
Hu Wang
The State Key Laboratory of

Advanced Technology for Vehicle

Design and Manufacture,

College of Mechanical and Vehicle Engineering,

Hunan University,

Changsha, Hunan, P. R. China

e-mail: wanghuenying@hotmail.com

Songqing Shan
Department of Mechanical and

Manufacturing Engineering,

University of Manitoba,

Winnipeg, MB, R3T 5V6, Canada

e-mail: shans@cc.umanitoba.ca

G. Gary Wang
School of Engineering Science,

Simon Fraser University,

Surrey, BC, V3T 0A3, Canada

e-mail: gary_wang@sfu.ca

Guangyao Li
The State Key Laboratory of

Advanced Technology for Vehicle

Design and Manufacture,

College of Mechanical and Vehicle Engineering,

Hunan University,

Changsha, Hunan, P. R. China

e-mail: gyli@hnu.cn

Integrating Least Square Support
Vector Regression and Mode
Pursuing Sampling Optimization
for Crashworthiness Design
Many metamodeling techniques have been developed in the past two decades to reduce the
computational cost of design evaluation. With the increasing scale and complexity of engi-
neering problems, popular metamodeling techniques including artificial neural network
(ANN), Polynomial regression (PR), Kriging (KG), radial basis functions (RBF), and mul-
tivariate adaptive regression splines (MARS) face difficulties in solving highly nonlinear
problems, such as the crashworthiness design. Therefore, in this work, we integrate the
least support vector regression (LSSVR) with the mode pursuing sampling (MPS) optimiza-
tion method and applied the integrated approach for crashworthiness design. The MPS is
used for generating new samples which are concentrated near the current local minima at
each iteration and yet still statistically cover the entire design space. The LSSVR is used
for establishing a more robust metamodel from noisy data. Therefore, the proposed method
integrates the advantages of both the LSSVR and MPS to more efficiently achieve reason-
ably accurate results. In order to verify the proposed method, well-known highly nonlinear
functions are used for testing. Finally, the proposed method is applied to three typical
crashworthiness optimization cases. The results demonstrate the potential capability of
this method in the crashworthiness design of vehicles. [DOI: 10.1115/1.4003840]

1 Introduction

Vehicle crashworthiness is of great importance today to the
automotive industry. A good rating in crashworthiness gives an
automaker a strong argument for sales. Therefore automakers
strive to improve the vehicle crashworthiness through design opti-
mization. The crashworthiness optimization, however, normally
requires a large number of crash simulations to achieve the opti-
mal design. With the increasing complexity and scale of finite ele-
ment analysis (FEA) crashworthiness model, the computational
cost becomes extremely high and even unacceptable for engineer-
ing practice. Therefore, metamodeling techniques are often
applied in the crashworthiness design. In the past two decades,
various metamodeling techniques have been applied in crashwor-
thiness optimization, including polynomial regression response
surface methodology (PR-RSM) [1–6], successive RSM [1], KG
[3,4,7], moving least square method (MLS) [3], RBF [3,6], adapt-
ive and interactive modeling system (AIMS) [3], space mapping
(SM)-based metamodeling [8], and so on.

Some authors also compared the performance of different meta-
model-based optimization algorithms. Comparisons for crashwor-
thiness problems can be found in the studies of Gu [2], Yang et al.
[3], Forsberg et al. [5], and Fang et al. [6]. These works tried to
determine which metamodel technique(s) might be preferable for
crashworthiness design and what are the relative benefits and
drawbacks of these methods in an iterative optimization proce-
dure. Gu [2] described the current state-of-the-art of the approxi-
mation methods used by Ford Motor Company. Based on the
study on stepwise regression (SR), MLS, KG, multiquadric (MQ),
and AIMS, Yang et al. [3] pointed out that for a small sample size

<9n (where n denotes the number of design variables), no method
consistently outperforms the other methods in terms of the accu-
racy and convergence rate. A simpler and less computational
intensive method may be preferable, e.g., quadratic response sur-
face model. For a larger sample size >9n, all methods appear to
perform much more consistently; complex metamodels such as
KG, MLS, and MQ tend to outperform SR. The focus of Forsberg
et al. [5] was to compare the performance between KG and PR-
RSM. Forsberg et al. [5] concluded that KG was more promising
than PR-RSM, but PR-RSM seemed to be able to find a feasible
design point more easily. According to the conclusion of Fang et
al. [6], RBF was found to generate better models than PR-RSM,
based on the same number of the sample points, but PR-RSM was
more stable. After all, these researches do not provide a definitive
conclusion on which metamodel is the best. Generally we learned
that the interpolation methods, such as KG and RBF, might con-
struct more accurate but less stable models as compared with PR-
RSM. How to choose the “right” metamodel technique for crash-
worthiness problems, however, remains an open issue.

In our opinions, the challenges of crashworthiness optimization
for metamodel-based approaches mostly arise from the following
two avenues.

