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Product Design and Optimisation Laboratory, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, Canada

ABSTRACT
Development of plug-in hybrid electric vehicles (PHEVs) is stimulated by the need to replace non-
renewable energies with sustainable and more environment-friendly new energy types. PHEVs benefit 
from a combination of an internal combustion engine and an electric motor with a rechargeable and 
larger battery pack than conventional hybrid vehicles. In order to maximise customer satisfaction and 
motivate replacement of the conventional vehicles with this new technology, the design of PHEVs requires 
sufficient differentiation in the product specifications for diverse market segments. The added set-up time, 
processes, costs and longer lead time for designing and manufacturing a diverse range of such vehicles 
is a hurdle towards increasing their diversity. This study proposes an efficient product family design (PFD) 
method for mass customisation of the PHEV powertrains. The methodology is less dependent on expensive 
simulations due to use of metamodelling and non-conventional sensitivity analysis. The PFD concept and 
its implications to a family of five PHEVs are investigated, and benefits as well as limitations of a sustainable 
development for this complex product are discussed.

1.  Introduction

The transportation sector has become the largest consumer of 
the oil resources in recent decades, absorbing around 49% of 
such energy resources, and the estimations show that if the cur-
rent trend continues, all such resources will be depleted by 2038, 
according to Amjad, Neelakrishnan and Rudramoorthy (2010). 
Accordingly, since a few decades ago, the need for reduction of 
the emissions to control air pollution and global warming, as 
well as the importance of reduction in the dependency on oil has 
directed the attention of developed countries towards technology 
advancement for vehicles. The plug-in hybrid electric vehicles 
(PHEVs) benefit from a combination of an internal combustion 
engine (ICE) and an electric motor with a rechargeable and larger 
battery pack than conventional hybrid vehicles. PHEVs are dif-
ferentiated from hybrid electric vehicles (HEVs) based on the 
mileage that they can drive in the electric mode without using 
any fuel (referred to as all electric range, AER). PHEVx is a widely 
known way of characterising these vehicles, where x shows the 
range that the vehicle can drive purely on battery power (Shiau 
and Michalek 2009).

While AER can be one of the design factors, other perfor-
mance requirements can be of equal importance, including the 
acceleration time, maximum speed and gradeability. As such, the 
combination of three component sizes including the ICE, bat-
tery and electric motor – together known as the powertrain – is 
of remarkable importance in PHEV design. Another important 
factor is the defined strategy to leverage the propulsion resources, 
which is referred to as the control strategy.

While variety in the design can increase the marketability of 
any given product and attract more market segments, it can in 
turn result in increased effort and cost for manufacturing them. 
Therefore, for a complex product like PHEVs, product family design 
(PFD) can be an efficient solution to meet both targets (i.e. satis-
fying more customers, and obtaining manufacturing efficiency).

PFD is a strategy to increase the manufacturing cost savings 
through commonalizing components/variables or functions in 
different products, and increasing the product diversity for larger 
share of the market. Product family is a group of related prod-
ucts – known as variants – which are differentiated from a set 
of common components, modules, functions or sub-systems – 
known as platforms. PFD can be challenging due to the increased 
complexity from identification of the best components to be 
shared among variants, and the best values for each of those 
components without sacrificing the performance of individual 
variants (Simpson, Maier, and Mistree 2001).

The phase of determining the best variables to be in the plat-
form, and the best variants to be included in each platform/
sub-platform is referred to as platform configuration. The aim 
at a platform configuration problem is to solve the platform and 
the entire family design problem in a way that results in los-
ing as little as possible on the performance of individuals, and 
helps obtaining as much as possible on commonality (Pirmoradi, 
Hajikolaei, and Wang 2014). The platform and the individual 
variants should be selected such that the individual performance 
targets are not compromised, or will be of the least allowable 
performance loss Khire, Messac, and Simpson (2006).

© 2016 Informa UK Limited, trading as Taylor & Francis Group

KEYWORDS
PHEV design; product 
family design; engineering 
design for sustainable 
development; simulation-
based design Optimisation; 
high-dimensional expensive 
black-box (HEB)

ARTICLE HISTORY
Received 21 February 2016 
Accepted 29 September 2016

CONTACT  Zhila Pirmoradi    zpirmora@sfu.ca

mailto:zpirmora@sfu.ca
http://www.tandfonline.com


2   ﻿ Z. PIRMORADI ET AL.

motor are both directly connected to the wheel and the vehicle 
is propelled by both simultaneously (Turlapati 2010). The engine 
is not connected to the generator, but is coupled directly to the 
transmission. The power-split configuration allows for operation 
in both series and parallel configurations. In this configuration, 
the power split depends on the power-split device (PSD), referred 
to as planetary gear set. The advantage of this configuration is 
that in this configuration the engine speed is decoupled from 
the vehicle speed, and therefore the engine can be operated at 
maximum efficiency (Turlapati 2010).

The trade-off among these configurations can be quite 
complex to balance the efficiency, cost, manufacturability and 
drive-ability, and there is no globally optimal configuration when 
all criteria are considered. However, for any chosen configura-
tion, PHEVs can be constructed through optimizing the com-
ponent sizes according to Johnston et al. (1998).

The power management strategy is the algorithm that deter-
mines the split of power request between the combustion engine 
and electric drive. It is a vital factor for the efficiency of a PHEV, 
as different control strategies result in different performance pro-
files due to the different basis of choosing operation modes. The 
operation modes of a PHEV include the charge-depleting (CD) 
mode in which the battery is the only source of propulsion, and 
the charge-sustaining (CS) mode where the engine is leveraged as 
an auxiliary power source for keeping the battery state of charge 
(SOC) remaining within a specific range. In this case, PHEVs 
operate similar to HEVs according to Nemry, Leduc, and Munoz 
(2009). There are several types of control strategy, each imposing 
specific restrictions on the propulsion sources to run the vehicle 
(Graham 2001).

