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Turning Black-Box Functions Into
White Functions
A recently developed metamodel, radial basis function-based high-dimensional model
representation (RBF-HDMR), shows promise as a metamodel for high-dimensional ex-
pensive black-box functions. This work extends the modeling capability of RBF-HDMR
from the current second-order form to any higher order. More importantly, the modeling
process “uncovers” black-box functions so that not only is a more accurate metamodel
obtained, but also key information about the function can be gained and thus the black-
box function can be turned “white.” The key information that can be gained includes: (1)
functional form, (2) (non)linearity with respect to each variable, and (3) variable corre-
lations. The black-box “uncovering” process is based on identifying the existence of
certain variable correlations through two derived theorems. The adaptive process of
exploration and modeling reveals the black-box functions until all significant variable
correlations are found. The black-box functional form is then represented by a structure
matrix that can manifest all orders of correlated behavior of the variables. The resultant
metamodel and its revealed inner structure lend themselves well to applications such as
sensitivity analysis, decomposition, visualization, and optimization. The proposed ap-
proach is tested with theoretical and practical examples. The test results demonstrate the
effectiveness and efficiency of the proposed approach.
�DOI: 10.1115/1.4002978�
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Introduction
Metamodeling techniques find a wide range of uses in engineer-

ng. These uses include getting insight into a complex system and
upporting simulation-based optimization. Metamodeling tech-
iques involve sampling approaches, model selection, model fit-
ing, and model validations �1–3�. From the sampling perspective,
here are various sampling approaches: one-stage sampling �e.g.,
ATIN HYPERCUBE and orthogonal arrays�, optimal sampling �e.g.,
-optimal and G-optimal�, one-stage-based optimal sampling

e.g., optimal LATIN HYPERCUBE, and optimal orthogonal-arrays-
ased LATIN HYPERCUBE� and sequential sampling �1–4�. For
etamodel selection and fitting, there are parametric models

polynomial� and nonparametric models �radial basis function�
3�. For metamodel validation, there are various validating ap-
roaches and performance metrics such as relative error and R2

5�. There are multiple papers that reviewed the advancement of
he metamodeling techniques. Chen et al. �6� summarized the pros
nd cons of the sampling methods and metamodels. Queipo et al.
7� reflected on the metamodeling techniques and optimization.
impson et al. �8� reviewed the use of metamodeling techniques

n multidisciplinary analysis and optimization. Wang and Shan �9�
eviewed applications of metamodeling techniques in support of
ngineering optimization.

With the advancement of metamodeling techniques, two issues
ecome prominent: �1� the “curse of dimensionality” and �2� how
o gain more insight into a black box through metamodeling. The
wo issues interweave with each other. The “curse of dimension-
lity” indicates the metamodeling cost �the number of function
valuations� exponentially increases as the dimensionality of the
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black-box functions becomes larger. Koch et al. �10� presented the
size problem of the black-box functions for multidisciplinary de-
sign optimization. Simpson et al. �11� pointed out that the high-
dimensionality plagues metamodeling techniques. Shan and Wang
�5� reviewed the relevant methodologies in solving high-
dimensional expensive black-box �HEB� problems. Friedman and
Stuetzle �12� developed projection pursuit regression. Friedman
�13� proposed the multivariate adaptive regression spline �MARS�
model. A family of high-dimensional model and representations
�HDMRs� with distinct characters has since been developed for
various purposes �14–19�. Recently Shan and Wang �20� proposed
a RBF-HDMR model and its modeling algorithm to approximate
a black-box function truncated after the second-order terms. For
the second issue on gaining more insight into the black-box func-
tion, almost all the metamodels only provide the metamodel as a
predictor and lack the capability to reveal the underlying func-
tional form of the black-box function. This is particularly the case
for commonly used metamodels such as Kriging, Support Vector
Machine, and Radial Basis Function �RBF�. Few papers have ad-
dressed this issue, especially from the metamodeling community.
For instance, Booker �21� used functional ANOVA techniques in
conjunction with a fitted Kriging model to disclose the main ef-
fects and correlation relationships in the response. Hooker �22�
developed an ANOVA approach from statistics to discover addi-
tive structure in black-box functions.

This paper naturally advances the RBF-HDMR model to dis-
cover the intrinsic structure of a black-box function and enhance
the accuracy of modeling by adaptively modeling higher-order
terms beyond the current second-order form. For situations that
the accuracy of the RBF-HDMR approximation provided by the
first and second order is not sufficient, the developed approach
explores high-order correlated terms and continues to model the
residual terms. Thus, the accuracy of the RBF-HDMR can be

further improved as far as the budget will allow. Moreover, the
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Downloa
odeling process can reveal key information about a black-box
unction such as the functional form, �non�linearity, and variable
orrelations.

Section 2 introduces the basics of RBF-HDMR. Section 3 de-
cribes the modeling process of the RBF-HDMR approach. Sec-
ion 4 presents a structure matrix, a component correlation matrix,
nd theories that support identification of high-order component
erms. Section 5 provides test results and discussion. The final
emarks are in Sec. 6.