I. The crashworthiness optimization relies heavily on the
accuracy and stability of the vehicle FEA model. Due to the
high nonlinearity of the problem, as well as imperfection of
numerical methods and uncertainties in simulation, such as
hourglass, buckling, and material parameters, the simulation
might not completely match the physical experiment results.
Furthermore, the FEA solver, such as the parallel explicit
FEA simulation code, might not even obtain the same
response with the same input parameters. In other words,
noisy points might be present in the design space. Therefore,
interpolation-based metamodels, such as the commonly used
KG and RBF which pass through the sample points, are
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inadequate in filtering the noisy points. Although KG could be
modified to accommodate noises, the modeling process
requires calling of a global optimization routine, which makes
the modeling complex and unreliable. On the other hand,
although the polynomial regression (PR)-based metamodel
can construct smooth models, the accuracy of response surface
models is usually too poor to be acceptable in practice.

II. The crash simulation requires extensive computational
resource and time. Therefore, the crashworthiness optimiza-
tion should be performed with as a few simulation evalua-
tions as possible. Most of the current metamodeling
techniques could not deliver the desired accuracy to be use-
ful in practice with only a very limited number of simula-
tions. As a result, the critical issue is how to obtain the
optimum effectively with little resource.

The purpose of this study is to integrate appropriate sampling and
metamodeling strategies to develop an alternative crashworthiness
optimization approach. Such an approach should satisfy at least two
basic conditions for the crashworthiness optimization as follows

I. The approach is sufficiently robust to avoid distractions
from the noises and outlier points;

II. The approach is efficient to converge in acceptable time.

For the first requirement, support vector regression (SVR) is
employed to build metamodels in this study. Most frequently
used metamodeling techniques are based on empirical risk mini-
mization (ERM). The major bottleneck of these techniques is the
lack of generalization ability and robustness. Compared with the
ERM-based metamodeling techniques, SVR is based on structure
risk minimization (SRM). Unlike traditional methods which
minimize the empirical training error, SVR aims to minimize the
upper bound of the generalization error through maximizing the
margin between the separating hyperplane and data. In the past
few years, several studies [9–12] have successfully applied SVR
to function estimation. According to Ref. [13], the SVR-based
metamodeling technique achieves more accurate and more ro-
bust function approximations than RSM, KG, RBF, and MARS.
It also demonstrated that SVR was an alternative technique for
approximating complex engineering analyses. Recently, a least
square (LS) version of the SVR (LSSVR) technique has received
attention for function estimation [14]. In LSSVR, Vapnik’s e-
insensitive loss function has been replaced by a sum-squared
error cost function. According to the theory of LSSVR, LSSVR
is reformulation to the standard SVRs which leads to solving a
linear Karush-Kuhn-Tucker (KKT) system. This reformulation
greatly simplifies a problem such that the LSSVR solution fol-
lows directly from solving a set of linear equations [14].

The second challenge that needs to be addressed is the effi-
ciency of metamodeling and optimization procedure. An active
branch of research in metamodeling is on adaptive sampling strat-
egy that can improve the accuracy of metamodels. As early as in
the 1960s, Box and Draper [15] suggested a method to refine the
response surface (RS) to capture the actual function by screening
out unimportant variables. Chen et al. [16] suggested heuristics to
lead the surface refinement to a smaller design space. Wujek and
Renaud [17,18] compared several move-limit strategies that focus
on controlling the function approximation in a more meaningful
design space. Toropov et al. [19] suggested the use of a sequential
metamodeling approach using move limits. Alexandrov et al. [20]
incorporated a trust region method with metamodeling technique.
Jones et al. [21] developed an efficient global optimization (EGO)
approach based on the KG and adaptive sampling on areas leading
to more “expected improvement” of the model accuracy. Wang
and Simpson [22] developed a fuzzy clustering based hierarchical
metamodeling for design space reduction and optimization. Wang
and Li proposed a particle swarm optimization intelligent sam-
pling (PSOIS) [7] and boundary and best neighbor sampling
(BBNS) [23] for enhancing the accuracy and efficiency of meta-
models, respectively, and developed parallel BBNS [24] for sheet

forming successfully. Wang et al. [25] developed an MPS method,
which has been successfully applied to solving many benchmarks
as well as engineering design problems with continuous variables
and, later on, mixed variables [26].

MPS uses a sampling guidance function established based on
the initial sample points to determine the sampling path, and
the evaluations are based on a metamodel. The advantage of the
space reduction strategies is that newly generated samples are
concentrated near the current local minima of the design space
and yet still statistically cover the entire design space. The
drawback of the MPS [25] is that a simple RBF model is employed
to establish the sampling guidance function; the accuracy and reli-
ability of the RBF-based metamodel determine the sampling direc-
tion and focus. As mentioned before, it makes the MPS inapplicable
for problems with noises and outlier points due to the interpolation
characteristics of the RBF. To conquer this bottleneck, the LSSVR
is introduced to construct metamodels in the proposed approach.
Furthermore, to achieve more accurate metamodel efficiently, the
MPS is also modified in this study.

The rest of this paper is organized as follows. Section 2
describes the fundamentals of the MPS and LSSVR. The assess-
ment of performance of the proposed method is described in Sec. 3.
In Sec. 4, the proposed method is applied to crashworthiness
design. Conclusions are given in Sec. 5.

