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In engineering design, spending excessive amount of time on physical experiments or ex-
pensive simulations makes the design costly and lengthy. This issue exacerbates when the
design problem has a large number of inputs, or of high dimension. High dimensional
model representation (HDMR) is one powerful method in approximating high dimen-
sional, expensive, black-box (HEB) problems. One existing HDMR implementation, ran-
dom sampling HDMR (RS-HDMR), can build an HDMR model from random sample
points with a linear combination of basis functions. The most critical issue in RS-HDMR
is that calculating the coefficients for the basis functions includes integrals that are
approximated by Monte Carlo summations, which are error prone with limited samples
and especially with nonuniform sampling. In this paper, a new approach based on princi-
pal component analysis (PCA), called PCA-HDMR, is proposed for finding the coeffi-
cients that provide the best linear combination of the bases with minimum error and
without using any integral. Several benchmark problems of different dimensionalities and
one engineering problem are modeled using the method and the results are compared
with RS-HDMR results. In all problems with both uniform and nonuniform sampling,
PCA-HDMR built more accurate models than RS-HDMR for a given set of sample points.
[DOI: 10.1115/1.4025491]
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1 Introduction

Metamodels are often built in engineering to simplify computa-
tionally intensive simulations of physical systems or phenomena.
Clear successes have been made in the last two decades by model-
ing problems of low dimensionality (d <¼ 10, d is the problem
dimensionality). Wang and Shan [1] listed roles of metamodeling
in design optimization and reviewed the metamodeling techni-
ques. Kriging [2], radial basis function [3], neural network [4],
and multivariate adaptive regression splines [5] are common
metamodeling techniques.

One major problem with metamodeling is when the dimension
of the problem grows, the cost of sampling a sufficient number of
points for metamodeling increases exponentially. This difficulty is
known as “curse of dimensionality” [6]. Recently, the authors’
team reviewed relevant techniques to solve problems with HEB
functions [6]. Among these techniques, HDMR is identified as a
promising metamodeling approach for HEB problems. HDMR is
an approximation method, first introduced by Sobol [7], for repre-
senting high dimensional black-box functions. The general form
of HDMR for a black-box function f with d input variables
ðx1; x2;…; xdÞ is

f ðxÞ ¼ f0 þ
Xd

i¼1

fiðxiÞ þ
X

1�i<j�d

fijðxi; xjÞ þ � � �

þ
X

1�i1<���<il�d

fi1i2 ���ilðxi1 ; xi2 ;…; xilÞ

þ � � � þ f12���dðx1; x2;…; xdÞ (1)

where f0 is the zero-th order effect of f ðxÞ, fiðxiÞ is the first-order
effect associated to variable xi, independently; fijðxi; xjÞ is the joint
second-order effect associated to variables xi and xj; fi1i2���il
ðxi1 ; xi2

; � � � xilÞ is the joint l-th order effect of variables
xi1
; xi2

; � � � xil
; and f12���dðx1; x2; � � � xdÞ is the residual d-th order de-

pendence of all variables on f xð Þ.
HDMR expression is a superposition of lower order functions.

Usually in practice the first a few low order component functions
are sufficient for approximation. Two main types of HDMR are
analysis of variance (ANOVA)-HDMR and cut-HDMR [8,9].
Moving least square-HDMR [10], radial basis function-HDMR
(RBF-HDMR) [11,12], multicut-HDMR [13], hybrid-HDMR
[14], lumping-HDMR [15], indexing-HDMR [16], regularized
RS-HDMR [17], and Chebyshev-HDMR [18] are other types of
HDMR introduced by researchers.

ANOVA-HDMR is beneficial for statistical purposes but the
main drawback in using ANOVA-HDMR is the need to compute
lots of integrals. Usually Monte Carlo summations are used for
computing the integrals that need numerous function evaluations.
Different from ANOVA-HDMR, no integral is included in cut-
HDMR component calculations. Cut-HDMR is a superposition of
the function values on lines, planes, and hyperplanes. Generally,
HDMR is used for two main purposes. The first is to generate an
approximation for a black-box function. For this purpose, cut-
HDMR is often used due to the simplicity of implementation.
However, cut-HDMR requires well-structured sample points as
dictated by the method, and is not accurate on hyperplanes that
are not sampled in. The second purpose of HDMR is sensitivity
analysis in order to identify important variables and correlations
[19], for which ANOVA-HDMR is more suitable.

RS-HDMR is a modified version of ANOVA-HDMR [20] and
uses orthonormal basis functions to build the approximation of
black-box functions. The main advantage of RS-HDMR in com-
parison with ANOVA-HDMR is that all Monte Carlo summations
can be performed using only one set of sample points in
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RS-HDMR. However, in ANOVA-HDMR different sets of sam-
ple points are needed for different integrals of component func-
tions. The other advantage of RS-HDMR is that randomly
scattered data can be used for its component calculations but
ANOVA-HDMR needs regularized inputs (controlled points) that
may not be available for some problems. This advantage remains
true when comparing RS-HDMR with cut-HDMR because the lat-
ter also requires regularized sampling. Another advantage is that
RS-HDMR gives a mapping function between inputs and outputs
but plain ANOVA-HDMR and cut-HDMR only give tables of
points at the end. Finally, because of using basis functions in con-
structing RS-HDMR, by changing basis functions different
approximation can be built using the same set of data.

Using RS-HDMR has two disadvantages that may affect the ac-
curacy of the approximation. As it will be shown in the following
sections, RS-HDMR is an integral-bases method and the coeffi-
cients for component functions are obtained using integrals com-
puted from Monte Carlo summations. The Monte Carlo
summations are accurate only if the number of sample points is
sufficient and the points are distributed uniformly. However, in
practice, the sample points may not be distributed uniformly and
this may cause an inaccurate approximation model. Noticed in
authors’ previous work [21], if the density of sample points
changes in different sub-regions of the design space, the RS-
HDMR model becomes worse than otherwise. In specific, if a
sub-region has denser sample points, the approximation model is
poor for either the sub-region or outside of the sub-region. Again,
this disadvantage comes from the integral-based nature of
RS-HDMR. In this paper, the idea of using orthonormal basis
functions for building metamodel is used but the coefficients are
calculated without using any integrals. Principal component anal-
ysis [22] is used for this purpose and the approximation accuracy
is compared with RS-HDMR. The proposed method is thus named
PCA-HDMR.