RBF-HDMR
A general form of an HDMR �16� is shown as

f�x� = f0 + �
i=1

d

f i�xi� + �
1�i�j�d

f ij�xi,xj� + ¯

+ �
1�i1�¯�il�d

f i1i2,. . .,il
�xii

,xi2
, . . . ,xil

� ¯

+ f12,. . .,d�x1,x2, . . . ,xd� �1�

here f0 is a constant representing the zeroth-order effect on f�x�;
f i�xi� is the effect of the variable xi acting independently on the
utput f�x� �the first-order effect� and may have an either linear or
onlinear dependence on xi; f ij�xi ,xj� describes the correlated con-
ribution of the variables xi and xj on the output f�x� �the second-
rder effect� after the individual influences of xi and xj are dis-
ounted, and f ij�xi ,xj� could be linear or nonlinear as well. The
ubsequent terms reflect the effects of increasing numbers of cor-
elated variables acting together on the output f�x�. The last term

f12¯d�x1 ,x2 , . . . ,xd� represents the residual influence of all the
ariables locked together on the output f�x� after all of the lower-
rder correlation and individual influence of each involved xi �i
1, . . . ,d� have been discounted.
In order to compute component functions in Eq. �1�, the sim-

lest and most efficient type, Cut-HDMR �16�, is explained here.
or a chosen cutting center point x0, component functions of the
ut-HDMR are defined as

f0 = f�x0� �2�

f i�xi� = f�xi,x0
i � − f0 �3�

f ij�xi,xj� = f�xi,xj,x0
ij� − f i�xi� − f j�xj� − f0 �4�

f ijk�xi,xj,xk� = f�xi,xj,xk,x0
ijk� − f ij�xi,xj� − f ik�xi,xk� − f jk�xj,xk�

− f i�xi� − f j�xj� − fk�xk� − f0 �5�

f12¯d�x1,x2, . . . ,xd� = f�x� − f0 − �i
f i�xi� − �ij

f ij�xi,xj� − ¯

�6�

here x0
i , x0

ij, and x0
ijk are respectively x0 without elements xi;

i ,xj; and xi ,xj ,xk. For the convenience of later discussions, the
oints x0, �xi ,x0

i �= �x10
,x20

, . . . ,xi , . . . ,xd0
�T, �xi ,xj ,x0

ij�
�x10

,x20
, . . . ,xi , . . . ,xj , . . . ,xd0

�T, are, respectively, called the
eroth-order, first-order, second-order model-construction
oint�s�, and so on. Accordingly, f�x0� is the value of f�x� at x0;

f�xi ,x0
i � is the model output at point �xi ,x0

i �. The Cut-HDMR, in
ts original form, only provides a lookup table for data interpola-
ion; there is no explicit expression for component functions. It
lso does not have a sampling approach to support HDMR con-
truction.

The recently developed RBF-HDMR �20� uses a sum of a thin
late spline function �the first term� and a linear polynomial P�x�
the second term� to approximate each component function in Eqs.

3�–�6�.
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f̂�x� = �
i=1

n

�i�x − xi�2log�x − xi� + P�x�

�
i=1

n

�ip�x� = 0

P�x� = p� = �p1,p2, . . . ,pq���1,�2, . . . ,�q�T �7�

where xi are the vectors of n evaluated sample points; the coeffi-
cients �= ��1 ,�2 , . . . ,�n� and � are parameters to be found. P�x�
is a polynomial function, where p consists of a vector of basis
polynomials. In this work, p is chosen to be �1,x1 , . . . ,xd� includ-
ing only linear variable terms and therefore q=d+1; The side
condition �i=0

n �ip�x�=0 is imposed on the coefficients � to im-
prove an underdetermined system, that is, the singularity of dis-
tance matrix A with Aij = �xi−xj�2log�xi−xj�, i , j=1, . . . ,n. RBF is a
simple interpolative function and found to provide a good ap-
proximation for arbitrary systems �6�.

For the ease of description, we use a linear RBF as a substitute
for Eq. �7� without losing generality. Therefore, a general RBF-
HDMR model is written as

f�x� � f0 + �
i=1

d

�
k=1

mi

�ik
��xi,x0

i � − �xik
,x0

i �� + �
1�i�j�d

�
k=1

mij

�ijk
��xi,xj,x0

ij�

− �xik
,xjk

,x0
ij�� + ¯ + �

k=1

m12,. . .,d

�12,. . .,dk
�x − xk� �8�

where � . � denotes a p-norm distance; �ik
,�ijk

, . . . ,�12,. . .,dk
are re-

spectively the coefficients of the expression;
�xik

,x0
i � , �xik

,xjk
,x0

ij� , . . . ,xk are the sampled points;
mi ,mij , . . . ,m12,. . .,d are the number of sampled points for each
term; the component �k=1

mi �ik
��xi ,x0

i �− �xik
,x0

i �� is a function of only
the ith input variable xi, and explains the effect of the ith input
variable xi independently acting on the output function f�x�; and
the component �k=1

mij �ijk
��xi ,xj ,x0

ij�− �xik
,xjk

,x0
ij�� denotes the corre-

lated contribution of the variables xi and xj on the output f�x� after
the individual influences of xi and xj are discounted, and so on.

For a black-box function with d dimensionality, the number of
all possible existing components can be expressed as

N = �
i=0

d
d!

�d − i�!i!
= 2d �9�

It can be seen that N increases dramatically as the dimension-
ality d rises. This challenges both the identification of the func-
tional form and the modeling accuracy if higher-order correlated
terms exist in the black-box functions. The RBF-HDMR has an
attractive feature that it interpolates all of the prescribed points
used for constructing all component functions. The prescribed
points are defined as follows. For the constant component, the
model-construction point is x0; for the first-order components, the
model-construction points are x0 and �xik

,x0
i �; and for the second-

order components, its model-construction points are x0, �xik
,x0

i �,
�xjk

,x0
i �, and �xik

,xjk
,x0

ij�.