The product platform concept exploration method (PPCEM) 
by Simpson, Maier, and Mistree (2001), is among the early devel-
opments in this area, leveraging robust design principles to min-
imise the performance sensitivity to the variation of the scale 
factors. Fixed platform variables have been assumed by Messac, 
Martinez and Simpson (2002a), where PPCEM and physical pro-
gramming have been aggregated for PFD. Another PFD devel-
opment is by Fellini et al. (2005), where commonality is treated 
as a constraint in the design problem. Unknown platform archi-
tecture involves the task of platform configuration as well, and 
Nayak et al. integrated this task with the commonality–perfor-
mance trade-off problem, known as the variation-based platform 
design methodology (VBPDM), developed by Nayak, Chen, and 
Simpson (2002). VBPDM attempts to maximise commonality 
within the family while achieving the performance requirements 
by varying the smallest number of design variables. The product 
family penalty (PFPF) function is another method developed by 
Messac, Martinez and Simpson (2002b) to find the best set of 
platform and scale variables for minimum performance losses 
of commonalisation.

The concept of sensitivity analysis for PFD was first used 
by Fellini et al. (2004) where the performance losses result-
ing from sharing were measured through sensitivity analysis 
for identifying the proper candidates as scale variables. This 
study uses the sensitivity analysis-based method developed 
in Pirmoradi, Hajikolaei, and Wang (2014) for family design 
of simulation-based problems that might be challenging due 
to the large number of function calls. The proposed method 

Family design problems can be scale-based, module-based or 
generational. Scale-based families include variants that all pos-
sess the same variables or functions, and some of the variables 
can take common values, while other variables have unique val-
ues in each variant. The module-based family includes variants 
that share some functions, while each variant has some unique 
functions or modules. In this study, a scale-based family design 
methodology is proposed which is previously applied to a widely 
known test problem in the PFD area, and based on the promising 
results on its efficiency, it is applied for designing a family of five 
power-split PHEVs (Pirmoradi, Hajikolaei, and Wang 2015).

PFD is discussed to be one of the strategies towards 
sustainable design, in that it entails into re-usability and design 
of mechanisms for efficient redesign of current generations, as 
well as design of future generations of a given product Kasarda 
et al. (2007). Scalability is also a means of reducing the overhead 
costs in design, and several other cost components such as inven-
tory cost, supply chain and replenishment costs, manufacturing 
set-up cost, product maintenance and customer service costs, 
and therefore, is in line with the concept of sustainable design.

The rest of the paper is structured as follows: a literature review 
section is provided first to address the developments in the PFD 
area along with theory and achievements in PHEVs design and 
optimisation; the proposed method section provides the theory 
behind and the detailed steps of the PFD method developed in 
this study; then a discussion is provided on verification of the 
effectiveness of this methodology. Finally, conclusion is drawn 
based on the obtained results. Limitations of this study will also 
be discussed.

2.  Literature review

PHEVs benefit from an electric drivetrain and internal combus-
tion drivetrain that can be coupled to each other. These driv-
etrains allow the energy paths to the road to be in parallel, in 
series or in a combination (Bradley and Frank 2009). While the 
conventional ICE-powered vehicles might be more effective in 
higher engine loads, since they are usually operated at lower 
loads, they do not have impressive overall efficiency as reported 
by Heywood (1988). Although the pure electric vehicles (EV) 
can be of the highest benefits in terms of fuel replacement and 
green house gas (GHG) emissions elimination, they have limited 
ability for long driving ranges and the battery technology needs 
remarkable improvement to enhance their functionality.

The PHEVs can use electric energy over longer distances as 
compared to HEVs, which comes from the electric outlet con-
nection feature embedded in their design. Use of larger battery 
packs helps meeting this target and provides the possibility of 
charging the battery overnight or off the peak hours.

PHEVs can take one of three forms in configuration of their 
powertrain: series, parallel and power-split configuration. The 
series configuration for an HEV/PHEV is equivalent to hav-
ing an EV with an extended electric range. This configuration 
decouples the engine from the wheels so that the engine can be 
operating independently to charge the battery with the help of 
the generator. The motor supplies the power to the wheels and 
it takes its power from the battery. In parallel configuration, the 
power is added from the engine to the wheels, and engine and 
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uses a metamodel-based analysis approach. Metamodelling is 
a technique which enables creating reliable surrogate models 
or mathematical representation for describing the relationship 
between input and output of unknown systems. Such systems are 
known as expensive black-box problems, and the metamodel-
ling technique not only can reveal the unknown behaviour that 
transforms the input into the output, but also can provide useful 
information about the impact of the incumbent variables on the 
performance. In this study, application the metamodelling tech-
nique reveals the correlations among the design variables and 
the magnitude of effect of each variable on the product, i.e. the 
PHEV performance on the road. This method helps assessing 
our desired family design problem to evaluate the potential of 
the chosen variants for family design and platform configuration. 
The only powertrain family design study that exists so far in the 
literature is by Fellini, Papalambros, and Weber (2000), where 
a family of three powertrains, including a conventional vehicle, 
an EV and a mid-sized parallel configuration HEV powertrain is 
assessed. Techniques such as derivative-free global optimisation 
and decomposition techniques are explored for addressing the 
challenges resulting from the high level of the design complex-
ity in their study. As such, this study is the first of its kind in 
assessing platform configuration and family design for PHEVs.

3.  The proposed method

The proposed PFD methodology in this study includes identifi-
cation of proper candidates for the family (explained in Section 
3.1). The candidates are called variants which are selected based 
on market segments identified through the literature review of 
PHEV market. The next stage is optimizing each variant, and 
then the platform configuration is identified through the strate-
gies that will be explained in Section 3.2. The best value of each 
platform variable is determined afterwards (as per Section 3.3), 
through a strategy called partitioning strategy. Once the con-
figuration is identified and values of all platforms and sub-plat-
forms are determined (in Section 3.4), the entire family will be 
optimized and the resulting solution will be compared with the 
initial individual optima for each variant in Section 3.5. Figure 
1 shows these steps in a flowchart format, and the details of each 
step can be found in Pirmoradi, Hajikolaei, and Wang (2015). A 
brief explanation of some of the steps is presented below.

3.1.  Platform candidates identification

The market segments selection step of this study is done through 
literature review of the existing market-related studies for PHEVs.