2 Related Theories

In this section, the basic theories of the LSSVR are briefly intro-
duced [14]. According to the comparison tests by Clarke et al. [13],
the LSSVR is a feasible alternative for nonlinear metamodeling. In
this study, the LSSVR is to be integrated with a sampling-based
global optimization method, MPS.

2.1 Basic Theories of LSSVR. Consider a regression prob-
lem with a training set xi; yif gN

i¼1 with N input data xi and output
data yl as presented in Eq. (1)

D ¼ f x1; y1ð Þ; x2; y2ð Þ � � � xl; ylð Þ � � � xN ; yNð Þg; xl 2 Rn; yl 2 R (1)

Using a kernel function, we can obtain a nonlinear predictor called
LSSVR by solving an optimization problem in the primal weight
space

Min
w;e

Jðw; eÞ ¼ 1

2
wTwþ 1

2
c
XN

i¼1

e2
i

s:t:yi ¼ wTuðxiÞ þ bþ ei; i ¼ 1; 2;…;N (2)

where uð�Þ ¼ Rn ) Rnh is a nonlinear mapping which maps the
input data into a high-dimensional feature space whose dimension
can be infinite; this feature helps SVR solve high-dimensional
problems. In Eq. (2), w 2 Rnh denotes the weight vector in the pri-
mal space; el 2 R is an error variable and b is the bias term. The
cost function J consists of a sum-squared error fitting error and
regulation term. The c is a constant coefficient to determine the
relative importance of the empirical risk minimization and the
structure risk minimization terms. It can be assigned directly. A
linear SVR has been taken with c¼ 1. In the case of noisy data,
one avoids over fitting by taking a smaller value of c. But, if the c
is smaller, the robustness of approximation cannot be guaranteed.
Therefore, it is recommended that the value of c can be deter-
mined by considering the kernel function coefficient together. It
will be discussed later.

The model of the primal space can be presented as follows

yðxÞ ¼ wTuðxÞ þ b (3)

Then, the Lagrangian multiplier expression applied to Eq. (2) is
obtained as

Lðw; b; e; aÞ ¼ Jðw; eÞ �
XN

i¼1

ai wTuðxiÞ þ bþ ei � yi

� �
(4)
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Where ai are the Lagrangian multipliers, which can be either posi-
tive or negative.

The conditions for optimality are

@ Lðw; b; e; aÞð Þ
@w

¼ 0) w ¼
XN

i¼1

aiuðxiÞ

@ Lðw; b; e; aÞð Þ
@b

¼ 0)
XN

i¼1

ai ¼ 0

@ Lðw; b; e; aÞð Þ
@e

¼ 0) ai ¼ cei

@ Lðw; b; e; aÞð Þ
@a

¼ 0) wTuðxiÞ þ bþ ei � yi ¼ 0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>: (5)

After elimination of w and e, we can obtain the following linear
expression

0 IT

I Cþ 1
c I

� �
b
a

� �
¼ 0

y

� �
(6)

where

y ¼ ½y1; y2;…; yN �T

I ¼ ½1; 1;…; 1�T

a ¼ ½a1; a2;…; aN �T

Ci;j ¼ uðxiÞTuðxjÞ for i; j ¼ 1; 2;…;N

8>>><
>>>: (7)

Based on Mercer’s condition [27], there exists a mapping uð�Þ and
an expression

Kðx; yÞ ¼
X

i

uiðxÞTuiðyÞ (8)

If and only if, for any wðxÞ such that
Ð

wðxÞ2dx is finite, one hasð
Kðx; yÞwðxÞwðyÞdxdy � 0 (9)

which is motivated by Mercer’s Theorem [27]. Note that for spe-
cific cases, it may not be easy to check whether Mercer’s condi-
tion [27] is satisfied. Equation (9) must hold for every wðxÞ with a
finite L2 norm. It is known, however, that the condition is satisfied
for positive integral powers of the dot product Kðxi; xjÞ

Kðxi; xjÞ ¼ uðxiÞTuðxjÞ; for i; j ¼ 1; 2;…;N (10)

The resulting LSSVR model for the function estimation is then
obtained as

yðxÞ ¼
XN

i¼1

aiKðx; xiÞ þ b (11)

where al and b are the solutions to Eq. (5), and

Kðxi; xjÞ ¼ exp ð�ðxi � xjÞ2
.

r2Þ (12)

Among all kernel functions, Gaussian kernel function as
shown in Eq. (12) is the most popular choice and also chosen
in this study. The radius r of the Gaussian kernel function is
manually set in this study after a few trials for each function;
xi and xj are input vectors. Automatically optimizing kernel
function during training could potentially improve the model-
ing results further. The optimal choice for the kernel function
is still an area of active research and will be investigated in

future work. In this study, we substitute different combina-
tions of (c, r) into Eq. (2) and select the optimal one accord-
ing to the results. In order to improve the efficiency, this pro-
cedure is implemented by the ANN method.