3 RBF-HDMR Modeling Process
Based on the argument that most well-defined physical systems

involve relatively low-order correlations of the input variables
�16,20�, the RBF-HDMR modeling process up to the second-order
was described as follows �20�:

�1� Randomly choose a point x0= �x10
,x20

, . . . ,xd0
�T in the

modeling domain. Evaluating f�x� at x0, we then have f0.
�2�
 Sample the first-order component functions f i�xi�
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= f��x10
,x20

, . . . ,xi , . . . ,xd0
�T�− f0 in the close neighborhood

of the two ends of xi �lower and upper limits� while fixing
the rest of xj �j� i� components at x0. Evaluating these two
end points, gave us the left point value f iL�xi�
= f��x10

,x20
, . . . ,xiL

, . . . ,xd0
�T�− f0 and similarly, the right

point value f iR�xi�. Model the component function as f̂ i�xi�
with a 1D RBF model for each variable xi using Eq. �7�.

�3� Check the linearity of f i�xi�. If the approximation model

f̂ i�xi� goes through the center point x0, then f i�xi� is consid-
ered linear. In this case, modeling for this component ter-
minates. Otherwise, use the center point x0 and the two end

points to reconstruct f̂ i�xi�. Then, a random value along xi is
generated and combined with the rest of the xj �j� i� com-

ponents at x0 to form a new point to test f̂ i�xi�. If f̂ i�xi� is
not sufficiently accurate �the relative error is larger than a
given criterion, for instance, 0.01%�, the test point and all

the evaluated points will be used to reconstruct f̂ i�xi�. This
sampling-remodeling process iterates until convergence.
This process captures the nonlinearity of the component
function with one sample point at a time. Repeat Step 3 for
all of the first-order component functions to construct the
first-order terms of RBF-HDMR model.

�4� Form a new point, �x1 ,x2 , . . .xi , . . .xd�k

= �x1k
,x2k

, . . . ,xik
, . . . ,xjk

, . . . ,xdk
�T, k�0 by randomly com-

bining the sampled value xi in the first-order component
construction for each input variable �that is, xi, i=1, . . . ,d
in the evaluated �xi ,x0

i �, respectively�. This new point is
then evaluated by expensive simulation, as well as by the
first-order RBF-HDMR model. If the two function values
are sufficiently close �the relative error is less than a small
value, for example, 0.01%�, it indicates that no higher-order
terms exist in the underlying function, and the modeling
process terminates. Otherwise, go to Step 5.

�5� Use the values of xi and xj, i� j that exist in the points
evaluated thus far �xi ,x0

i �= �x10
,x20

, . . . ,xi , . . . ,xd0
�T and

�xj ,x0
j �= �x10

,x20
, . . . ,xj , . . . ,xd0

�T to create new points of
the form �xi ,xj,x0

ij�= �x10
,x20

, . . . ,xi , . . . ,xj , . . . ,xd0
�T. Ran-

domly select one point from these new points to test the
first-order RBF-HDMR model. If the model passes through
the new point, it indicates that xi and xj are not correlated,
and the process continues with the next pair of input vari-
ables. This is to save the cost of modeling nonexistent or
insignificant correlations. Otherwise, use this new point and
the evaluated points �xi ,x0

i � and �xi ,x0
j � to construct the

second-order component function, f̂ i j�xi ,xj�. This sampling-
remodeling process iterates for all possible two-variable
correlations until convergence �the relative error is less than
0.01%�. Step 5 is repeated for all pairs of input variables.

Theoretically, step 5 applies to all higher-order terms in the
BF-HDMR model in a similar manner. However, given the ex-
onentially growing number of terms as shown in Eq. �9�, even if
nly one extra point is needed to test whether or not a higher-
rder correlation exists �such as that in step 5 for bivariate corre-
ation�, the number of sample points needed would increase expo-
entially. Therefore, this work first introduces some theorems and
hen uses the theorems to guide the modeling of higher-order
omponent functions.

Figure 1 shows a simplified flow of the RBF-HDMR modeling
rocess. The step Refine Model means increasing the number of
amples to improve the accuracy of the model without changing
he functional form of the model; the step Update Functional
orm adds the correlated component terms to the RBF-HMDR

odel if the term exists. When the desired modeling accuracy is

ournal of Mechanical Design
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reached, the modeling process terminates. The last step for higher-
order components is discussed in the next section.

4 Identification of Functional Form
First, this section first defines two matrices that support the

identification of multivariate correlated terms and the functional
form. Then, theorems for identification are introduced, which
form the basis for efficiently modeling higher-order components
of the RBF-HMDR and for uncovering the functional form of the
black-box function.

4.1 Structure Matrix. A structure matrix �SM� is defined to
capture the inner structure of the resultant RBF-HDMR of a
black-box function as

SMd�n = �
0 1 0 0 . . . 0 1 . . . 0 . . . 0 . . . 1

0 0 1 0 . . . 0 1 . . . 0 . . . 0 . . . 1

0 0 0 1 . . . 0 0 . . . 0 . . . 0 . . . 1

. . .

0 0 0 0 . . . 0 0 . . . 0 . . . 1 . . . 1

0 0 0 0 . . . 1 0 . . . 0 . . . 1 . . . 1

	
�10�

where d is the dimensionality of the input variable vector x; n
denotes the number of to-be-decided component terms. Each row
corresponds to a variable xi. Each column corresponds to one of
the component terms in the RBF-HDMR. Each element in the
structure matrix is assigned as “0” or “1;” “0” means that the
variable is sampled at xi0

; “1” means that the variable is sampled
at non-xi0

locations. For example, the column �01 ,02 , . . . ,0d�T de-
notes the constant component term f0; �01 ,02 , . . . ,10 , . . . ,0d�T

represents the first-order component term f i�xi�;
�01 ,02 , . . . ,1i , . . . ,1 j , . . . ,0d�T indicates the existence of the
second-order component term f ij�xi ,xj�, and the last column indi-
cates the existence of a d-variate correlation component terms
f12,. . .,d�x1 ,x2 , . . . ,xd�.