After optimisation of the design for each variant, the vector 
of optimal values known as x*, the sensitivity and correlations 
information is obtained through applying the metamodelling 
technique, and this enables identification of the platform can-
didate set. The best candidates for sharing are the variables 
whose commonalisation results in the least performance loss 
for the entire family. In other words, for reducing manufac-
turing costs, it is desired to identify the design variables which 
can take a common value among more of the family without 
significantly impacting performance optimality. As such, the 

proper candidate for a platform or sub-platform is a variable 
with the least impact on the objective function. Such informa-
tion on the impact of the variables can be obtained through 
conventional sensitivity analysis, but for a simulation model 
like the one in this study, conventional sensitivity analysis 
is often quite an expensive task due to the large number of 
samples needed. Step 3.2 will demonstrate this part of our 
developed methodology.

3.2.  Sensitivity and detachability analysis

Metamodels are built based on sampling a number of points (or 
input–output pairs) which allow finding information about the 
structure of the function under study. Since the required number 
of samples grows exponentially by increasing the number of var-
iables, extensive sampling can impose remarkable computational 
costs to the system. The technique used in this study is of advan-
tages to address such issues through combining the radial basis 
function–high-dimensional model representation (RBF-HDMR) 
and the random sample HDMR (RS-HDMR).

Metamodelling provides reliable information on the depend-
encies of complex systems output to several variables/factors 
based on sampling points (or input-output pairs). HDMR is 
generally shown in Equation (1):

Figure 1. Flowchart of the proposed family design method.
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vector that we call sensitivity index (SI). In matrix 
S, once excluding the diagonal elements, each row’s 
maximum value is collected into another vector, 
which we call quantified correlation (QC), the rep-
resents the biggest correlation of each variable with 
the rest of variables, and thus provides information 
on which variable is most highly correlated to some 
others among the variables in each variant. Since the 
SI and QC vectors are obtained once for each variant, 
there will be as many of such vectors as the number 
of variants in the family to design. As such, to obtain 
a global or aggregated vector, an average of all vari-
ants would be required. The resulting average of all 
SI vectors is called the global or ASI and, similarly, an 
AQC vector will be obtained once the metamodelling 
is applied to one variant simulation at a time. By col-
lecting SI and QC for all the variants, we will have two 
vectors, ASI and AQC for each variant. Based on the 
heuristically determined SI threshold, the ASImin, 
the variables for which the average ASI value is lower 
than ASImin are selected and recorded as a platform 
candidate set. This set is called Set #1.

(2) � �  Detachability ranking: through sorting the global 
or AQC measures in a non-descending order, the 
variables with sufficiently low correlation to the rest 
of variables are identified and recorded as the second 
platform candidate set (Set #2). The role of AQC 
vector is to help identifying the biggest threatening 
variables for communalization. In identification 
of platform ideas, based on values from the AQC, 
if one of the cases below apply, caution will be 
required in selecting the candidates for sharing or 
commonalisation as follows:

(a) � The variables are on the right end of both ASI and 
AQC are of least benefit for communalization and 
better to be kept as scale variable due to their high 
impact on the objective function, as well as their 
large correlation and coupled effect along with 
some other variable.

(b) � If a variable x on the left end of ASI shows up to be 
on the right end of AQC, from the S matrices that 
were used to form the AQC vectors (five vectors 
for five family members), it is required to identify 
which variable(s) it is mostly correlated to, and the 
logic is to avoid communalizing both of these var-
iables into single platform, as it may result in more 
performance loss.

The ultimate set will be sorted in a non-descending order of 
the ASI values, and will be assessed for commonalisation based 
on the partitioning strategy to be described shortly. Since in this 
approach the sensitivity analysis is performed on the metamodel 
instead of the original expensive function, the cost of the sensitiv-
ity analysis is remarkably reduced due to the use of computation-
ally inexpensive sample points from the metamodel. Complete 
details of this approach can be found in Pirmoradi, Hajikolaei, 
and Wang’s study (2015).

 

where d is the number of input variables; f0 represents the 
zeroth-order effect on f (x), which is a constant; fi(xi) is the 
effect of the variable xi acting independently on the output f (x) 
(known as the first-order effect which can be linear or non-lin-
ear). The second-order effect fij(xi, xj) is the residual correlated 
contribution of variables xi and xj on f (x) after excluding their 
first-order contributions through the first-order components, 
and so on. The RBF-HDMR uses the RBF function to model the 
component functions Shan and Wang (2010), and it is shown that 
the variable correlation and the relative strengths of the correla-
tions are estimated well in general by this technique according 
to Hajikolaei et al. (2015).

After modelling the black-box function through the RBF-
HDMR technique, a random sampling-based metamodelling 
technique (RS-HDMR) introduced by Sobol (1993), and Alış 
and Rabitz (2001) is applied to calculate the sensitivity indices. 
The variable correlations quantified through the use of this tech-
nique can reveal the variables that have weak mutual effects with 
the rest of variables (on the product performance). A two-di-
mensional matrix called the sensitivity matrix S is obtained in 
this stage. The diagonal elements of the sensitivity matrix show 
the variables’ direct impact on performance (i.e. the first-order 
impact), and the off-diagonal elements show the variable corre-
lations in a second-order approximation (Li, Wang, and Rabitz 
2002; Li et al. 2006). If a variable has low sensitivity, it can be a 
good candidate for platform configuration.

Through use of the RBF-HDMR and RS-HDMR, the required 
steps and decisions for platform candidate selection briefly 
include sorting the variables in non-descending order in terms 
of their overall effect on the family (into a vector called average 
sensitivity index (ASI)), and in terms of their correlation with 
other variables (the resulting vector is called average quantified 
correlations (AQCs) vector). These two sorted vectors along 
with a third vector called coefficient of variation (CV) will form 
the foundation to make decision on which variable(s) to fix or 
communalise over the entire family, which variable(s) to be par-
tially commonlised (take the same value over a few of the family 
members), and which variables to keep as non-platform or scale, 
i.e. taking unique value per family member.

