 

5 1 1  0 , 5,
, 1, ,16 

For Prob. 2 and 3 
, ,
6.089, 17.164, 34.054, 5.914, 24.721, 14.986, 24.100, 10.708, 26.662, 22.179 

For Prob. 5 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=−

0100001010000000
0001010001000000
0100000010100000
1000101000110000
0100010001001000
0010001101000100
0000001001000110
1000000011001001

][ 81rowija     

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=−

1000000000000000
0100000000000000
0010000000000000
0011000000000000
0010100000000000
0001010000000000
0010001000000000
1000100100000000

][ 169rowija  
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