2.2 LSSVR-Based MPS. In this section, we propose a
LSSVR-based MPS approach. MPS is an optimization algorithm
which integrates metamodeling and a novel discriminative sam-
pling strategy. For the original MPS [25,26], RBF is applied to the
establishment of a sampling guidance function, but RBF is not
able to filter the noisy sample points. This motivates the develop-
ment of the LSSVR-based MPS. In the proposed method, LSSVR
is used for replacing the linear RBF in the original MPS to con-
struct the guidance sampling function and determine the sampling
direction. New steps are also added to the original MPS procedure
to check and improve the accuracy of the metamodel.

The discriminative sampling method in the original MPS is
composed of the following key steps [25,26]:

1. Given an n-dimensional probability density function (PDF)
g(x) with compact support SðgÞ � Rn, a discrete space SN(g)
is generated consisting of N uniformly distributed based
samples in S(g). N is usually larger if the dimension of g(x)
is higher. These uniform samples can be generated by using
either the deterministic or stochastic procedures.

2. The sample points SN(g) are clustered into K contours
E1;E2;…;EKf g with equal size according to the relative value

of the function g(x). A discrete distribution P1;P2;…;PKf g
of the average g(x) value over the K contours is built.

3. Finally, a sample is drawn from the set of all samples SN(g)
according to the discrete probability distribution
P1;P2;…;PKf g.

As a result, the generated sample points will have an asymptotic
distribution as g(x). For optimization, MPS treats the inverse of an
objective function as g(x) so that the generated sample points con-
centrate near the current minimum of the objective function (or
maximum of g(x), and yet still statistically covering the entire
design space. Building on the discriminative sampling strategy,
MPS integrates metamodeling and local approximation for opti-
mization. In this study, we modified the original MPS algorithm
to accommodate the LSSVR. For an n-dimensional underlying
function f(x) over a compact set Sðf Þ � Rn, which is to be mini-
mized, the modified MPS is presented as follows:

Step 1. Generate m initial sample points x1; x2; …; xm which are
uniformly distributed on Sðf Þ;

Step 2. Use m function values (responses) f ðx1Þ; f ðx2Þ;
� � � ; f ðxmÞ to fit a LSSVR function

f̂ ðxÞ ¼
Xm

i¼1

aiKðx; xiÞ þ b; f̂ ðxiÞ ¼ f ðxiÞ; i ¼ 1; 2;…;m (13)

Step 3. Define gðxÞ ¼ c0 � f̂ ðxÞ, where c0 is any constant such
that c0 � f̂ ðxÞ, for all x in Sðf Þ. Since gðxÞ is non-negative
on Sðf Þ, it can be regarded as a PDF, or a sampling guidance
function, whose modes are located at xi’s, where the func-
tion values are the lowest among f̂ ðxiÞ

� �
. Then the above

sampling algorithm is used for generating a random sample
from Sðf Þ according to gðxÞ. These sample points have the
tendency to concentrate about the maximum of gðxÞ, which
corresponds to the minimum of f̂ ðxÞ.

Step 4. Combine the sample points generated at step 3 with the
initial samples in step 1 to form the new set x1; x2;…; x2m.

Step 5. In this step, leave-one-out cross-validation (LOOCV) is
used for obtaining R2 for each sample point.

R2
avg ¼

Pm
i¼1

1�
Pm�1

i¼1

yi�y
_

i

� �2

yi��yið Þ2

 !

n
(14)
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For mathematical problems, the convergence condition should
be set strictly, such as R2

avg > 0:8. For the engineering prob-
lems, the convergence condition can be slacked according to
the complexity of the case. This step is applied only to the
expensive sample points whose responses are obtained from
the computational intensive simulations. If the convergence
condition is met, the procedure ends, otherwise goes to step 6.

Step 6. Find the sample point possessing the minimal R2 value
and a neighboring sample point that has the next smallest R2

value. A new sample point is generated in between the two
points and then evaluated by calling the expensive simula-
tion. Then this point is added to the point set defined in step
4 and goes back to Step 2.

In addition to the use of LSSVR to replace RBF at step 2, Steps
5 and 6 are new additions to the original MPS to enrich the sample
set at where the modeling error is large in order to improve the
accuracy of the metamodel. This is similar to the approach used in
the EGO where the new sample points are generated in areas of
the potential accuracy improvement.

3 Benchmarking of the Proposed Method

The performance of the proposed approach can be evaluated
from the following aspects: accuracy and robustness of the meta-
model, accuracy of optimum results, and efficiency of the optimi-
zation procedure.

3.1 Test Functions. Mathematical test functions are selected
from the book of Hock and Schittkowski [28], which offers 180
problems for testing the nonlinear optimization algorithms. Jin et al.
[29] used 13 from these180 functions to test the performance of
different types of metamodels. From the application of these test
problems in literature [25,29], we selected 11 nonlinear problems,
which are listed in Table 1. Most of these problems are known to
be of highly nonlinear such as Rastrigin, Rosenbrock, Schwefel,
and Griewank problems, and/or be multimodal in nature, such as
Griewank, Dixon and Price, and Hartman problems. These
selected problems are often used to benchmark either metamodels
or global optimization algorithms. Moreover, according to Ref
[25], the MPS has been proved efficient for low dimensional prob-
lems. Therefore, more high-dimensional functions are selected in
this work for testing, which are defined as follows in Table 1.
According to Step 5 in Sec. 2.2, we need to define the criterion in
Eq. (4). For these cases, R2

avg is set to be 0.9.