(1) � �  Sensitivity indices ranking: for each variant of the 
family, through running the metamodelling approach 
above, a matrix S is obtained, which we call sensitiv-
ity matrix. This is n by n matrix where the diagonal 
elements represent the magnitude of each variable 
on the objective function, and the non-diagonal ele-
ments represent correlations between each pair of 
the design variables. The diagonal elements form a 

(1)
f (x) = f

0
+

d
∑

i=1

fi(xi) +
∑

1≤i<j≤d

fij(xi, xj)

+
∑

1≤i<j<k≤d

fijk(xi, xj, xk) +⋯

+
∑

1≤i
1
<⋯<il≤d

fi
1
i
2
⋯il

(xi
1

, xi
2

,… , xil ) +⋯

+ f
12⋯d(x1, x2,⋯ , xd)
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where xiNP is the non-platform variable for the ith variant and N 
is the number of platform variables that are now fixed.

3.5.  Performance evaluation

The obtained objective function value of each variant will be 
compared to the individual optimal target values and if the per-
formance change is within the allowed range (i.e. maximum of 
10% loss according to the previous studies for the same design 
problem), the design can be accepted for the family.

In case of violating the performance requirements (obtaining 
infeasible design), the following strategies will be implemented 
until a feasible design is obtained:

(1) � �  Considering multiple sub-platforms instead of a sin-
gle platform, adjust the value of individual variable 
in order to reduce the variation from the individual 
optima among the new sub-platform members.

(2) � �  Increase the degree of freedom by adding to the 
number of non-platform variables, i.e. excluding the 
last member in the platform candidate set, and opti-
mizing the variant with the new set of non-platform 
variables.

This methodology is applied to the universal electric motors 
family design problem and its performance has shown to be 
better than a number of the existing methodologies such as the 
one developed by Dai and Scott (2007), Ninan and Siddique 
(2014), as well as VBPDM (Nayak, Chen, and Simpson 2002), 
and PPCEM (Simpson, Maier, and Mistree 2001) in terms of 
being capable of combining two important phases in family 
design of black-box problems, i.e. metamodelling, and finding 
the candidates for platform configuration (Pirmoradi, Hajikolaei, 
and Wang 2015).

In the next section, details of a generic simulation model 
developed for the PHEVs under study will be first presented, 
and then step by step application of the proposed PFD approach 
will be described.

4.  Application to the PHEV family design

4.1.  Modelling the PHEV

In this study, we built a forward-looking simulation model in Sim 
Driveline™ (Mathworks 2013) and used the parameters and spec-
ifications of components such as the battery from PSAT™ compo-
nent files library (PSAT). The PHEV model resembles to the MY 
2004 Prius with power-split configuration, and the model was 
validated by comparing performance results to test data availa-
ble for MY04 and from PSAT (Rousseau, Pagerit, and Monnet 
2001). For the fixed parameters and the references for scaling the 
unfixed parameters, initialization files from PSAT were used and 
then the built model was first validated through comparing the 
following output parameters to those available from literature 
and test labs data: engine torque, power and efficiency profile 
for an Urban Dynamometer Driving Schedule which is a widely 
known driving cycle or speed–time profile for the simulations; 
motor torque and efficiency; battery SOC, temperature, voltage 
and current over time; and vehicle speed versus drive cycle speed, 
overall or aggregate torque demand of the vehicle and the actual 

3.3.  Platform value(s) determination

The basic idea to determine the common value for each candidate 
variable is to leverage the CV parameter information. The CV for 
a single variable aims to describe the dispersion of the variable in 
a way that does not depend on the variable’s measurement unit. 
This idea is taken from the robust design principles which have 
been addressed and applied to the PFD by Simpson et al. (1996). 
Although we have used this idea with some modification and 
simplifications, the main logic behind both are the same, i.e. to 
attempt to keep the mean of the new design as close as possible to 
the target mean, and to minimise the deviation in separate goals. 
Let the matrix P represent the optimal values for the design var-
iables (j = 1 … , m) over the entire family of p products, obtained 
from the first step when no platform has been used.
 

This parameter is shown in Equation (4):
 

 

where σ and μ are the standard deviation and mean operators, 
respectively. A larger value of this parameter indicates more 
dispersion of the vector values. Using this parameter as a reference 
for the platform member selection, the commonalisation scheme 
is expected to result in the least possible deviation of the variants 
from their individual optimal value.

This strategy allows single platform configuration for the var-
iables with sufficiently low CV values, and attempts to identify 
the minimum number of multiple platforms with a desired aver-
age CV after clustering. We refer to this strategy as the optimal 
partitioning strategy, which includes a clustering step, and then 
assigning the desired value to each platform or sub-platform. The 
details of the clustering and platform value determinations can 
be found in Pirmoradi, Hajikolaei, and Wang (2015).

3.4.  Entire family design optimisation

After obtaining the optimal configuration and the values 
assigned to the platform variables, the design problems with 
a fewer number of variables will be obtained for each variant, 
which will be optimized similar to Step 1, with the following 
problem definition:
 

(2)

x
∗j

i
: The optimal value of ith product for the jth variable

P =

⎡

⎢

⎢

⎢

⎣

x∗11 ⋯ x∗m1
⋮ ⋱ ⋮

x∗1p ⋯ x∗mp

⎤

⎥

⎥

⎥

⎦

(3)CV =
�

�
× 100%

(4)CV =
[

�(:,1)

�(:,1)
× 100% ⋯

�(:,m)

�(:,m)
× 100%

]

(5)

∀i = 1, 2,… , p and given the fixed platform from Step 3

Find xinon-platform(NP) = xiNP1
, xiNP2

,… , xiNPm−N

To minimize AOF(xi, vi)

S.T.

gj(x
i, vi) < 0, j = 1, 2,… , n

xiL ≤ xi ≤ xiU
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a study in this area by Li and Kar (2011) that leveraged dynamic 
programming to find a range of optimal ratios that can split 
the torque in the component sizes such that the fuel consump-
tion is minimised and the vehicle performance stays within a 
desired range. For the sake of maintaining discrete nature of the 
power-split ratio, we defined a new variable as the ratio of the 
ring gear to the sun gear, and the sensitivity analysis has been 
performed on a set of seven variables to allow us analyse the 
impact of each gear ratio separately. The set of variables and 
their design bounds are:

(1) � �  Upper limit for SOC (0.6 ≤ x1 ≤ 0.95).
(2) � �  Lower limit for SOC (0.25 ≤ x2 ≤ 0.5).
(3) � �  Engine size (40 ≤ x3 ≤ 85) KW.
(4) � �  Motor size (30 ≤ x4 ≤ 75) KW.
(5) � �  Number of battery modules (20 ≤ x5 ≤ 143).
(6) � �  PSD ratio: x6

x7
∈ {2.6, 2.75, 2.9, 3.0, 3.2, 3.25, 3.4}

The objectives of interest include fuel economy, emissions and 
powertrain cost, which are integrated into an aggregated objec-
tive function (AOF), based on the principles adopted from Dai 
and Scott (2006). The AOF is created from integrating the prefer-
ence functions for each design objective, where each preference 
function attempts to find a value close to the best value, and not 
more (or not less) than the worst value. For example, for PHEV7, 
the preference for fuel economy indicates that any fuel economy 
more than 90 miles/gallon can be considered satisfactory, with a 
high preference, while any fuel economy below 70 miles/gallon 

torque on wheels over time. All the results showed reliability of 
the model for further use in design optimisation. Figures 2 and 
3 show the validation results for two of the parameters, i.e. the 
torque on the wheels and the engine torque.

Toyota Prius features a planetary gear set to split the power 
from the engine. With such power-split configuration, the engine 
can propel the vehicle alone, or charge the battery through a 
generator. A traction motor provides another source of power to 
either assist the engine or independently drive the vehicle. The 
flexibility of power management makes the power-split configu-
ration more advantageous upon improving the overall efficiency 
of the vehicle. As such, the planetary gear set is a fundamental 
component of power split powertrain configuration, consisting 
of a sun gear, a ring gear, a carrier and pinion gears. The motor is 
connected to the ring gear and final driveline, the generator to the 
sun gear and the engine to the carrier. The PSD ratio is defined as 
the ratio of the number of ring gear teeth to that of the sun gear.

The design variables in our study include a set of component 
sizes, along with two variables from the control strategy. The 
control strategy is a blended strategy that enables engine to assist 
in the propulsion. In this strategy, the vehicle normally operates 
in the CD mode, but if the torque demand exceeds a specific 
value, even though the SOC might have not reached the lower 
limit, the engine is leveraged to assist in propulsion and is then 
turned off as soon as the required torque is reached, resulting a 
mix of CD and CS modes. We assess a range of possible values 
for the power-split ratio, which span from 2.6 to 3.4, according to 

Figure 2. Torque on wheel comparison between test data and simulation model.
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fi_Worst & fi_Best: the function value below (or above) which, 
is not desired.

ωi: weight of the ith objective.
s: level of compensation among objectives in hand.
As noted by Dai and Scott (2007), adjustment of the set of 

these decision parameters (i.e. p = ωi, s, αi) will result in the best 
platform decision. However, the efficacy of the method does not 
depend on an optimized set of such parameters. Since the focus 
here is on finding information on the relation and impacts of 
the design variables rather than performing optimisation, the 
weights are chosen to be equal, i.e. 1∕3, and s is −1.

The general specifications of the simulated vehicle are shown 
in Table 1. It is assumed that all of the vehicles have the same 
distance between charges, which is beyond the highest AER 
(60 miles), and therefore no charging happens during the drive 
cycle.

is considered unacceptable, or with a low preference. As such, 
the weighted aggregation of these three functions allows a sin-
gle-objective optimisation.

The AOF of this problem is as follows:
 

 

 

 

s: aggregated preference function.
�i: preference function for ith objective of interest.
fi: objective function value for ith objective.

(6)s =

(

�1�
s
1 + �2�

s
2 + �3�

s
3

�1 + �2 + �3

)1∕s

(7)Fuel Efficiency �1 =
f1 − f1_worst

f1_Best − f1_Worst

(8)Cost �2 =
f2_Worst − f2

f2_Worst − f2_Best

(9)CO2 Emissions �3 =
f3_Worst − f3

f3_Worst − f3_Best

Figure 3. Engine torque comparison between test data and simulation model.

Table 1. The vehicle dynamics specifications for simulation.

Parameter Feature/value
Drag coefficient 0.26
Frontal area 2.25 m2

Glider mass 1228 kg
Engine 1.5-L, 40–85 kW, Atkinson 4 cylinder; 5000 rpm maximum 

speed
Motor 30–75 kW, 400 Nm, 6500 rpm maximum speed
Generator 30 kW, 10,000 rpm maximum speed
Battery Li-ion Saft, Series, 3 cells per module, 20–143 NBM
Final drive ratio 4.113
Wheel radius 0.305 m
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methodology and can be found in detail in Cheng et al.’s study 
(2015). The results of optimisation are shown in Table 4.

Step2: Platform candidate selection
The graphical presentation of the simulation output versus 

the metamodel output shows high conformance or accuracy. 
However, to have a quantified measure of the accuracy, the widely 
known accuracy measures such as R-square is 0.9981, and root 
mean square error value is 0.1385.

R-square shows the accuracy in sampling points (Shan and 
Wang 2010). The metamodel accuracy was assessed for the 
sampled points, and the results of this comparison are shown 
in Figure 4, where 1000 sample points were generated and the 
output of the simulation model is compared to that of the met-
amodel on each of the sample points. Since all the 1000 samples 
output would not be easy to show, for the sake of increased read-
ability, a snapshot of the entire plot is provided here, where the 
Matlab plot is zoomed in on the area between 400th and 550th 
sample points. Other accuracy measures include relative aver-
age absolute error (RAAE) and root mean absolute error which 
are measures of prediction accuracy of the metamodel and are 
desired to be small. RAAE in our study is 0.02, and the RMAE 
is 0.49 which indicates reduced accuracy in some local areas of 
the design space.

The number of expensive sample points per variant meta-
modelling is shown in Equation (10):

 

This value is equal to 36 for each design problem, and in total is 
180 for the entire family metamodelling.