The structure matrix is employed to index the corresponding
component term and is created in tandem with the RBF-HDMR

Fig. 1 A simplified flow of RBF-HDMR metamodeling
modeling process. Since each column in the structure matrix is

MARCH 2011, Vol. 133 / 031003-3
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ssociated with a unique component term and the maximum num-
er of terms is 2d �Eq. �9��, a structure matrix could theoretically
epresent a maximum of 2d terms �16�. Many component terms
ay not exist in the black-box function f�x�, and some others

ave negligible contributions to f�x�. These terms’ corresponding
olumns are eliminated from the structure matrix. For example, if
he column �01 ,02 , . . . ,1i , . . . ,1 j , . . . ,0d�T does not exist in the
tructure matrix, it means f ij�xi ,xj� does not exist or is negligible.
or descriptive convenience, a nonexistent or negligible term is
eferred to in the rest of the paper as an insignificant term; other-
ise, it is a significant term. The final output of the structure
atrix thus depends on the intrinsic characteristics of the black-

ox function, and the structure matrix in return explicitly reveals
he inner functional form of the black-box function. Each column
n the structure matrix represents one term in the final RBF-
DMR. For each element xi, a “1” in a column means that the
ariable exists in the corresponding component term.

4.2 Component Correlation Matrix. Given the fact that
DMR is built on a hierarchy of orthogonal component functions
ith increasing dimensionality, we can further explore the vari-

ble relationships in the context of component functions. For in-
tance, as one understands from Eqs. �2�–�6�, f12�x1 ,x2� does not
imply capture the term x1x2, but rather the residual effect
f�x1 ,x2 ,x0

12�− f1�x1�− f2�x2�− f0� of x1x2. In other words, the al-
ebraic term x1x2 is expressed by f0, f1�x1�, f2�x2� and f12�x1 ,x2�
ltogether. The effect of the term x1x2 may be well captured by the
rst-order components, and thus there is no need to model the
econd-order term f12�x1 ,x2�; otherwise, f12�x1 ,x2� needs to be
dded to accurately model the x1x2 term. Whether or not

f12�x1 ,x2� is significant, it helps us to define the variable correla-
ion x1x2 from the perspective of HDMR. This point separates our
ariable correlation matrix, to be defined below, from its conven-
ional meaning. To distinguish the difference, we define the com-
onent correlation matrix as follows.

Considering d variables �that is, x= �x1 ,x2 , . . . ,xd�T�, both the
ow list and the column list in a component correlation matrix
enote the same set of input variables. The matrix entry indicates
hether the ith input variable in row and the jth input variable in

olumn defines a component term f ij�xi ,xj�. A component corre-
ation matrix �CCM� is

CCMd�d = �mij� �i = 1,2, . . . ,d; j = 1,2, . . . ,d� �11�

here mij =1, if f ij�xi ,xj� exists in an HDMR formula for a par-
icular problem; otherwise, mij =0. For example, a component cor-
elation matrix for a function of only first-order components is a
iagonal matrix of 1’s; the component correlation matrix of all
ignificant bivariate component terms is a square matrix with all
’s, as shown in Fig. 2. Similar to a conventional correlation ma-
rix, a CCM is symmetric.

A CCM can be automatically generated after completely mod-
ling RBF-HDMR’s second-order terms because the modeling
rocess adaptively identifies such relationships. The 0’s and 1’s
catter in the CCM, depending on the characteristics of the under-
ying black-box function. A CCM can be reorganized by changing
he order of rows and columns to exhibit patterns of correlations
r extract a part of the rows and columns to form subcorrelation
atrices. A CCM captures all of the bivariate component terms

nd leads to the identification of more-than-two-variable compo-
ent terms, which will be discussed in Sec. 4.3.

4.3 Correlation Identification for Higher-Order Compo-
ent Modeling. A CCM matrix shows second-order component

erms between variable pairs. How can we identify higher-order
omponent terms involving three or more variables without incur-
ing extra sampling costs? Let us take a t-variable subset �3� t

d� from a CCM to form a new submatrix. Such matrices include

wo types, a t� t matrix with all 1’s and a t� t matrix with at least

31003-4 / Vol. 133, MARCH 2011
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one 0.
THEOREM 1. The necessary condition of a t-variable �t�3� com-

ponent term existing in an HDMR formulation for a black-box
function is that the t-variable submatrix of the CCM is a t� t
matrix with all 1’s and all of its component terms involving �t
−1� variables exist in the HDMR model.

Proof. Assuming t-variables xi1
, . . . ,xit

, if one possible compo-
nent term of a subset of �t−1� variables, xi1

, . . . ,xit−1
, f i1,. . .,it−1

,
does not exist, it means that the contribution of the subset
xi1

, . . . ,xit−1
is not significant after all the lower-order effects are

modeled. Therefore, the higher-order component f i1,. . .,it
would not

be significant either. Similarly if f i1,. . .,it
exists, it means that all the

lower-order components for all the t-variables should exist since
f i1,. . .,it

is computed from all its related lower-order components
�see Eqs. �5� and �6��. Therefore, all entries in the t� t matrix
should be 1’s. If there exists an entry of “0” between two variables
xil

and xim
, it means that f ilim

does not exist or is not significant,
and therefore any higher-order components involving xil

,xim
would not be significant either. Proof completed.