3.2 Performance Metrics. To evaluate the performance of
LSSVR, a systematic comparison is conducted to analyze its
strengths and weaknesses with four popular metamodeling techni-
ques: ANN, RBF, KG, and MARS. Three error metrics and their
derivations are used for evaluating the metamodeling performance
on both the accuracy and robustness. All metamodels are based on
the final updated samples generated by the modified MPS method.
The efficiency and accuracy of the LSSVR-based MPS optimiza-
tion method are considered in Sec. 3.2.3.

In this study, LOOCV is applied to obtaining the performance
metrics for the metamodeling techniques. Cross-validation is a
statistical practice of partitioning a sample of data into subsets
such that the analysis is performed on one subset, while the other
subset(s) are retained for subsequent use in validating the initial
analysis. LOOCV uses a single observation from the original sam-
ple as the validation data and the remaining observations as the
training data. This is repeated such that each observation in the
sample set is used once as the validation data.

3.2.1 Accuracy of Metamodel. The accuracy is an important
indicator of a metamodel’s performance. The accuracy metrics
should reflect the metamodel output y

_

i’s deviation from the simu-
lation output y. LOOCV introduced by Mitchell and Morris [30] is
used for assessing the accuracy of the proposed approach. The
mean squared error (MSE), average absolute error (AAE), and

mean absolute error (MAE) are applied to estimating the accuracy
of the current metamodel. The expressions for these three criteria
are given in the following equations, respectively

MSE ¼ 1

N

XN

i¼1

yi � y
_

i

� 	2

(15)

where y
_

i is the corresponding predicted value for the observed
value yi. The MSE represents the departure of the metamodel
from the simulation model

AAE ¼

PN
i¼1

yi � y
_

i




 



N

(16)

MAE ¼ MAX yi � y
_

i




 


� 	
(17)

Generally smaller values of AAE and MAE indicate more accu-
rate metamodels.

To stay objective, MSE, AAE, and MAE are calculated from
the test sample points, not on the modeling points. Therefore, y

_

i is
the predicted function value at the test sample points.

As described in Sec. 3.1, the mathematical problems have dif-
ferent output ranges. In order to obtain a more comparative mea-
sure of accuracy across different problems, a new type of accuracy
metrics proposed by Clarke et al. [13] is used in the study. Instead
of the direct metrics in Eqs. (15), (16), and (17), a relative error
criterion is used for benchmarking. The expression of the relative
error can be written as

RERR ¼ ERRð � Þ � ERRðLSSVRÞ
ERRðLSSVRÞ (18)

where ð � Þ denotes other metamodeling techniques. The ERR
(error) in Eq. (18) refers to the errors defined in Eqs. (15–17). As
LSSVR is the metamodeling technique under study, we use it as the
benchmark. For each test problem, RERR (relative ERR) is obtained
for each metamodel method such that a positive value indicates that
the method in comparison has a larger error than the LSSVR, while
a negative value indicates that the method in comparison obtains
a smaller error than the LSSVR. RERR for LSSVR equals to zero.

3.2.2 Robustness of Metamodel. Robustness is another
important indicator of performance as it represents each method’s
ability to consistently achieve similar accuracies on different
problems. According to the suggestion of Jin et al. [27], the
robustness is defined as the standard deviation of one method’s
error values across different problems. Similar to the accuracy
measure, we use LSSVR as the benchmark to calculate the stand-
ard deviation of the relative errors for other types of metamodels.
The formula of the relative robustness is given as

STD RERR ¼ STDðRERRÞ (19)

where RERR is expressed in Eq. (18) and STD stands for the
standard deviation. STD (RERR) for the LSSVR equals to zero.

3.2.3 Accuracy and Efficiency of Optimization. To validate
the proposed optimization method, the accuracy of the optimum
results and efficiency of the optimization procedure are also con-
sidered. The proposed LSSVR-based MPS optimization method is
tested using the test problems listed in Table 1, in comparison
with several well-known metamodel-based optimization methods,
such as PSOIS [23], successive response surface approximations
(SRSM) [31], and MPS algorithm [25,26]. To compare the accu-
racy and efficiency of these optimization methods, the number of
evaluations (NOE) is used to assess the efficiency of the proposed
method. Additionally, to compare all algorithms objectively,
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ARERR (average relative error) described in Eq. (20) is used as
the convergence condition for all the methods.

ARRE ¼

Pn
i¼1

AOPTIi �OPTIi

AOPTIi




 



n

(20)

where n denotes the number of design variables, AOPTI and
OPTI mean the analytical and obtained optimum values, respec-
tively. If ARRE> 0.9, the optimization procedure stops.