As explained earlier, first SI vectors for five variants are 
obtained through applying the RBF-HDMR and RS-HDMR to 

(10)

Number of expensive samples = 1 + 2 ×Number of variables

+

(

Number of variables

2

)

In order to decide which variations of PHEVs would be the 
most appealing to different customer segments, a thorough 
review of the research in the following areas were conducted in 
this study: (a) the studies which have performed market pen-
etration scenario analyses; (b) the ones that have conducted 
surveys in order to analyse customer behaviour/preferences 
and find more about their perceived benefits in regard to these 
vehicles; and (c) those which have assessed customer data from 
resources such as National Household Transportation Survey to 
identify the best fit among available vehicle designs, for various 
segments. The details of these studies can be found in Simpson 
(2006), Rousseau et al. (2007), Kurani, Heffner, and Turrentine 
(2008), Santini and Vyas (2008), Shiau et al. (2009), Abe (2010), 
Axsen and Kurani (2010), Lin and Greene (2010), Skerlos and 
Winebrake (2010), and Egbue and Long (2012). An important 
observation from the review of the market studies is that PHEV 
design optimisation problems are of a multi-objective nature, 
implying that not only many parameters affect the performance, 
but also the performance can be defined and assessed from vari-
ous aspects. For example, Shiau and Michalek (2009) found that 
the optimality of the x miles and the chosen vehicle (between 
HEV and PHEVs) highly depends on what objective is under 
consideration. As such, the vehicle with minimised GHG emis-
sions might be different from the one designed for minimised 
life time cost or the fuel consumption.

In this study, based on a review of the existing research in 
market side of the PHEVs and studies related to consumers’ 
behaviour/preferences, five variants are selected for our family 
design with a nominal AER of 7, 20, 30, 40 and 60 miles in this 
study. The chosen powertrain configuration is the power-split 
PHEV which takes advantage of both parallel and series config-
urations. The scale-based family design is of interest for PHEVs 
in this study, assuming that all the variants will have the same 
configuration.

4.2.  Steps of the family design method

Step 1: Individual optimisation
In a typical PFD approach the design variables along with 

their optimal values for each variant have to be identified first. 
According to the literature, this can be obtained through opti-
misation of the design for specific performance expectations, or 
can be adopted from the literature. The preference function needs 
the values shown in Table 2 to find a value close to the best value, 
and not more (or not less) than the worst value.

The constraints are shown in Table 3.
Each variant is optimized toward its specific objective func-

tion. The algorithm used for optimizing the variants is TRMPS2 
algorithm which is an adaptive metamodel-based optimisation 

Table 2. Selected range for different objectives.

Variant 1 2 3 4 5
Fuel economy (miles/gallon)

Best 90 85 80 75 65
Worst 75 65 60 55 42

Cost (*1000) $
Best 2.5 3 3.3 3.6 4
Worst 3 3.5 4 4.5 5

Emission (grams/mile)
Best 130 150 165 180 205
Worst 145 170 185 200 230

Table 3. The system constraints for the PHEV design problem.

Time from 0 to 60 mile/h (or 95.56 km/h) t1 ≤ 12
Time from 0 to 85 mile/h (or 136.79 km/h) t2 ≤ 23.4
Time from 40 to 60 mile/h (from 64.37 to 

95.6 km/h)
t3 ≤ 5.3

Maximum acceleration (ms−2) 0.5 × g ≤ max acceleration
Travelled distance within the first 5 s 140 feet (or 42.6 m) ≤ 5s_distance
Maximum grade ability percentage at 

55 mile/h
6.5% ≤ max % grade

Maximum speed 85 mph ≤ max speed

Table 4. Individual variants design optimisation solutions.

Variant

P1 P2 P3 P4 P5
Design variable

x1 0.79 0.94 0.94 0.90 0.93
x2 0.25 0.28 0.34 0.34 0.30
x3 83885 84697 84945 84366 83717
x4 48346 50125 53623 54033 55467
x5 20 42 71 75 88
x6 78 79 82 81 80
x7 29 27 27 27 25
Fuel efficiency (miles/

gallon)
198.4 192.73 187.15 113.9 97.03

Cost ($) 2820.8 2860.6 2936.9 2944.9 2975.1
CO2 emissions (grams/mile) 154.47 155.94 157.78 170.7 180.83
AOF 2.25 1.27 1.93 1.87 1.74
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the underlying component. As such, their own impact is not as 
much concerning as that of the component sizes in changing the 
output of the objective function. Accordingly, from the common-
alisation perspective, a fixed PSD gear ratio can be a promising 
candidate towards the family design of PHEVs.

The next rank set of impacts relates to the upper and lower 
bounds of SOC and the battery modules (x1, x5, x2). For the upper 
and lower SOC, since they are control strategy parameters, they 
are not expected to be as much impactful as the component sizes. 
However, the proximity of effect of NBM to the effect of x1, and 
x2 makes sense since the battery size and its SOC window are a 
set of highly coupled parameters governing the electric power 
supply for the vehicle. It should be noted that for x1 and x2, there 
is no benefit or manufacturing cost saving in choosing any shared 
value.

The engine size, x3, comes next in the SI sorted vector. Though 
in the SI ranks, it seems that the engine is on the extreme right 
side of the sorted ASI vector, but all the ASI values except for 
the motor size are quite similar and in a range less than 0.03, 
which is significantly less than the ASI value for x4, i.e. 0.38 or 
more than 10 times. As such the engine size can be considered 
for commonalisation to some extent as well. While further 
determination of its potential for being a multiple sub-platforms 
versus the need for keeping it as a scale variable can only be 
possible after the detailed family design is obtained, however, the 
insight provided from the sensitivity analysis can be beneficial 
for manufacturers and designers in the early stages.

At the extreme right side of the sorted SI vector, the motor 
size, x4, with a high SI value, which indicates significant impact 
of the motor size on the PHEV performance, and potentially, 
significant performance loss for commonalisation of this varia-
ble. Since the engine is able to be decoupled from the propulsion 
sources and because it can be controlled to operate in its most 
efficient mode, it is expectable that its impact on the performance 
can be less than the impact of the electric motor. The highest 
impact of the motor size comes from the fact that appropriate 
battery size would not result in the desired performance of the 
vehicle, unless the motor is also of the right size to be powered 
by the battery and transfer the power to the transmission. The 
whole observations discussed above are consistent with the logic 
of automatic component sizing, which is one of the widely used 
component sizing strategies. In that strategy, the motor size that 
meets the peak mechanical power required to follow the desired 

the design problem. After obtaining the SI values for each var-
iable in each variant, a global SI is calculated for each variable, 
which is the average of the five local SI values. The obtained 
SI’s and ASI are presented in Table 5. Similarly, the QCs among 
the variables for each of the five variants, i.e. PHEV7, PHEV20, 
PHEV30,  PHEV40 and PHEV60 are obtained as shown in 
Table 6.