Theorem 1 can be used to explore higher-order component
terms in an RBF-HDMR. If the necessary condition is not met,
then the corresponding t-variable component term does not exist,
and that term is skipped during modeling, thus an extra sample
point is saved. It is to be noted if a submatrix of a t-variable CCM
has all entry of 1’s, one cannot sufficiently conclude that all of the
third- and higher-order components exist. This is because a CCM
only defines bivariate relations. Theorem 2 is therefore proposed
to supplement Theorem 1.

THEOREM 2. The sufficient condition of the existence of a
t-variable �t�3� component term in an RBF-HDMR formulation
for a black-box function is that the value of a new point (formed
from the existing model-construction points’ variable elements for
up to the �t−1�th order component terms) is not accurately pre-
dicted by the RBF-HDMR model of �t−1�th order.

Proof. Assume an RBF-HDMR model of �t−1�th order is built,
that is,

f̃�x� = f0 + �
i=1

d

f i�xi� + �
i�1�j�d

f ij�xi,xj�

+ . . . �1�i1�¯�it−1�d
f i1i2,. . .,i�t−1�

�xi1
,xi2

, . . . ,xi�t−1�
�

�12�

All the model-construction points up to the �t−1�th order include

x0, �xi ,x0
i �, �xi ,xj , . . . ,x0

ij�, and �xi1
,xi2

, . . . ,xi�t−1�
,x

0
i1i2,. . .,i�t−1��. One

picks variable elements from these points to form a new point
i1i2,. . .,it

� �� �� � �� � ��

�� 1 1 � � � �

�� 1 1 � � � �

� � � � � � �

�� 1 1 � 1 � �

� � � � � � �

�� 1 1 � � � 1

Fig. 2 An example of component correlation matrix indicating
a function having all significant bivariate terms
�xi1
,xi2

, . . . ,xit
,x0 �. If the current �t−1�th order RBF-HDMR
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annot accurately predict the function value at the new point, it
eans that the interaction of all the t-variables has not been cap-

ured by the �t−1�th order model and therefore the t-variable �t
3� correlated component term should exist. Proof completed.
Theorem 2, the sufficient condition, can be used for confirming

he existence of the correlated component terms. However, what if
he �t−1�th order model accurately predicts the function values of
ll possible new points? Strictly speaking, one cannot sufficiently
onclude from Theorem 2 that there does not exist tth order or
igher components. Assuming it is a rare occurrence for a black-
ox function having tth order or higher components uncaptured
nd yet the �t−1�th order model accurately predicts the function
alues of new points, the sufficient condition is loosened as fol-
ows for practical algorithm development.

4.3.1 Loosened Sufficient Condition. If an RBF-HDMR of �t
1�th order can exactly predicts the function value at the test
oint constructed from existing model points’ variable elements
or up to the �t−1�th order component terms, then it is deemed
hat there is no t-variable or higher-order component terms in the
lack-box function.

4.4 Modeling of High-Order Component Functions in
BF-HDMR. The theorems developed in Sec. 4.3 are employed

o identify and model high-order component functions in an
BF-HDMR.
The general process follows that for the modeling of a second-

rder component, as described in Sec. 3. The main difference is on
he identification of high-order component functions in order to
void exponentially increasing sampling costs and to reveal the
unctional form of the black-box function. The logic for compo-
ent identification is illustrated in Fig. 3.

The structure matrix of the black-box function, as shown in Eq.
10�, is constructed and updated with the modeling process. Once
he modeling is completed, its functional form is captured in the
tructure matrix. The following example explains the process in
etail.

4.5 An Example. One example is used to illustrate the mod-
ling and functional form identification process. This problem is
odified from Ref. �22� and expressed as

f�x� = �x1x2
2x3 − sin−1 x4 + log�x3 + x5� −
x9

x10

x7

x8
− x2x7 + x6

2

�13�
he resultant structure matrix of this example is shown in Fig. 4.

n the structure matrix, we shadow component terms from zeroth

GIVEN: CCM obtained after modeling the 2nd order component terms

FOR each t-variable sub-matrix 	
 � �
� 
 ��

IF there is one ‘0’ entry, skip modeling the t-variable component
term (Theorem 1)

ELSE

Construct a new point according to Theorem 2 and evaluate the
point

IF model prediction is not accurate, then model the t-variable
component term (Theorem 2)

ELSE skip modeling the t-variable component term (Loosened
condition)

Update the structure matrix

END

Fig. 3 Process for high-order component identification
rder to the highest order with gradually lighter colors. Also, we
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mark the independent component terms with rectangular boxes.
Matching the structural matrix with steps in Sec. 3, the first col-
ored block corresponds to step 1; the second colored block is
implemented by steps 2 and 3; step 4 happens between the second
colored block and the third colored block; step 5 fills the third
colored block and generates a component correlation matrix; the
last two colored blocks are implemented by means of the two
derived theorems and the algorithm shown in Fig. 3. From the
fourth and sixth rows, one can see that input variables x4 and x6
are independent variables, that is, having only first-order compo-
nent terms. Observing the second rightmost block, one can see
that variables x1, x2, and x3 form a three-variable component term;
observing the last block, variables x7 ,x8 ,x9 ,x10 form a four-
variable component term. The middle color block shows that two-
variable correlation exists between variable pairs x2 and x7, as
well as x3 and x5. It is to be noted that multiple variable compo-
nent terms can be ignored if the terms are trivial to the output.
From the final structure matrix, one can extract the following
mathematical expression