3.3 Test Procedure and Results. To assess the accuracy of
the results, MSE, AAE, and MAE are calculated in the relative
expression as defined in Eq. (18). The resulting related errors for

ANN, RBF, KG, and MARS are listed in Fig. 1(a). Figure 1(a)
shows the percentages by which the average error values are
higher than the corresponding error values for the LSSVR, if the
values are positive. Conversely if the values are negative, it means
the model has a smaller error than the LSSVR. These percentage
differences have been averaged over all given test functions.
Overall as no negative values in the figure, it means that the
LSSVR has outperformed the other four approximation techniques
with smaller errors. Among the rest of approaches, KG demon-
strates good accuracy globally (low MSE values) and on local
regions (low AAE and MAE values).

To further compare the robustness of each algorithm, Fig. 1(b)
presents the normalized standard deviations of the errors for each
approximation technique, relative to LSSVR. The results indicate
that the LSSVR is the most robust of the five approximation

Table 1 Description of test functions

Function name Dimension (N) Expression Interval Global min.

Colville 4 f ðxÞ ¼ 100ðx2
1 � x2Þ2 � ðx1 � 1Þ2 þ ðx3�Þ2 þ 90ðx2

3 � x4Þ2þ
10:1ððx2 � 1Þ2 þ ðx4 � 1Þ2Þ þ 19:8ðx2 � 1Þðx4 � 1Þ

xi 2 ½�10; 10� 0

De Jong 10 f ðxÞ ¼
PN
i¼1

x2
i xi 2 ½�5:12; 5:12� 0

Dixon and Price 10 f ðxÞ ¼ ðx1 � 1Þ2 þ
PN
i¼2

ið2x2
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methods. KG and RBF are the second and third most robust meta-
modeling methods. MARS and ANN have very large variances,
which implies that the MARS and ANN may not be suitable for
high-dimensional nonlinear function approximation.

Figure 2 demonstrates the efficiency comparisons between the
proposed LSSVR-based MPS with the other metamodel-based
approaches including PSOIS, SRMS, and the original MPS; one can
see that the proposed method is noticeably more efficient. The
LSSVR-MPS is also compared with the global optimization meth-
ods, such as genetic algorithm (GA), simulated annealing (SA), and
particle swarm optimization (PSO). The efficiency of the LSSVR-
based MPS, as well as the other metamodel-based methods, is in
general significantly higher than those heuristics methods.

To summarize the test results, we find that the LSSVR is overall
more efficient and robust than other approaches for the chosen set
of nonlinear test problems with relatively high dimensionality.
The integrated LSSVR-MPS optimization approach demonstrates
higher efficiency than the other chosen optimization approaches.
Section 4 will discuss the application of the proposed approach to
three different crashworthiness design problems.

4 Crashworthiness Optimization

In this section, the proposed LSSVR-based MPS is applied to
three typical crashworthiness problems. The first example studies
a fontal member of a vehicle under impact; it is relatively simple,
small in scale, but representative of features of a crashworthiness
problem. The preliminary study for the proposed method is based
on this case. In order to compare the performance of metamodel-
ing-based optimization methods, the original MPS, PSOIS, and
SRSM are also applied to optimizing this case. All new car mod-
els by law must pass certain safety tests with frontal and side com-
pacts before they are sold. Therefore the second and third cases
consider full vehicle collisions at the front and side, respectively.
These two cases are comparatively more complicated than the first
case. As discussed before, the crash simulation procedure involves
noises and even outliers from the numerical computation. The
high computational costs and high nonlinearity of the crashworthi-
ness problem prohibit us from creating a trustworthy uncertainty
model. In this work, we applied two measures to identifying the
simulation outputs with excessive errors. First, total impact energy
for crash simulation, which is the sum of internal (potential) and
external (kinetic) energy, should remain constant, assuming the
heat loss is negligible. In practice, the total energy might not be in
balance due to the use of some numerical methods, such as hour-
glass control. When the sum of internal and external energy is

Fig. 1 Relative performance of metamodeling approaches with
respect to LSSVR. (a) Mean of relative metrics; (b) STD of rela-
tive metrics.

Fig. 2 Efficiency comparison of optimization approaches
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larger than 95% of the total energy, the simulation result is
regarded as acceptable. Otherwise, we deem the error is excessive
and the obtained design point is discarded. Second, in this study
we use LS-DYNA as the simulation toolkit and the one point inte-
gration shell element proposed by Belytschko and Tsay (B.T. ele-
ment) [32] for crash simulation. In order to guarantee the accuracy
and stability of the B.T. element for buckling, the number of warp
elements is calculated. If this value is larger than 10% of the total
number of all shell elements, the corresponding sample point is
considered as an outlier and thus discarded. After two checks, the
noises in the data are deemed random and could be handled by the
LSSVR. Moreover, as we mentioned before, since the crashwor-
thiness optimization is a high nonlinear problem, the criterion
R2

avg described in step 5 in Sec. 2.2 is relaxed to 0.7.

4.1 Case I: Impact on a Vehicle Frontal Member

4.1.1 Problem Description. The FE model of a frontal mem-
ber of a vehicle is presented in Fig. 3. It is composed of 11 parts.
It is modeled with 5359 nodes and 4946 elements (the number of
shell elements is 4900). The structure is fixed at the rear end and a
rigid wall impacts the front. The frontal number has an initial
velocity of 14 m/s and a mass of 1.21 kg. The model takes about
10 min for each FEA evaluation on a Dell Precision T3400
(IntelTM CoreVR 2 Duo, 3.0 GHz/1333 MHz/4 MB) workstation.