The rest of the paper is organized as follows: first, the general
form of HDMR is presented followed by RS-HDMR. Next, the
proposed method, PCA-HDMR, is introduced and the pros and
cons of the new method are discussed. Then, results of approxima-
tions for benchmark functions and the engineering problem are
presented, and finally conclusions are drawn.

2 High Dimensional Model Representation

HDMR is a family of representations for capturing high dimen-
sional input–output behavior of black-box systems. The general
form of HDMR is shown in Eq. (1) that consists of terms for the
individual and joint contribution of the input variables to the sys-
tem output. For obtaining the HDMR terms, first assume that a
real, scalar function f xð Þ is defined on a unit hypercube

Kd ¼ x1; x2;…; xdð Þ: 0 � xi � 1; i ¼ 1; 2;…; df g (2)

The variables should be rescaled such that 0 � xi � 1;
i ¼ 1; 2;…; d. For a general case, let’s define l as a product
measure with unit mass and the following density:

dl xð Þ ¼ dl x1;…; xdð Þ ¼
Yd

i¼1

dli xið Þð
K1

dli xið Þ ¼ 1

dl xð Þ ¼ g xð Þdx ¼
Yd

i¼1

giðxiÞdxi

(3)

Different measures l in Eq. (3) will make different types of
HDMR. If the measure l is the ordinary Lebesgue measure and if
the orthogonality conditions are satisfied, the HDMR is called

AVOVA-HDMR and the component functions in Eq. (1) can be
obtained as below [8]

f0 ¼
ð

f xð Þdx

fiðxiÞ ¼
ð

f ðxÞ
Y
k 6¼i

dxk � fo

fijðxi; xjÞ ¼
ð

f ðxÞ
Y
k 6¼i;j

dxk � fo � fiðxiÞ � fjðxjÞ

..

.

(4)

The orthogonality condition is [9]ð
fi1…is ðxi1 ; xi2 ;…; xisÞ � fj1…jpðxj1

; xj2
;…; xjp

Þdx ¼ 0 (5)

for cases that at least one index is different between i1…isf g and
j1…jp
� �

, which can be derived from a requirement of HDMR
component functions

ð1

0

fi1…il
ðxi1 ; xi2 ;…; xil

Þdxk ¼ 0; k ¼ i1;…; il (6)

The integrals in Eq. (4) are obtained using Monte Carlo approxi-
mation. The number of function evaluations used for Lth order
ANOVA-HDMR is [8]

N �
XL

i¼0

d!

d � ið Þ!i!

 !
(7)

where N is the number of sample points used in each Monte Carlo
summation. The main drawback of ANOVA-HDMR is the
computation of the integrals or equivalently the corresponding
Monte Carlo summations. For each integration, a different set of
sample points is needed in appropriate order. Therefore, numerous
function evaluations are needed in a controlled manner.

Under this condition, RS-HDMR is proposed by Alis and
Rabitz [20] as a modified version of HDMR that provides a map-
ping between input variables and system output using only one set
of sample points (i.e., N function evaluations) randomly scattered
in the space. The RS-HDMR is built as a linear combination of
basis functions

f xð Þ ¼ c0 þ
Xd

i¼1

Xs

k¼1

ck
i /

k
i xið Þ þ

Xd

i<j

Xs0

k¼1

ck
ij/

k
ij xi;xj

� �
þ… (8)

where
�
/k

i

�
xi

��s

k¼1
is a family of linearly independent bases for

univariate functions of xi on ½0 1� and
�
/k

ij

�
xi;xj

��s0

k¼1
is similarly

defined as a family of linearly independent bases for bivariate

functions of xi and xj on ½0 1�2. Similarly, a set of basis functions
can be defined for any higher orders of correlations with the fol-
lowing condition satisfied (similar to Eq. (6))

ð
0;1½ �

/k
i1i2…il

xi1 ;…; xilð Þdxm ¼ 0; k ¼ 1; 2;…; s00; m ¼ 1; 2;…; l

(9)

Although the basis function can be defined in different ways, Alis
and Rabitz [20] suggested the product of univariate basis func-
tions for higher correlations
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/k
i1i2…il

xi1 ;…; xilð Þ ¼ /k1

i1
xi1ð Þ/k2

i2
xi2ð Þ…/kl

il
ðxilÞ

k � ðk1; k2;…; klÞ
(10)

The coefficients related to RS-HDMR expansion can be calculated
by

c0¼
ð

0;1½ �d
f xð Þdx� 1

N

XN

r¼1

f x
rð Þ

1 ;x
rð Þ

2 ;…;x
rð Þ

d

� �

ck
i ¼
ð

0;1½ �d
f xð Þ/k

i xið Þdx� 1

N

XN

r¼1

f x
rð Þ

1 ;x
rð Þ

2 ;…;x
rð Þ

d

� �
/k

i x
rð Þ

i

� �

ck
ij¼
ð

0;1½ �d
f xð Þ/k

ijðxi;xjÞdx� 1

N

XN

r¼1

f x
rð Þ

1 ;x
rð Þ

2 ;…;x
rð Þ

d

� �
/k

ijðx
rð Þ

i ;x
ðrÞ
j Þ

(11)

The complete proof on how to obtain the coefficients can be found
in Ref. [20]. The sensitivity analysis can be performed easily
using the RS-HDMR coefficients [23]. Different sets of bases can
be used for RS-HDMR approximation that may lead to different
approximation. Li et al. [24] compared three types of basis func-
tions (orthonormal polynomials, Cubic B spline, and polynomials)
with direct Monte Carlo integrations and concluded that orthonor-
mal polynomials provide the best accuracy. In another research,
Li et al. [25] used product of lower order functions to build higher
order component functions. Note that if the basis function shapes
are similar to the black-box function, the model will be more
accurate than otherwise.

Using Monte Carlo approximation instead of the corresponding
integrals causes some errors that may lead to loss of accuracy in
the RS-HDMR model [26]. Several attempts are made to improve
the accuracy of Monte Carlo approximations. In Ref. [27] a corre-
lation method is used for reducing the Monte Carlo summation
error. The error can be decreased by either increasing the sample
size or decreasing the variance of the function. The latter
approach models the difference between the approximation model
and the black-box function and adaptively modifies the model
coefficients [27]. Li and Rabitz [28] used the ratio control variate
method to reduce the Monte Carlo integration error, and therefore
to improve the RS-HDMR accuracy.