f�x� = f0 + g4�x4� + g6�x6� + g2,7�x2,x7� + g3,5�x3,x5�

+ g1,2,3�x1,x2,x3� + g7,8,9,10�x7,x8,x9,x10�

where gi�xi�= f i�xi� , i=4,6

g2,7�x2,x7� = f2�x2� + f7�x7� + f2,7�x2,x7�

g3,5�x3,x5� = f3�x3� + f5�x5� + f3,5�x3,x5�

g1,2,3�x1,x2,x3� = �
i=1

3

f i�xi� + �
i=1,i�j

3

f ij�xi,xj� + f1,2,3�x1,x2,x3�

g7,8,9,10�x7,x8,x9,x10�

= �
i=7

10

f i�xi� + �
i=7,i�j

10

f ij�xi,xj� + �
i=7,i�j�k

10

f ijk�xi,xj,xk�

+ f7,8,9,10�x7,x8,x9,x10� �14�

Equation �14� corresponds to the structure depicted by Fig. 4. f0
corresponds to the first column. The numerical models of all com-
ponent functions have been obtained using the modeling process
described in Sec. 3 and stored in the final model. The final model
manifests the high-dimensional correlated behavior of variables.
The linearity/nonlinearity information for each input variable is
also saved in the final model and can be readily output.

The CCM corresponding to the SM in Fig. 4 is shown in Eq.

Fig. 4 The structure matrix of the example
�15�
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CCM = �
1 1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 1 0 0 0

1 1 1 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1 1 1

	 �15�

rom this CCM, one can roughly see the correlation among the
ariables in Eq. �14�. The top left corner 3�3 submatrix indicates
hat x1, x2, and x3 may be correlated; however, it needs to be
udged by the structure matrix. Similarly, the bottom right corner
�4 submatrix indicates that x7, x8, x9, and x10 may be corre-

ated. Both the fourth row and fourth column have only one “1”
lement at the diagonal position, which shows that x4 is only in
rst-order component term f4�x4� and not in higher-order terms.
he same is true for x6. Variables x2 and x7 correlate strongly and

f2,7�x2 ,x7� must be modeled; this is also true for x3 and x5.
The modeling result is given in Table 1, where NoE accumu-

ates the number of function evaluations from lower to higher
rder; for example, it requires a total of 441 points to model the
unction up to the fourth order, 393 points to the third order, and
o on. “id” means accumulated NoE spent on identification of the
unctional form, which is used for modeling if the term exists, and
5 sampling points are generated in the second order for this
urpose. The column “model” indicates the NoE used for model-
ng. R2, relative average absolute error �RAAE�, and relative

aximum absolute error �RMAE� are model performance metrics,
hich will be introduced in the next section. Table 1 shows that

he second RBF-HDMR models the underlying function well, and
sually no more modeling effort is needed. However, one can see
hat the performance metrics such as R2 and RAAE became worse
rom the second to the third order. This phenomenon indicates
over fitting,” this is, the gain from modeling higher-order terms
s less than the error brought from the modeling process. Over
tting is one of the common issues in metamodeling techniques.
ang et al. �23� discussed over fitting in the RBF metamodel.

ecko et al. �24� presented a comparison of over fitting and over
raining in artificial neural networks. In the artificial neural net-
ork community, some additional techniques such as early stop-
ing and cross-validation are used to avoid over fitting. Due to
imited space, a discussion on over fitting is not extended here.

Test Examples

5.1 Problem Description. To test the effectiveness and effi-
iency of the proposed approach, 15 test problems are selected
ased on the criteria: �1� the number of variables �10, �2� high
onlinearity of the performance behavior, and �3� multiple vari-
bles are correlated. The criteria are chosen to expose the chal-
enges of metamodeling HEB problems. Scalable problems with

Table 1 Modeling results of the example

rder R2 RAAE RMAE

NoE

id Model Total

irst 0.3809 0.3331 10.399 0 137 137
econd 0.9386 0.1150 5.1044 35 238 273
hird 0.9182 0.1372 2.4582 35 358 393
ourth 0.9187 0.1361 2.4580 35 406 441
ifferent dimensionality are treated as one problem. In total, 15

31003-6 / Vol. 133, MARCH 2011
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problems that satisfy the criteria are found in the book by Schitt-
kowski �25�, which offers 188 problems for testing nonlinear op-
timization algorithms and a few of them for testing data fitting
algorithms. Most of these problems have some application back-
ground. Fifteen problems that satisfy our criteria are listed in the
Appendix. Among these problems, the first ten are classified by
Schittkowski as “theoretical” problems denoted by “T,” and the
remaining five problems as “practical” problems represented by
“P.” Detailed backgrounds of these practical problems are omitted
due to limited space. “Order” stands for the highest order, that is
analyzed by the RBF-HDMR. The modeling accuracy is evaluated
by four performance metrics, which are introduced in the next
section.

5.2 Performance Metrics

�1� R2

R2 = 1 −
�i=1

m �f�xi� − f̂�xi��2

�i=1
m �f�xi� − f̄�xi��2

�16�

where f̄�xi� denotes the mean of the function on the m
sampling points. These metrics indicate the overall accu-
racy of the approximation model. The closer the value of R2

approaches 1, the more accurate the approximation model
is. Note R2 in this work is computed on 10,000 new test
points for each problem, rather than on the modeling
points. The same is true for the next two metrics.