1

The objective function is to minimize the maximum rigid wall
force. Eight thicknesses of individual parts of the frontal member
are selected as design variables. The bounds and initial values of
design variables are listed in Table 2. Although the thickness
design variable (unit, mm) is continuous, to save the computa-
tional cost and make design variables more usable, only three
effective digits are kept. For example, 1.599999 should be
regarded as 1.60. This strategy is also applied to cases II and III.

The optimization problem is described as

Min Max FrwðXÞð Þð Þ (21)

subject to

FmassðXinitialÞ
FmassðXoptÞ

> 1 (22)

FiengðXinitialÞ
FiengðXoptÞ

< 1 (23)

Where FrwðXÞ and FiengðXÞ are the peak rigid wall force and
energy function, respectively; Xinitial and Xopt denote the initial
and optimum design variables, respectively.

4.1.2 Optimization Procedure and Results. As mentioned
before, the LSSVR-based MPS, the original MPS, PSOIS, and
SRSM are applied to this problem. To control the computation
cost, the number of sample points (NOS) for each method is lim-
ited to 200. In addition, to avoid unrepresentative results, five dif-
ferent runs are carried out for each optimization method. The
average and best optimum results are presented in Table 3. The
change in the rigid wall force with respect to time for the initial
and optimum design variables by different methods are presented
in Fig. 4. According to Table 3 and Fig. 4, it is easy to observe
that the LSSVR-based MPS achieves the best optimum solution
and corresponding average optimum result is also good. Com-
pared with the NOS of other methods, the proposed method is the
most efficient. Therefore, we use more complicated crashworthi-
ness optimization problems, cases II and III, to verify the perform-
ance of the proposed strategy in Section 4.2.

4.2 Case II: Full Vehicle Frontal Collision

4.2.1 Problem Description. Our crashworthiness metamodel-
ing problem is based on a reduced full-scale FE model of a mini-
car. It consists of 20 types of materials and 207 parts. It is mod-
eled with 19,226 nodes and 16,132 elements (the number of shell
elements is 15,300). This model is used for the frontal impact sim-
ulation and has been validated with physical crash test data. The
original FE model 100 ms before and after a frontal impact at
55.69 km/h is shown in Fig. 5. The model takes about 1 h for each
FEA evaluation. The objective function of crashworthiness design

Fig. 3 FE model of the vehicle frontal member under impact

Table 2 Design variables and bounds for case I

Design variables (mm) Part ID Initial value Intervals

x1 804 1.80 [1.0, 3.0]
x2 806 1.80 [1.0, 3.0]
x3 80256 1.50 [1.0, 3.0]
x4 82046 2.20 [1.0, 3.0]
x5 82047 2.20 [1.0, 3.0]
x6 82049 2.50 [1.0, 3.0]
x7 82068 3.00 [2.0, 4.0]
x8 82095 2.50 [1.0, 3.0]

Table 3 Optimum results of case I

Method Design variables (mm) Frw (KN) NOS

MPS (Best) 1.39 2.00 2.06 1.09 1.07 1.35 3.83 1.48 145.12 139
MPS (Average) 1.07 1.77 1.01 1.39 1.12 1.25 3.41 1.13 150.34 200
LSSVR-based MPS (Best) 1.05 2.62 1.13 1.00 1.03 2.83 3.26 1.13 121.23 123
LSSVR-based MPS (Average) 1.04 2.52 1.21 1.02 1.04 2.73 3.12 1.17 127.32 138
PSOIS (Best) 1.89 1.13 1.25 1.04 1.48 1.25 3.60 1.10 128.86 185
PSOIS (Average) 1.51 1.23 1.52 1.03 1.27 1.65 3.34 1.18 153.86 179
SRSM (Best) 1.07 2.41 1.07 1.07 1.05 1.72 2.41 1.31 163.14 200
SRSM (Average) 1.09 2.43 1.05 1.09 1.73 2.24 2.96 1.99 168.74 200

1FE simulations in this study are performed on this workstation.
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in this case is to maximize the energy absorption capacity of the
vehicle. There are 13 design parameters used in the optimization.
The bounds of the design variables are listed in Table 4.

The optimization problem is given by

Max FiengðXÞ
� �

(24)

subject to

FmassðXinitialÞ
FmassðXoptÞ

> 1 (25)

FaccðXinitialÞ
FaccðXoptÞ

> 1 (26)

Where FiengðXÞ is the internal energy, FassðXinitialÞ and FassðXoptÞ
denote the acceleration with the initial and optimum design varia-
bles, respectively.

4.2.2 Optimization Procedure and Results. For this case, the
NOS is limited to 300. To reduce the NOS, we also keep three
effective digits for all values of design variables as in Case I. Due
to the scale of this case, only the LSSVR-based MPS is per-
formed. After 197 iterations, the optimum result is achieved as
shown in Table 4 and the corresponding crash status is presented
in Fig. 5. The change in the internal energy of initial and optimum
design is shown in Fig. 6.The optimum design effectively
improves the energy absorption capacity of the vehicle.