Non-descending sorted index of ASI and AQC:

4.2.1.  Analysis and findings on platform configuration 
potential
The sorted SI vector shows that the numbers of teeth for the ring 
gear and the sun gear (in the PSD), x6 and x7, respectively, are 
the least impacting factors on the performance of the vehicle. 
This might be due to the narrow range for these teeth numbers 
that assure meeting the performance requirements. Also, since 
these gears are connected to the component sizes, it is expected 
that their impact is mostly depending on the chosen sizes for 

ASI = [ 6 7 1 5 2 3 4 ]

AQC = [ 4 2 7 1 3 5 6 ]

Figure 4. Metamodel accuracy for 150 sample points.

Table 5. Local and global sensitivities of variables in the PHEV family design prob-
lem.

Design variable x1 x2 x3 x4 x5 x6 x7

SI(1) 0.0008 0.0003 0.0025 0.9242 0.0006 0.0030 0.0003
SI(2) 0.0086 0.0139 0.0150 0.5933 0.0105 0.0039 0.0110
SI(3) 0.0098 0.0083 0.0321 0.2588 0.0095 0.0196 0.0030
SI(4) 0.0110 0.0114 0.0468 0.1048 0.0126 0.0014 0.0015
SI(5) 0.0151 0.0395 0.0444 0.0282 0.0372 0.0132 0.0265
Global (average) 

SI
0.0091 0.0147 0.0282 0.3819 0.0141 0.0082 0.0085

Table 6. Quantified correlation of variables in the PHEV family design problem.

Design 
variable x1 x2 x3 x4 x5 x6 x7

QC (1) 0.0060 0.0055 0.0067 0.0066 0.0067 0.0066 0.0034
QC (2) 0.0344 0.0185 0.0185 0.0344 0.0385 0.0385 0.0271
QC (3) 0.0353 0.0508 0.0742 0.0384 0.0508 0.0742 0.0381
QC (4) 0.0665 0.0644 0.0665 0.0460 0.0625 0.0551 0.0644
QC (5) 0.0546 0.0463 0.0463 0.0546 0.0901 0.0901 0.0588
Global (aver-

age) QC
0.0394 0.0371 0.0424 0.0360 0.0497 0.0529 0.0384
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the arrangement of design variables for the PHEV family design 
problem under study, based on application the mapped from 
the left block.

The next step is to determine sub-platform values for the mul-
tiple platform candidates and common value for single platform 
candidates. By applying the clustering strategy to the multiple 
platform candidates, the values and sub-platforms suggested 
through our developed algorithm is shown in Table 8 and the 
best values for commonalisation is shown in Table 9.

The values of sub-platforms are obtained through applying a 
k-means clustering strategy developed in Pirmoradi, Hajikolaei, 
and Wang (2015). The two sub-platforms suggested for engine 
size and motor size result in groups of variants whose CV value 
is reduced by 70%, as compared to the case of a single platform 
for these variables. For the motor size, since there is a signifi-
cant variance for the SI values, the best suggested value by our 
algorithm is the weighted average for sub-platform 2, where the 
SI values span the range of [0.02, 0.25]. This makes sense in 
terms of the algorithm vision that is avoiding performance loss 
by staying as close to the optimal values from step 1 as possible. 
Therefore, when variants 3, 4 and 5 are suggested to form a sep-
arate sub-platform for this variable, obviously variant number 3 
gets a higher priority due to its larger SI value on x4.

Step 4: Entire family design optimisation
With the determined platform values, we can optimize each 

variant with less number of variables by choosing the values of 
platform variables to be the fixed values determined in Step 3. 
The results of the entire family design are shown in Table 10, 

driving cycle is the very first item to be determined. The battery 
peak discharge power is then defined as the electrical power that 
the motor requires to produce that peak mechanical power. The 
engine is then sized to achieve the gradeability requirement of the 
vehicle and the 0–60 mph performance requirement according 
to Sharer et al. (2006) and Moawad et al. (2009).

In the AQC vector, x6’s highest correlation shall be checked 
back from the individual S matrixes, and by taking average of 
each pair-wise correlations on the five S matrices, x6 shows the 
highest correlation with x4 or the motor size and with x5 or the 
battery size afterwards.

The observations on this section are summarised in Table 7. 
Since another effective parameter on making platform config-
uration decisions is the CV, the decision on whether a variable 
such as the motor size is beneficial or disadvantageous for any 
commonalisation level highly depends on the span of the opti-
mal values for any given variable on the variants under study, 
as well as the expected performance range for the variants. In 
other words, even the high ranks of SI value will not preclude 
a variable from being a good option to take a common size, for 
some variants if not all of them.

Step 3: Platform value(s) determination
As per the structure of our platform configuration strategy, at 

this step an additional parameter towards decision-making is to 
find the CV for the vector of optimal values from step 1.

The CV value for each variable is obtained and the resulting 
vector is:

Non-descending sorted index of CV vector:

The partitioning scheme is determined based on the range of 
obtained values for ASI and the CV values, to allow multiple plat-
forms. While the CV and SI values might recommend keeping 
specific variables as scale or non-platform variables, however, 
the assessments of the universal electric motors family problem 
in Pirmoradi, Hajikolaei, and Wang (2015) reveals that com-
monalisation of those specific variables (i.e. recommended to be 
non-platform variable) might also be possible, at least to some 
extent. A cautious commonalisation of the variables at the right 
end of the non-descending sorted vectors of SI and CV not only 
may not result in significant performance loss, but also may 
result in savings due to a higher degree of commonalisation. 
Besides, in case of exceeding the allowed performance loss, it 
is always possible to increase the degree of freedom and reduce 
the commonality level. As such, we are willing to implement a 
moderate scheme where more possibilities of commonalisation 
were provided to most of the variables. The platform candi-
dates are accordingly obtained as shown in Figure 5, where the 
left block shows the mapping of variables to platform or sub- 
platforms based on SI and CV values, and the right block shows 

CV = [7.0711 12.9097 0.6184 5.6657 46.6504 1.9520 5.2378]

[ 3 6 7 4 1 2 5 ]

Table 7. Suggestions for commonalisation based on the sensitivity and correlation 
analysis findings.