�2� RAAE

RAAE =
�i=1

m
�f�xi� − f̂�xi��

m � STD
�17�

where STD stands for standard deviation. Like R2, this met-
ric shows the overall accuracy of an approximation model.
As the value of RAAE approaches zero, the approximation
model becomes more accurate.

�3� RMAE

RMAE

=
max��f�x1� − f̂�x1��, �f�x2� − f̂�x2��, . . . , �f�xm� − f̂�xm���

STD

�18�

This is a local metric. An RMAE describes the error in a sub-
region of the design space. Therefore, a small value of RMAE is
preferred.

5.3 Test Results. Expressions for the 15 problems are listed
in Appendix. Table 2 shows the results of 14 test examples except
for problem 12. Problem 12 is discussed in Sec. 5.4. The results
represent the average of 10 independent runs. It can be seen that
RBF-HDMR accurately models 14 problems out of 15.

In Table 2, problems 1, 2, 11, and 15 are chosen for detailed
report; other results are also in Table 2 for brevity. For problems 1,
2, 11, and 15 in Table 2, the two matrices for each problem are
shown, along with their mathematical function descriptions as
those in Eq. �14�. For problem 1, bivariate correlations exist,
which are clearly shown with brighter colors in the two matrices.
The RBF-HDMR model also reached high accuracy when includ-
ing up to the second-order components. Problem 2 has high-order
multivariate correlations, but these terms have small influence and
can be neglected. Problem 11 has up to sixth-order correlations.
The fourth-order RBF-HDMR model reaches an R2 value of 0.938
and the cost grows significantly due to strong variable correlations
as the model moves one order higher. Problem 15 has 50 vari-
ables, but its internal structure is very simple and there is no
strong correlation between variables. Thus the modeling cost is

low. Comparing problems 1 and 2, both have d=10, the NoE is
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96 and 584, respectively for the second-order model. As one can
ee that the cost for problem 2 is significantly higher. Problem 2
onsists of multiple correlated second-order and third-order terms,
hich are evident from its SM and CCM. Its CCM has all ele-

Table 2 Test re

3 d=10 First 0.8622 0.288
Second 0.9438 0.202

4 d=20 First 0.8918 0.255
Second 0.9471 0.200

5 d=20 First �0.1862 0.807
Second 0.8778 0.266

6 d=30 First 0.4029 0.529
Second 0.8715 0.216

7 d=30 First �2.6392 1.722
Second 0.7746 0.421

8 d=31 First 0.5126 0.549
Second 0.9506 0.178

9 d=20 First 0.4968 0.558
Second 0.9906 0.085

10 d=20 First 0.9206 0.193
Second 0.9971 0.037

13 d=14 First 0.9997 0.013
14 d=30 First 0.9999 0.007
ents of 1. The SM also appears more complicated than that of

ournal of Mechanical Design

ded 23 Feb 2011 to 142.58.187.178. Redistribution subject to ASM
problem 1. Then for problem 11 with eleven variables, the cost for
the second order is similar to that of problem 2 but doubles each
time the order increases by 1.

Problem 11 has even more complex structure than problem 2

lts of examples

1.6642 0 101 101
0.8231 136 209 345
1.3816 0 101 101
0.6896 166 265 431
4.9560 0 101 101
1.5423 161 341 502
5.3301 0 151 151
4.6852 1 3631 3632

6.869286 0 151 151
1.6282 1 5367 5368
3.1200 0 151 151
0.7747 407 499 906
4.2935 0 101 101
0.4121 172 265 437
3.1821 0 99 99
1.0299 1 1642 1643
0.0716 0 71 71
0.0168 0 151 151
su

8
7
5
8
4
3
3
1
5
3
4
9
5
2
6
3
5
5

with multiple correlated high-order terms until the sixth order,
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hich explains its high modeling cost. For problem 15, a first-
rder problem, the NoE is only 251 even with d=50. Table 2
hows the test results for other functions. These results show the
ffectiveness and efficiency for a wide range of problems. In ad-
ition, this work did not choose to compare the RBF-HDMR with
ther metamodeling techniques. Interested readers can refer to
ef. �20� for such comparison.

5.4 Discussion. The test problem 12 is expressed as

f�x� = 100000�i=1

11
xi

ai, 0.1 � xi � 100, i = 1, . . . ,11

� = �− 0.00133172,− 0.002270927,− 0.00248546,− 4.67,

− 4.671973,− 0.00814,− 0.008092,− 0.005,− 0.000909,

− 0.00088,− 0.00119� �19�

n this problem, �i is employed for specifying the role of the
orresponding variable xi. �i significantly affects the final output
nd the modeling results. This effect can be seen in Fig. 5. Figure
plots the f�x� �vertical axis� with respect to xi �all xi are held

qual to each other�. As �4 and �5 get smaller, the output curve
ecomes extremely steep. When they reach a value at ��4.67,

Table 3 The results of example 12

�4 �5 R2 RAAE RMAE NoE

0 0 0.9914 0.0406 0.9234 126
0.5 �0.5 0.6791 0.1438 20.1244 144
4.67 �4.67 0.0000 0.0114 99.7205 146

Fig. 5 Deterioration of f„x… when

ig. 6 Structure matrices and correlation matrices of problem

2
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�4.67�, the output forms a right angle with the x-axis and the
modeling error is prohibitive. Table 3 shows the modeling results.
The structure matrices and correlation matrices are given in Fig. 6.
It is very interesting to see as the coefficients decrease from 0 to
�0.5, the SM and the CCM change from a simple structure to
complex ones with multivariate correlations. It means as �i de-
creases, high-order variable correlations becomes stronger and fi-
nally dominates f�x�.