4.3 Case I: Full Vehicle Side Collision

4.3.1 Problem Description. The side impact simulation in
this case is performed with a movable barrier impacting the vehi-
cle perpendicularly at a speed of 50 km/h. The computer environ-
ment is the same as in Cases I and II. In order to improve the
simulation accuracy, a detailed full scale FE model of the vehicle
has been established, including body assembly, engine, drive sys-
tem, and tires. The FE model, containing 98,249 shell elements,
4562 solid elements, 7213 beam elements, and 4124 mass ele-
ments, consists of 298 parts, which is shown in Fig. 7. The model
takes about 2.5 h for each FEA evaluation.

The design objective is to minimize the deflection at test point
1 presented in Fig. 8 during impact

Max F1
defðXÞ

� �
(27)

Fig. 4 Change in the rigid wall force with respect to time for
the initial and optimum design variables of case I

Fig. 5 Crash simulation result with optimum design variables
for case II

Table 4 Design variables and bounds of case II

Design variables Part ID Initial value Intervals Optimum value

x1 48 1.0 [0.8, 1.5] 0.92
x2 50 0.8 [0.6, 1.2] 0.75
x3 51 2.2 [2.0, 2.8] 2.51
x4 52 2.2 [2.0, 2.8] 2.03
x5 58 2.3 [1.8, 2.7] 2.05
x6 59 2.3 [2.0, 2.5] 2.16
x7 60 1.0 [0.6, 1.5] 0.87
x8 61 1.0 [0.6, 1.5] 0.76
x9 102 1.5 [1.0, 2.0] 0.78
x10 122 0.7 [0.5, 1.2] 0.90
x11 123 0.7 [0.5, 1.2] 0.82
x12 135 0.7 [0.5, 1.2] 0.63
x13 136 0.7 [0.5,1.2] 0.72

Fig. 6 Change of internal energy of initial and optimum
designs of case II

Fig. 7 FE model of side impact for case III
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subject to

F1
vel < 8:5 m=s

F2
vel < 8:5 m=s

F3
vel < 6 m=s

F2
def < 0:3 m

F3
def < 0:2 m

8>>>>>><
>>>>>>:

(28)

Where Fi
vel and Fi

def denote the maximum velocity and reflection
at test point i, respectively. They are measured at the middle and
bottom of the B-pillar (P1 and P2) and the floor (P3) as presented
in Fig. 8.

There are ten thicknesses of the selected components as design
parameters used in the design optimization of vehicle side impact
as shown in Fig. 9, the deflection curve before and after optimiza-

tion is demonstrated in Fig. 10 and the optimum results are listed
in Table 5. It demonstrates that the maximum deflection in P1 has
been reduced successfully.

5 Conclusions

In this paper, a metamodeling-based optimization technique is
proposed. An intelligent sampling strategy, MPS, is used for gen-
erating the sample points in optimization procedure. The advant-
age of the MPS is that newly generated samples concentrate near
the current local minima and yet still statistically cover the entire
design space. Therefore, the corresponding metamodel is con-
structed based on more attractive sample points for the purpose of
optimization. The original MPS uses RBF to establish the sam-
pling guidance function, but the RBF is not robust in filtering the
noisy points. Therefore, the recently developed LSSVR is
employed to replace RBF, which can also help to filter noises in
data. To assess the performance of the LSSVR-based MPS optimi-
zation method, the performance of metamodeling and optimization
is tested. Compared with the other four popular metamodeling
techniques, LSSVR is proved to be the most attractive method for
integration with MPS. Furthermore, to verify the accuracy and ef-
ficiency of the proposed method, the other metamodel-based opti-
mization methods including MPS, PSOIS, and SRSM are also
tested. According to benchmark tests, the superiority of the
LSSVR-based MPS is evident.

Our purpose is to develop a feasible optimization approach for
crashworthiness design. Thus, we apply the LSSVR-based MPS to
three different crashworthiness problems, including component,
full vehicle frontal, and side impacts. These problems are success-
fully optimized by the proposed method. The tests demonstrate
that the proposed method shows a potential for the crashworthi-
ness problems.
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Fig. 8 Location of test points (P1 are P2 locate on the B-pillar;
P3 locates on the floor)

Fig. 9 Selected components that need optimization

Table 5 Design variables and bounds of case III

Design variables Part ID Initial value Intervals Optimum value

x1 123 1.0 [0.5, 1.5] 0.83
x2 124 1.0 [0.5, 1.5] 0.92
x3 125 1.0 [0.5, 1.5] 1.02
x4 126 1.0 [0.5, 1.5] 1.32
x5 127 1.0 [0.5, 1.5] 0.97
x6 128 1.0 [0.5, 1.5] 1.23
x7 129 2.0 [1.0, 3.0] 1.76
x8 130 1.5 [1.0, 3.0] 2.08
x9 131 1.0 [0.5, 1.5] 0.91
x10 132 1.0 [0.5, 1.5] 0.82

Fig. 10 Change of deflection of B pillar with initial and opti-
mum designs of case III
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