Although using the mentioned methods, RS-HDMR accuracy
can be improved but the fundamental error of using Monte Carlo
summation to approximate integrals still exists. This error
increases if the sampling is not performed uniformly in the
space. In case of nonuniform sampling or having some sub-
regions with different density of sample points, the RS-HDMR
model will have a large error in both the dense and sparse sub-
regions [21]. Therefore, using the existing RS-HDMR method
for modeling a black-box function with existing nonuniform
sample points may lead to poor approximation. In this paper, the
RS-HDMR coefficients are calculated using another method
without using any integration. Thus, the errors from Monte Carlo
summation disappear and models are more accurate, especially
in nonuniform sampling cases. The proposed method is explained
in Sec. 3.

3 PCA-HDMR

PCA is a technique to analyze data by transforming multivari-
able data to a set of new orthogonal variables so that the impor-
tance of the variables is revealed. PCA was originated in 1901
[29], but the term principal component was formally used in 1933
[30]. PCA has four main goals [22]: (1) extracting the most impor-
tant part of data, (2) decreasing the size of data, (3) obtaining the
structure of data, and (4) simplifying data description. These goals
are obtained by introducing new variables called principal compo-
nents, which are linear combinations of existing variables. The

first principal component accounts for the largest variation in the
data. The second principal component is computed in a direction
that has the second largest variation and is also orthogonal to the
first component. The other components are specified similarly.
Higher order components must be orthogonal to all the lower
order components. New values of the data in new coordinates are
called factor scores. PCA can be performed using singular value
decomposition (SVD). Suppose that a data matrix X is of N � d;
then the SVD of the matrix can be shown as

X ¼ PDQT (12)

In which P is an N � L matrix called left singular vectors; Q is a
d � L matrix called right singular vectors. L is the number of
eigenvalues and D is the diagonal matrix of singular values. Factor
scores (F) can be obtained using the multiplication of matrices P
and D

F ¼ PD (13)

Q gives the coefficients that can be used for linear transformation
between the previous and new variables, and can be interpreted as
the projection matrix between the raw data and factor scores [22].
In this paper, PCA properties are used as an application along
with HDMR to identify the best linear combination of basis func-
tions to build the approximation with minimum variation from the
black-box function.

One salient feature of PCA is that the new components are
ordered by the amount of variations in the observations. In other
words, the component with the maximum possible variation is the
first component with the largest singular value and the one with
minimum possible variation is the last component with the small-
est singular value. Also, all the components are orthogonal to each
other. In fact, SVD provides a rotation of the coordinates in a way
that the variation of data is maximum along the first and minimum
along the last coordinates. Geometrically, for an example, Fig. 1
shows a 2D data set including 20 sample points, shown as black
dots. The original coordinates are shown by solid lines. After per-
forming the SVD, the coordinates are rotated using the Q matrix.
The dashed axis shows the first new coordinate (with maximum

Fig. 1 The geometric representation of PCA
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variation) and the dotted axis shows the last one (with minimum
variation). It can be seen in the figure that data are located along
the dashed axis. Thus, if someone has to model the system with
only one coordinate, the dashed coordinate has the most influence
on the variation and the dotted one can be removed with the least
possible error. In the special case that all the sample points are
located on the dashed axis, the system can be modeled using only
one independent variable without any error.

In addition, it is noted that the transformation in PCA is per-
formed with linear combinations of existing variables. Recall
that the RS-HDMR approximation is a linear combination of the
orthogonal basis functions. The proposed approach, called
PCA-HDMR, then tries to build such linear combinations of the
basis function so that components of HDMR are re-ordered
according to their importance. Then, the last component, which
should have the least variation, is set to be zero to find the
most efficient set of HDMR model coefficients. Also, other
components include information of the black-box function and
can be used in metamodeling. This will be further explained in
this section 3.

For a RS-HDMR in Eq. (8), suppose that the approximation is
truncated at the L-th order. Therefore, the HDMR structure is

f xð Þ ¼ c0 þ
Xd

i¼1

Xs

k¼1

ck
i /

k
i xið Þ þ

Xd

i<j

Xs0

k¼1

ck
ij/

k
ij xi;xj

� �
þ � � �

þ
Xd

i1<i2…<iL

Xs00

k¼1

ck
i1i2…iL

/k
i1i2…iL

xi1 ;…; xiLð Þ (14)

The original coordinates are the input variables ½x1;…; xd�. A new
set of coordinates are defined as a gathering of all the existing
basis functions in the approximation with different input varia-
bles. The black-box function f is added to the new coordinate set
as well. The new coordinate set U can be represented as

U ¼ ½U1;U2;…;UL; f �
U1 ¼ /1

1 x1ð Þ;…;/s
d xdð Þ

� 	
U2 ¼ /1

12 x1; x2ð Þ;…;/s0

d�1ð Þd xd�1; xdð Þ
h i

..

.

UL ¼ /1
1…L x1;…; xLð Þ;…;/s00

d�Lþ1ð Þ…d xd�Lþ1;…; xdð Þ
h i

(15)

UL shows all combinations of the L-th order bases and input varia-
bles. However, if there is a priori knowledge that some of the
combinations of variables do not exist, then they can be removed
from both the HDMR structure and the new coordinate set U. In
this paper, the function is considered to be completely black-box
without any a priori knowledge. Therefore, the approximations
are performed using all the possible combinations of the bases and
input variables until the specified truncating order.

For simplicity of representation, the bases are numbered from
the first to the last one as shown in Eq. (16). For example, the first
wi;i¼1::s�d are from U1, followed by the terms in U2, and so on.

Ŵ ¼ ½w1;w2;…;wm; ~f � (16)

where w1;w2;…;wm are all the combinations of basis functions
used in the approximation and ~f is rescaled value of f over the
existing sample points that can be calculated as

~f ¼ 2� f �min fð Þ½ �
max fð Þ �min fð Þ½ � � 1 (17)

The scaling is to bring the f values to be within the interval of
[�1 1], so that the range of function values is comparable with
those of the basis functions. If all the possible combinations are
considered, the number of bases will be

m ¼
XL

i¼0

d!

d � ið Þ!i! (18)

Also all of the components are subtracted by their average value
to place the origin of the new coordinate system at the center