6 Final Remarks
This work extends the recently developed RBF-HDMR method

to model higher than second-order component functions, based on
which a black-box function can be “uncovered.” Key information
about a black-box function such as functional form, variable
�non�linearity, and variable correlations can be obtained through
the modeling process. SM is developed to present the functional
form of the black-box problems. CCM is defined as to describe
correlation relationship among the variables. Note that the SM and
the CCM depend on the characteristics of HEB problems and do
not dictate the exclusive association with RBF-HDMR. First, if
other metamodels are used to model the component terms of
HDMR, the SM and CCM remain exactly the same as in the
context of RBF-HDMR. Second, even if HDMR is not used, for
instance, for a second-order polynomial response surface, its con-
stant, first-order and second-order terms correspond to the first
few columns of SM as defined in Eq. �10�; CCM can represent the
correlation among variables according to the coefficients. How-
ever, the full second-order response surface is a parametric model
whose functional form is postulated. Therefore, the high-order
terms may be significant but ignored once the second-order poly-
nomial model is chosen. Although the SM and the CCM are ap-
plicable for other metamodel techniques, the challenge lies in how
to uncover the functional form and fill the matrices. In this work,
two theorems are developed to support the efficient identification
of high-order correlation terms in the context of HDMR. Multiple
test examples show the effectiveness and efficiency of the pro-
posed approach. Future work will extend the methodology to sup-
port ANOVA analysis, direct problem decomposition, and design
optimization.
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ppendix

o. Function
Variable
ranges Class Order

f�x�= �x1−1�2+ �x10−1�2+10�i=1
9 �10− i��xi

2−xi+1�2 −3�xi�2,
i=1, . . . ,10

T 2

f�x�= ��i=1
10 i3�xi−1�2�3 −3�xi�3,

i=1, . . . ,10
T 3

f�x�=�i=1
10 �100�xi−xi+10�2+ �xi−1�2� −3�xi�5,

i=1, . . . ,10
T 2

f�x�=�1
5�100�xi

2+xi+5�2+ �xi−1�2+90�xi+10
2+xi+15�2+ �xi+10−1�2+10.1��xi+5−1�2+ �xi+15−1�2�+19.8�xi+5−1�

� �xi+15−1��
−3�xi�5,
i=1, . . . ,5

T 2

f�x�=�1
5��xi+10xi+5�2+5�xi+10−xi+15�2+ �xi+5−2xi+10�4+10�xi−xi+15�4� −2�xi�5,

i=1, . . . ,5
T 2

f�x�=1−exp�−1 / 60�i
30xi

2� 0�xi�3.5,
i=1, . . . ,30

T 30

f�x�= �xTAx�2 , A=diag�1,2 ,3 , . . . ,30� −2�xi�3,
i=1, . . . ,30

T 2

f�x�=�i=1
29 �100�xi+1−xi

2�2+ �1−xi�2� −2�xi�2,
i=1, . . . ,30

T 2

f�x� = xTAx − 2x1, A = �
1 − 1 0

− 1 2 − 1

− 1 2 − 1

. . . . . . . . . 0

. . . . . . . . .

− 1 2 − 1

0 − 1 2

	
0�xi�25,
i=1, . . . ,d,
d=20,50,100

T 2

0
f�x� = �1

20xi
2 + ��1

201

2
ixi
2

+ ��1
201

2
ixi
4 0�xi�5,

i=1, . . . ,20,
T 4

1 f�x� = �1
65�yi − �x1 exp�− x5ti� + x2 exp�− x6�ti − x9�2� + x3 exp�− x7�ti − x10�2� + x4 exp�− x9�ti − x11�2���2

ti=0.1�i−1�, �i=1, . . . ,65�,

y= �
1.366 1.191 1.112 1.013 0.991 0.885 0.831 0.847 0.786 0.725 0.746

0.679 0.608 0.655 0.616 0.606 0.602 0.626 0.651 0.724 0.649 0.649

0.694 0.644 0.624 0.661 0.612 0.558 0.533 0.495 0.500 0.423 0.395

0.375 0.372 0.391 0.396 0.405 0.428 0.429 0.523 0.562 0.607 0.653

0.672 0.708 0.633 0.668 0.645 0.632 0.591 0.559 0.597 0.625 0.739

0.710 0.729 0.720 0.636 0.581 0.428 0.292 0.162 0.098 0.054

�
0�x1�1.6;
0�xi�2,
i=2, . . . ,5;
2�xi�8,
i=6, . . . ,8;
1�x9�6,
4.5�xi�6,
i=10,11;

P 6

2 f�x�=100000�i=1
11 xi

ai, �= �−0.00133172 −0.002270927 −0.00248546 −4.67 −4.671973 −0.00814
−0.008092 −0.005 −0.000909 −0.00088 −0.00119�

0.1�xi�100,
i=1, . . . ,11

P 11

3
f�x�=�1

14ai /xi �= � 12842.275 634.25 634.25 634.125 1268 633.875

633.75 1267 760.05 33.25 1266.25 632.875 394.46 940.838 � 0.0001�xi,
i=1, . . . ,11;
xi�0.04,
i=1, . . . ,5;
xi�0.03, i
=6, . . . ,14;

P 1
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4 f�x�=�1
30�i�x� �i�x�=420xi+ �i−15�3+� j=1

30 vij��sin�log�vij���5+ �cos�log�vij���5� vij =
xj
2+ i / j −2�xi�2,

i=1, . . . ,30
T 1

5 f�x�=�1
di�xi

2+xi
4� −2�xi�4,

i=1, . . . ,d,
d=20 or 50

P 1
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