W ¼
h
w1 � �w1;w2 � �w2;…;wm � �wm; ~f � �~f

i
(19)

where �w1;
�w2;…; �wm are the average values of the bases

w1;w2;…;wm over the existing data and similarly
�~f is the average

value of ~f . It is clear that the new set of coordinates has ðmþ 1Þ
members. Assume that N sample data exist for building the
approximation. The original data can be shown as an N�d matrix.
The data are transformed to the new set by computing all bases
and f values, and putting them in the matrix W. After transforma-
tion, the new dataset is an N � ðmþ 1Þ matrix. If the SVD proce-
dure is performed on the new data matrix, the corresponding right
singular vectors matrix Q will be a set of linear transformations
between the coordinates (basis functions) with the property that
the first one accounts for the maximum variation and the last one
accounts for the minimum variation. In other words, the last col-
umn will be the linear combination that gives the minimum possi-
ble amount of variation. Set the linear combination in the last
column to be zero, one can have

a1 w1 � �w1

� �
þ a2 w2 � �w2

� �
þ � � � þ am wm � �wm

� �
þ amþ1

~f � �~f
� �

� 0 (20)

where a1; a2;…; amþ1½ �T is the last column of Q. Therefore the

approximation model ~f can be found by the following:

~f ¼ �~f þ 1

amþ1

� �a1 w1 � �w1

� �
� a2 w2 � �w2

� �
� � � � � am w1 � �wm

� �� 	
(21)

The PCA-HDMR approximation coefficients are calculated
using the procedure presented above and it offers a number of
advantages as compared with RS-HDMR. The most important
advantage is that the new method does not use any integral
approximation. Therefore, the errors coming from the integral
approximations are eliminated. Second, uniform sampling is no
longer needed because Monte Carlo approximation is not used in
the new method. If the density of the sampling is changed in some
sub-regions, it will affect the approximation accuracy much less
in comparison with RS-HDMR and again it comes from not using
any integrals. Moreover, the ratio of the minimum singular value
to other singular values can determine the accuracy of the approx-
imation before building the model. If the last column of the matrix
Q that is used as coefficients of Eq. (20) corresponds to a very
small singular value, it means that the black-box function f can be
well built using linear combination of bases for the given points.
The third advantage of PCA-HDMR is that being accurate with
nonuniform sampling and having no singularity issue make the
PCA-HDMR a method that can accommodate samples of different
weights. This means that a user can emphasize a region by repeat-
ing sample points falling into the region without incurring new
sample points. In other words, PCA-HDMR can not only function
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as a global model but also a local metamodel in a concentrated
region. We call this the ability as “zoom in, zoom out,” which
shows great promises for supporting optimization of HEB
problems.

On the other hand, the proposed method may seemingly have
some disadvantages than RS-HDMR. First, the SVD procedure
may be slow as it may involve large size matrices with very large
amount of data. Second, if some sample points are added to the
data, PCA should be performed again for updating the model
while in RS-HDMR a simple summation could adaptively update
the model. Both disadvantages can be easily eliminated. For the
first one, in PCA-HDMR procedure, only the projection matrix Q
and singular value matrix D are used, not the left singular vector
matrix P. Therefore, if matrixes Q and D can be obtained using
other calculations, SVD can be removed from the procedure. If X
in Eq. (12) is an N � ðmþ 1Þ matrix including m bases and the
black-box function values in N sample points, then Q and D2 are
eigenvectors matrix and eigenvalues matrix of XTX, respectively.
Thus, instead of using SVD, it is sufficient to calculate the
eigenvalues and eigenvectors of XTX, which is always an
ðmþ 1Þ � ðmþ 1Þ matrix. The second disadvantage is also
avoided by only calculating eigenvalues and eigenvectors of XTX
instead of SVD matrices. New points can be added adaptively to
update X, and the remaining work is to calculate the eigenvalues
and eigenvectors of XTX, not to perform the more costly SVD.
Therefore, using SVD can be replaced by the mentioned algebraic
calculations. In the testing section, the above-mentioned proce-
dure is used instead of SVD.

Until now, just the last column of eigenvector matrix, corre-
sponding to the smallest eigenvalue, is used for building
PCA-HDMR model. If the coefficients of the basis functions are
fixed in the whole approximation region, the last column guaran-
tees the best combination of the basis functions for approximat-
ing the black-box function. If the basis functions are chosen as
polynomials up to the second order, PCA-HDMR using only the
last column gives the least square coefficients, which is mathe-
matically equivalent to the response surface method (RSM) with
second order polynomials. PCA-HDMR, however is not limited
to polynomial basis functions or second order. Moreover, in
smaller sub-regions of the space, with PCA-HDMR one can use
not only the last column of the eigenmatrix to obtain other com-
binations of the basis functions, which may give better approxi-
mations in sub-regions. In fact, if the last eigenvalue is not
zero, it can be concluded that the approximation using just the
last column is not necessarily the best for all sub-regions. In
other words, other columns of eigenvector matrix have useful
information of the black-box problem that can be used for meta-
modeling. If the difference between the smallest and the second-
smallest eigenvalues is large, it indicates that the second last
column (assuming columns are sorted in descending order
according to their eigenvalues) has small effect on the approxi-
mation but if the two eigenvalues are close to each other, both
of the corresponding eigenvectors are important. The same ob-
servation can be made for other eigenvalues and eigenvectors.
The effect can be shown visually in Fig. 1. The dotted line cor-
responds to the eigenvector with the smallest eigenvalue and
shows the minimum variation from the original function in the
whole approximation space. If all the sample points were located
on the dashed line, it could be concluded that using the dotted
direction in PCA-HDMR guarantees the best approximation in
all sub-regions for the existing sample points. However, now
that the sample points are not located exactly on the dashed line,
it indicates that the dashed direction should be used for model-
ing in some sub-regions. The elegance of PCA-HDMR is that it
reveals other directions’ information that can be used for
approximation.

The model is built with combinations of different component
PCA-HDMR models with weights to be found in every sub-
region. Equation (22) shows the PCA-HDMR metamodel using
more than one eigenvector columns

fPCA�HDMR ¼
c1fPCA�HDMR1 þ c2fPCA�HDMR2 þ c3fPCA�HDMR3 þ � � �

R ci

(22)

where fPCA�HDMRi shows the PCA-HDMR model built using the
(mþ 2� i)-th column of the eigenvector matrix (i-th component
PCA-HDMR) and ci is the corresponding weight of the column
approximation in the sub-region. fPCA�HDMR1 is the PCA-HDMR
component that uses only the last eigenvector of the PCA-HDMR
matrix, as shown previously. The ci values show the importance
of the component PCA-HDMR metamodels in the sub-regions. In
this paper, c1 is set to be equal to one and other ci values are
changing between zero and one. For every single test point, a
specified number of closest sample points around the point (Nclose)
are considered and the ci values are chosen in a way that the error
between model values and actual values become minimum.
Changing Nclose affects the accuracy of the model. Choosing the
best Nclose value depends on the density of the sample points in
the space. In this paper we use 2� d in which d is the number of
variables. However, more intelligent ways can be used for select-
ing Nclose which is left as future work. Different methods can be
used for minimizing the error. In this paper, the values are simply
changed between zero and one and the best values are selected. ci

values are chosen one-by-one from c2 to cL in which L is the num-
ber of terms (component PCA-HDMR) used for metamodeling.
Therefore, ci values are specified separately by order of their im-
portance. Other methods such as optimizing ci values together can
be used as well.

If just the last eigenvector is used for metamodeling, and if
only up to second order polynomial basis functions are used, the
final PCA-HDMR metamodel will be the same as RSM metamo-
del. RSM can be therefore considered as a special case of PCA-
HDMR. However, PCA-HDMR has more advantages that cause
its superiority as compared with RSM:

(1) The major difference between PCA-HDMR and RSM is
that PCA-HDMR reveals other possible combinations of
basis functions along different principle component direc-
tions, which makes PCA-HDMR working in both global
and local regions. The results related to use of other eigen-
vectors in metamodeling will be shown in Sec. 4.

(2) Because of using HDMR structure and the orthogonality of
the HDMR components, all the HDMR properties are
inherited in PCA-HDMR model. One of them is decompos-
ing the effect of different variables. The effect of independ-
ent variables and the joint effect of the variables are
obtained separately, similar to Eq. (1). The next one is the
efficient and easy computation of sensitivity indices, as
mentioned in Ref. [20].

(3) Any orthonormal basis functions can be used in PCA-
HDMR. Using the basis functions similar to the shape of
the black-box function improves the accuracy of the
metamodel.

In conclusion, the advantages of RS-HDMR in approximating
black-box functions are retained in PCA-HDMR and new advan-
tages are added to more accurately calculate the coefficients.

4 Method Testing

In this section, PCA-HDMR is tested with a number of bench-
mark functions of different dimensionalities and different variable
correlations. Then, the proposed method is applied to an engineer-
ing problem. The model accuracy is evaluated using three error
metrics and the results are compared with the RS-HDMR approxi-
mation with the same basis functions, sample points, and test
points. The benchmark functions are treated like black-box func-
tions. The input sample data are generated using pseudorandom
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values drawn from the standard uniform distribution on the inter-
val ½0; 1� scaled to the interval between lower bounds and upper
bounds. Note that each variable has its own lower bound and
upper bound that should be used in scaling the variable. For inves-
tigating the effect of nonuniformity in the PCA-HDMR modeling,
two different types of sample data are generated:

(1) Random uniform samples: in this case, the sample points
are generated completely randomly without any preference
in the entire feasible space. MATLAB command rand(.) is
used for generating the random points separately for every
input variable and they are scaled separately bases on the
variable bounds.

(2) Random nonuniform samples: in this case, again MATLAB

command rand(.) is used for generating the sample points
in [0, 1] and then the values are scaled. However, 80% of
the points are sampled in the entire feasible region and 20%
are sampled in the region with x̂i < r, where x̂i is the sam-
ple random value before scaling. The value r (r ¼ 0:1

1
d) is

calculated for each problem so that the region with x̂i � r
entails 10% of the entire region volume. Thus, 10% of the
entire space has a higher density in comparison with the
remaining 90%.

For testing the method accuracy, three different metrics (R-
square, relative average absolute error (RAAE), and relative maxi-
mum absolute error (RMAE), see Appendix B) are calculated for
each modeling using the same sample and testing points for both
PCA-HDMR and RS-HDMR. For comparing the accuracy of
PCA-HDMR with RS-HDMR, different benchmark functions
with different number of input variables are selected [31,32] and
the model accuracies are compared. The benchmark functions as
well as the variable ranges are shown in the Appendix. The
Appendix A table contains two other parameters, NC and Space.
The first one, NC, is the number of coefficients that should be cal-
culated for building PCA-HDMR and RS-HDMR models, which
can be obtained as

NC ¼
XL

i¼1

d
i


 �
si (23)

where L and s are the maximum order of correlation between the
variables and the number of bases in the model, respectively. Note
that the number of data points should be equal or more than
the number of coefficients (unknowns). Therefore, for building
PCA-HDMR model, at least NC sample points are needed. The
variable Space shows the existing space that the model is being
built in and is obtained using multiplication of the variable ranges
in each function. This parameter is one of the criteria showing the
difficulty of the problem.

Table 1 shows the R-square, RAAE, and RMAE values related
to the approximation of the benchmark function #10 mentioned in
Appendix A, using both PCA-HDMR and RS-HDMR for com-
pletely random data (sampling type 1) and random nonuniform
data (sampling type 2). Two different numbers of sample data are
selected and the approximations are built 20 times. First and
second order basis functions are used (s ¼ 2) and the maximum

number of correlations is two (L ¼ 2). The number of sample
points used for the approximations are shown by NSP in the table.
The values reported in Table 1 include the average and standard
deviation of the 20 runs. As can be seen from the table, for sam-
pling type 1, R-square values of PCA-HDMR are much closer to
one than the values of RS-HDMR. This is because PCA-HDMR
finds the coefficients that minimize the variation of the model
from the black-box function. For calculating RAAE and RMAE
values, 200 random test points are used. RAAE and RMAE values
of PCA-HDMR are closer to zero than the values of RS-HDMR.
The standard deviation values of PCA-HDMR are also less than
the values of RS-HDMR. All the benchmark functions are tested
in the same manner as for function #10 with similar results;
detailed results are omitted for brevity. The PCA-HDMR models
are more accurate than RS-HDMR for all the cases for a given set
of sampling points (R-square) and for most of the cases with new
test points (RAAE and RAME). For ease of comparing the results
and brevity, just the average values related to the first ten bench-
mark functions (using one NSP value) are shown by plots in
Figs. 2–4. Note that the chosen numbers of sample points are
more than the NC values for all the functions.

Figure 2 shows the R-square values without negative values.
By looking at R-square definition, the value is always less than
one and the distance from one shows the accuracy of the model.
Therefore, the negative values of the results show poor models
built by RS-HDMR and are not shown in the figure. As antici-
pated using the properties of PCA, all R-square values are closer
to one in PCA-HDMR than RS-HDMR. R-square values show
that function #4 is a very difficult one for modeling. Figures 3
and 4, respectively, show RAAE and RMAE values related to the
first ten benchmark functions for both RS-HDMR and PCA-
HDMR approaches. It can be seen that RAAE and RMAE values
are less in PCA-HDMR than RS-HDMR in all the cases except
for the function #4. As stated before, PCA-HDMR gives the best
RS-HDMR model with respect to sample points, not necessarily
the model with the best extrapolation capability when tested with
new test points. Function #4 is an example of this statement. How-
ever, RAAE and RMAE values are very close in this case.

Table 1 Comparison of RS-HDMR and PCA-HDMR accuracies (benchmark function 10, sampling types 1 and 2)

R-square RAAE RAME

RS-HDMR PCA-HDMR RS-HDMR PCA-HDMR RS-HDMR PCA-HDMR

Sampling type NSP Ave. STD Ave. STD Ave. STD Ave. STD Ave. STD Ave. STD

1 1000 �8.4807 1.9115 0.9901 0.0012 1.7573 0.2082 0.5065 0.0932 7.5537 1.3463 1.9794 0.2916
2000 �2.3200 0.3897 0.9696 0.0014 1.2103 0.1228 0.3048 0.0666 5.2414 0.9629 1.1867 0.2374

2 1000 �6.4277 1.5783 0.9903 0.0009 1.6147 0.1744 0.4734 0.0732 6.8093 1.1928 1.9394 0.3420
2000 �1.9220 0.3941 0.9688 0.0021 1.1982 0.0950 0.3298 0.0876 4.9481 0.7138 1.2518 0.3261

Fig. 2 R-square values of the first ten benchmark functions
(average of 20 runs, sampling type 1)
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For comparing the effect of sampling, the second type of sampling
is performed as mentioned before (nonuniform) for all the cases
with the same number of sample points. The results related to bench-
mark function #10 are shown in Table 1. The only difference
between the tests comparing to previous cases is the type of sam-
pling. Comparing the R-square, RAAE, and RMAE values of sam-
pling types 1 and 2, the RS-HDMR approximations with sampling
type 2 have very poor R-square values and large errors, but the
PCA-HDMR approximations are still good. The observation can be
explained by the use of Monte Carlo summations in RS-HDMR that
are accurate only with uniform sampling. Therefore, PCA-HDMR
makes better approximations than RS-HDMR with nonuniform sam-
ple points for a given set of sample points for all the cases, and better
model accuracy at new test points for most of the cases.

Again for the ease of comparing the results, RAAE and RMAE
values related to the first ten benchmark function are plotted in
Figs. 5 and 6, respectively. Similar to the uniform sampling case,
the values are better in PCA-HDMR than RS-HDMR for all the
cases except for function #4. In almost all the cases, the values are
worse than the uniform sampling case (sampling type 1) in both
RS_HDMR and PCA-HDMR but the differences are small for
PCA-HDMR. Almost all the R-square values became negative in
RS-HDMR using sampling type 2 and it means that nonuniformity
of the sampling has huge effect on RS-HDMR. Because almost all
the R-square values of RS-HMDR are negative, R-square values
are thus not shown graphically.

As mentioned in Sec. 3, with PCA-HDMR, the user can put
weights on certain regions and make the approximation more
accurate in these regions by repeating sample points. Assume that

a multimodel black-box function is needed to be modeled only
with the first and second order basis functions. It is clear that RS-
HDMR cannot well model the function due to the multimodal
shape of the function. But PCA-HDMR can zoom in small regions
and model it accurately only with the first and second order basis
functions. For having a weight of w on a region, one can simply
repeat w times the samples falling into the region.

To demonstrate this concept, a sinusoidal function (f xð Þ
¼ sinðxÞ) is selected in a specific range (�p � x � p). Figure 7
shows the original function as well as different PCA-HDMR mod-
els for the function. A set of N ¼ 11 uniformly distributed points
between the lower and upper bounds of the problem are used as
the modeling points. Due to the multimodality of the sine func-
tion, the normal PCA-HDMR cannot model it well globally and
due to its origin symmetry just a line is used for modeling (dash-
dotted). A weight of 10 is put on the last 6 points (second half
including the mean) and the result is shown by the dashed curve.
It can be seen that the curve is more similar to the second half of
the original function. The dotted line shows the PCA-HDMR
model with a weight of 1000 on the last 6 points. The metamodel
curve becomes very close to the original function, but just in the
region x 	 0. In other words, the metamodel “zoomed in” to the
region 0 � x � p. Note that when the weight is put on a specific
region, the model becomes worse in other regions. For example in
the sine example, when the weights are put on the region
0 � x � p, then the other half (�p � x < 0) became far from the
original function. It is not shown in the figure due to its scale.

Until now, all the PCA-HDMR models were built using
only the last eigenvector. However, as mentioned in Sec. 3,

Fig. 4 RMAE values of the first ten benchmark functions (aver-
age of 20 runs, sampling type 1)

Fig. 3 RAAE values of the first ten benchmark functions (aver-
age of 20 runs, sampling type 1)

Fig. 5 RAAE values of the first ten benchmark functions (aver-
age of 20 runs, sampling type 2)

Fig. 6 RMAE values of the first ten benchmark functions (aver-
age of 20 runs, sampling type 2)
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PCA-HDMR gives out more information about the shape of the
function that can be used in metamodeling. For showing the effect
of other eigenvectors on metamodeling, a one dimensional sinu-
soidal function (f x1ð Þ ¼ sinðx1Þ;�2p � x1 � 2p) is considered as
the black-box function and PCA-HDMR models with a combina-
tion of different numbers of eigenvectors were built.

The original function and the PCA-HDMR model using just the
last column are shown in Fig. 8(a). The x values are normalized to
be between zero and one. First order and second order orthonor-
mal polynomial basis functions are used for metamodeling using
100 random sample points. It can be seen that polynomial
basis functions are not good choices for this function and the
approximation is poor. The next PCA-HDMR with the second last
eigenvector is added to the metamodel using Eq. (22). For every
single point, the closest two sample points are chosen (Nclose ¼ 2)
and the corresponding c2 value is changed between zero and one
to find the minimum error in the chosen points. Figure 8(b) shows
the original function, and PCA-HDMR approximation with both
fPCA�HDMR1 andfPCA�HDMR2 . It can be seen that the shape of the
function is well predicted by the approximation in some sub-
regions. It can be seen that the second last eigenvector is impor-
tant for this approximation and improves the model. Because two
basis functions are used for building the PCA-HDMR matrix, it
has three eigenvectors that can be used in the approximation. The
next term fPCA�HDMR3 is added to the model. c2 is fixed to the
best value obtained before and c3 is changed between zero and
one. Figure 8(c) shows the results including the approximation
using three component PCA-HDMR models. Comparing with
Fig. 8(b), the metamodel is improved when the third component
PCA-HDMR, fPCA�HDMR3 ; is added to the approximation.

Because the sample points are randomly chosen, the same
metamodeling process is repeated ten times and the results are
shown in Table 2. RAAE and RMAE values are obtained using
200 test points similar to the previous examples. All three mea-
surement metrics are improved when new terms are added to the

Fig. 7 Sine function (solid), normal PCA-HDMR approximation
(dash-dotted), PCA-HDMR with weight 10 after x 	 0 (dashed),
and PCA-HDMR with weight 1000 after x 	 0 (dotted)

Fig. 8 PCA-HDMR results using different number of components
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PCA-HDMR model and the small standard deviation shows that
the metamodel is robust as well.

The next example is a two dimensional sinusoidal function
(f x1; x2ð Þ ¼ sinðx1Þ sinðx2Þ;�p � x1; x2 � p). Similar to previous
examples, first and second order basis functions are used for the
metamodeling. 200 randomly scattered sample points are chosen
for building PCA-HDMR matrix. For adding the new component
PCA-HDMR terms, the closest four sample points around the test
points are chosen and the error is minimized. Table 3 shows the
average and standard deviation of the results of 10 independent
runs. R-square, RAAE, and RMAE values are all improved when
the new terms are added to PCA-HDMR model.

After testing the method with benchmark functions, an engi-
neering problem is selected to study the effectiveness of the
method in practice. A three-part assembly variation problem,
shown in Fig. 9 is chosen from Ref. [33] and both PCA-HDMR
and RS-HDMR models are built for the variation of its specific
key characteristic (KC) and the results are compared. The parts

can be assembled together in different ways. In this example, at
the first step, part A and part B are assembled and then, part C is
joined to the subassembly of part A and part B. The fixture loca-
tions are input variables of the problem. The distance between the
lower left corner of part A and the upper right corner of part C
defines the KC and the six-sigma variation of the KC is the objec-
tive function to be approximated.

First, the model is created in 3 DCS software [34] with defined
dimensions, 400 mm length and 200 mm width. Holes, slots, and
pins are defined with diameter equal to 10 mm for holes and 9
mm for pins. Tolerances are defined for hole, slot, and pin sizes
with a range of 60.5 mm with normal distribution. Three holes
and three slots exist in the model and for defining each of them X
and Y coordinate values are needed. Therefore, the problem has
12 input variables in total. The six-sigma value of the specified
KC is obtained from Monte Carlo simulation in 3DCS, which is
considered a black-box function that should be modeled.

The potential locations for holes and slots are defined by a grid
of points with increments of 10 mm and at least 10 mm away
from the edges. Again, different numbers of random points are
selected and RS-HDMR and PCA-HDMR models are built. The
results are presented in Table 4.

By increasing the number of sample points, R-square value of
RS-HDMR is increased and the RAAE value is decreased. RMAE
value varies by increasing the NSP. It means that the model is get-
ting more accurate overall with more points. The R-square value is
decreasing in PCA-HDMR with the increasing number of sample
points. It is expected because PCA-HDMR tries to find the coeffi-
cients in a way that the model becomes close to all of the sample
points. By increasing the number of sample points it becomes
harder to do that. The same phenomenon can be observed in most
of the benchmark function tests. However, the R-Square values of
PCA-HDMR are clearly better than that of RS-HDMR. By
comparing the RAAE values of Table 4, it can be concluded the

Table 2 Comparison of PCA-HDMR results using different number of components (1D sinusoidal function)

R-square RAAE RMAE

Ave STD Ave STD Ave STD

PCA-HDMR, 1 Component 0.07581 0.0810 0.8010 0.0310 1.8514 0.1180
PCA-HDMR, 2 Components 0.56329 0.0360 0.4290 0.0566 1.7058 0.1760
PCA-HDMR, 3 Components 0.94494 0.0187 0.1769 0.0319 0.7436 0.1336

Table 3 Comparison of PCA-HDMR results using different number of components (2D sinusoidal function)

R-square RAAE RMAE

Ave. STD Ave. STD Ave. STD

PCA-HDMR, 1 Component 0.3859 0.0424 0.6816 0.0584 3.5567 1.5725
PCA-HDMR, 2 Components 0.5792 0.0502 0.5213 0.0414 1.8606 0.3684
PCA-HDMR, 3 Components 0.7415 0.0481 0.4041 0.0499 1.6257 0.2610
PCA-HDMR, 4 Components 0.8163 0.0418 0.3449 0.0458 1.5944 0.3100

Fig. 9 Three-part assembly problem and the related fixtures [33]

Table 4 Comparison of RS-HDMR and PCA-HDMR accuracies for the three-part assembly problem

R-square RAAE RMAE

NSP RS-HDMR PCA-HDMR RS-HDMR PCA-HDMR RS-HDMR PCA-HDMR

500 �2.5751 0.6878 1.6012 1.4363 7.5942 7.5084
1000 �1.2096 0.5313 1.3747 0.7996 7.6629 4.0883
2000 �0.6484 0.4360 0.9387 0.5061 6.7493 6.6233
5000 �0.2883 0.3638 0.6462 0.4229 4.5317 4.1593
10,000 �0.0458 0.3666 0.5430 0.3995 6.5530 6.3246
20,000 0.0007 0.3557 0.5161 0.3740 5.6276 5.8543
40,000 0.0441 0.3484 0.4644 0.3339 10.3197 10.1934
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PCA-HDMR model is getting more accurate by increasing the
number of sample points. Again, RMAE value of PCA-HDMR,
similar to RS-HDMR, varies with the increasing sample points and
it means that the model compromises between the global and local
accuracy. By increasing the number of sample points, the global
accuracy is increased but the model becomes less accurate in one
or some local regions. In general, comparing the R-square, RAAE,
and RMAE values of two methods in all the NSP values, it can be
seen that PCA-HDMR is doing a better job than RS-HDMR.

5 Conclusions

In this paper, a new approach is proposed to efficiently model
black-box functions. Rooted in the random sampling high dimen-
sional model representation (RS-HDMR) structure with orthogo-
nal basis functions, the proposed principal component analysis
(PCA) based HDMR, PCA-HDMR, finds the best basis function
coefficients. In this approach, the sample data are first transferred
to another space containing all bases and the black-box function.
PCA is performed on the new data and therefore the linear combi-
nation of bases with minimum variation is identified and coeffi-
cients of the bases are calculated. Theoretically, based on SVD
calculations PCA-HDMR yields the most accurate model among
all possible RS-HDMR models with the same sample points.

Three different performance metrics are defined to test the
accuracy with both the modeling points and test points, and also
the accuracy in global and local regions. The method is compared
with RS-HDMR with 15 benchmark functions of different num-
bers of input variables (2–50) and a high dimensional engineering

problem (12 variables). It is concluded from the results that
PCA-HDMR generates more accurate model than RS-HDMR for
all the cases for a given set of sampling points, as well as for most
of the cases at new test points. Moreover, two types of sampling
are tested and results are compared. Changing from completely
random uniform to random nonuniform sampling, RS-HDMR
model falls apart but such a change has a small effect on the PCA-
HDMR model. This finding can be explained by the nature of RS-
HDMR that is integral-based and uses Monte Carlo summation
for approximation. If the sampling differs from being uniform, the
integrals and the corresponding Monte Carlo summations become
inaccurate and therefore the model becomes inaccurate as well. In
addition, PCA-HDMR allows a user exerting more weights in a
local region by simply repeating the sample points falling into
the region. Lastly, the usage of more than one component
PCA-HDMR terms leads to more accurate models, which makes
PCA-HDMR a metamodel working in both global and local
regions. Higher accuracy, flexibility of taking nonuniform sam-
pling, and the ability of local intensification, make PCA-HDMR
promising to support optimization for HEB problems.
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Appendix A: Benchmark Functions

No. d Function Variable ranges NC Space

1 2 f ¼ 100 x2 � x2
1

� �2þð1� x1Þ2 �2� xi� 2, 8 16

2 2
f ¼ 4x2

1 � 2:1 x4
1 þ

1

3
x6

1 þ x1x2 � 4x2
2 þ 4x4

2

�2� xi� 2, 8 16

3 3 f ¼ x1 þ x2ð Þ2 þ x2 þ x3ð Þ2 �2� xi� 2, 18 64

4 4 f ¼ �x1x2x3x4 �2� xi� 2, 32 256

5 5 f ¼ x1 � x2ð Þ2 þ x3 � 1ð Þ2þ x4 � 1ð Þ4þ x5 � 1ð Þ6 �2� xi� 2, 50 1024

6 10
f xð Þ ¼ x1 � 1ð Þ2 þ x10 � 1ð Þ2þ 10

X9

i¼1

10� ið Þ x2
i � xiþ1

� �2
�3 � xi � 2; 200 9765625

7 10

f xð Þ ¼
X10

i¼1

i3ðxi � 1Þ2
" #3 �3 � xi � 3; 200 60466176

8 20
f xð Þ ¼

X10

i¼1

100 xi � xiþ10ð Þ2 þ xi � 1ð Þ2
h i �3 � xi � 5; 800 1.1529� 10þ018

9 20
f xð Þ ¼

X5

1

h
100 x2

i þ xiþ5

� �2 þ xi � 1ð Þ2 þ 90 x2
iþ10 þ xiþ15

� �2 þ xiþ10 � 1ð Þ2

þ 10:1 ðxiþ5 � 1Þ2 þ ðxiþ15 � 1Þ2
h i

þ 19:8ðxiþ5 � 1Þ � ðxiþ15 � 1Þ
i

�3 � xi � 5; 800 1.1529� 10þ018

10 20
f xð Þ ¼

X5

1

xi þ 10xiþ5ð Þ2þ 5 xiþ10 � xiþ15ð Þ2þ xiþ5 � 2xiþ10ð Þ4þ 10ðxi � xiþ15Þ4
h i �2 � xi � 5; 800 7.9792� 10þ016

11 30
f xð Þ ¼ 1� exp � 1

60

X30

1

x2
i

" #
0 � xi � 3:5; 1800 2.0991� 10þ016

12 30 f xð Þ ¼ xTAxð Þ2, A ¼ diagð1; 2; 3;…; 30Þ �2 � xi � 3; 1800 9.3132� 10þ020

13 30
f xð Þ ¼

X29

i¼1

100 xiþ1 � x2
i

� �2 þ 1� xið Þ2
h i �2 � xi � 2; 1800 1.1529� 10þ018

14 50

f xð Þ ¼ xTAx� 2x1, A ¼

1 �1

�1 2 �1

�1 2

0

�1
� � � � � � � � � 0

0

� � � � � � � � �
�1 2 �1

�1 2

2
66666664

3
77777775

0 � xi � 25; 5000 7.8886� 10þ069

15 20

f xð Þ ¼
X20

1

x2
i þ

X20

1

1

2
ixi

" #2

þ
X20

1

1

2
ixi

" #4 0 � xi � 5; 800 9.5367� 10þ013
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Appendix B: Modeling Methods Accuracy

Metrics Definitions

(1) R-square

R2 ¼ 1�

XN

s¼1

f xðsÞ
� �

� f̂ xðsÞ
� �h i2

XN

s¼1

f xðsÞ
� �

� �f xðsÞ
� �h i2

(B1)

where f xðsÞ
� �

and f̂ xðsÞ
� �

are the black-box function and the
approximated model function at the sample point xðsÞ, respec-
tively. f xðsÞ

� �
denotes the mean of the black-box function over

the N sample points in approximating the black-box function. The
R-square indicates the overall accuracy of the approximated
model with given sample points. The closer the value of R-square
approaches one, the more accurate is the approximation model.
However, R-square is not sufficient for comparing accuracies of
two models because it only shows the accuracy with respect to
modeling points, not the model’s extrapolation ability.

(2) RAAE

RAAE ¼

Xn

t¼1

f xðtÞ
� �

� f̂ ðxðtÞÞ
��� ���

n 
 STD
(B2)

where f xðtÞ
� �

and f̂ xðtÞ
� �

are the black-box function and the
approximated model function at n test points xðtÞ, respectively.
STD denotes the standard deviation of the black-box function pre-
diction at the test points. RAAE indicates the overall accuracy of
the approximated model in the entire design range, computed at
random test points. The smaller is RAAE value, the more accurate
is the approximation. Both R-square and RAAE show the average
accuracy in the entire space but in some cases the maximum
amount of error in local regions is worthy of study.

(3) RMAE

RMAE

¼
max

�
f x1ð Þ � f̂ x1ð Þ
�� ��; f x2ð Þ � f̂ x2ð Þ

�� ��;…; f xnð Þ � f̂ xnð Þ
�� ���

STD

(B3)

In this metric, the maximum amount of error at random test points
is divided by the standard deviation. Note that this error is a local
metric and again the smaller RMAE value, the better is the
approximation.
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