Variable Platform configuration suggestions
1, 2 No benefit in commonalisation
3, 6, 7 Candidate for single or multiple platforms
4, 5 Scale variables or potential multiple platforms

Figure 5.  The partitioning scheme for the variables in the PHEV family design 
problem based on CV and SI.

Table 8.  The determined number of platform/sub-platforms for the proposed 
method.

Variable Commonalisation level
6, 7 All-or-none platform
3, 4 2 sub-platforms
1, 2, 5 Scale variable

Table 9. Platform configuration of the variants based on the proposed partitioning 
scheme.

Platform candi-
date x6 x7 x3 x4

Number of plat-
forms

Single platform 2 2

Platform variants P1: {p1, p5} P1: {p1, p2}
P2: {p2, p3, p4} P2: {p3, p4, p5}

Platform pre-
ferred value

x6 = 81 x7 = 27 x3 (P1) = 83801 x4 (P1) = 49236
x3 (P2) = 84670 x4 (P2) = 53865
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allow assessing this value as an acceptable loss, or a design that 
would need modification, we may only dig into the loss in indi-
vidual objectives of interest in order to conclude on this fairly 
considerable AOF loss.

In addition to comparing the objectives and AOF value 
for each approach, a comparison on the level of commonality 
achieved through each solution can help to evaluate the efficiency 
of suggested schemes. Several indices and metrics have been 
developed for providing insight into the level of commonalisation 
obtained for a family design. We have adopted the commonality 
index (CI) developed by Martin and Ishii (1996) varies 
between 0 and 1, and provides a measure of the percentage of 
commonalisation in the whole family. It can be interpreted as the 
ratio of the number of unique components to the total number of 
parts (Thevenot and Simpson 2006). For a scalable family, where 
there is equal number of design components for all the variants, 
CI is defined as follows:

 

For this design problem, with p variants (i.e. 5) and n compo-
nents in each variant (or design variables in our case to be 7), 
for a design with u as the total number of unique components 
(i.e. 15 as per our obtained family solution in Table 11), the value 
obtained for this family design solution is 71.4% which is a fairly 
high value for the family. The normal range for CI is from zero 
(indicating no sharing), to one (indicating the differentiation in 
the family is obtained through the minimum number of unique 
components (i.e. n differentiating components)).

4.3.  Effect of varying the number of sub-platforms (k) on 
the family design

In order to investigating the effect of the number of sub-plat-
forms on the performance of the resulting family, we compared 
three cases, i.e. a single platform for a variable with high SI value, 

(11)CI = 1 −
u − n

n(p − 1)

along with the obtained efficiency, emissions and cost for each 
variant. The commonalized values are shown in hatches and 
shaded cells for an illustrative presentation of the multiple plat-
form family design.

Step 5: Performance loss measurement
At this stage, the best reference for assessing the obtained fam-

ily design solution is the individual optimal designs from Step 1. 
By pair-wise comparison of each variant on the new values and 
individual optima for the three objectives as well as the AOF, the 
percentage of change in each variant performance is measured 
and collected in Table 11.

The interpreted values are 10  MPG reduction in fuel effi-
ciency, $20 cost reduction and 3 g/mile increase in CO2 emissions 
in the design of this vehicle after the platform configuration. The 
acceptability of such amount of loss on a given objective depends 
on factors such as the ultimate priorities set by the manufac-
turer to keep the objective values strictly close to specific values. 
The average performance loss (i.e. 1.52%) is within the nominal 
acceptable performance loss range. In addition, as noted, the 
majority of the driven miles per day is less than 30 miles for 
50% of the drivers in the US, which makes this specific loss less 
important, for PHEV60. As such, in the case of the PHEV design 
family, due to the reasons enumerated above, it may or may not 
be considered an unacceptable performance loss to have 16% 
reduction in the AOF value. In summary, the obtained family 
solution is acceptable and no further remedial action might be 
needed to reduce the commonality level obtained.

Step 6: Comparison with individual optimal designs
The results show that for fuel efficiency objective, the per-

formance loss is 9.8% or about 10 miles per gallon reduction 
at the maximum for PHEV60, in case of sharing the variables as 
per the suggested configuration as compared to the expected 
performance of the PHEV60 at its optimal design before family 
design. There are some improvements for PHEV7 and PHEV40, 
indicating better performance of the vehicle with the new com-
ponent sizes. The average loss for the entire family on the fuel 
efficiency is 1.1%, which is within the acceptable loss range.

The losses on the cost objective are all less than or about 1%, 
indicating insignificant increase in the cost after commonalisa-
tion. The biggest increase on the cost is for PHEV7 that is $20 in a 
scale of ~ $2800. Cost reduction has come at the price of reduced 
fuel efficiency or increased emissions, and the rules of non-dom-
ination in multi-objective optimisation are still applicable here.

A quite similar variation in the emission objective values can 
also be recorded, as all the ups and downs in the emission after 
the family design stage are less than 1.5%, that is about 3 g per 
mile of CO2, as compared to the range of 180 g/mile. As expected, 
fuel efficiency and emissions are moving in the same direction, 
i.e. the variants with improved fuel efficiency after the com-
monalisation have reduction in their emissions, and vice versa. 
However, there is not such a straightforward relation between 
the trends for fuel efficiency and the cost.

AOF values before and after family design show more changes, 
as compared to the individual objectives of interest. PHEV7 and 
PHEV40 have better AOF values after the commonalisation by 
5.7 and 3.7%, respectively, and PHEV30 and PHEV60 have lost 
1.3 and 16% of the AOF after the commonalisation, respectively. 
The 16% loss of performance on the AOF value for the PHEV60 
is worth more consideration. Since there is no benchmark to 

Table 10. Family design solution by the proposed method.

Variant

P1 P2 P3 P4 P5
Design variable

x1 0.8100 0.8578 0.9334 0.9292 0.9497
x2 0.3388 0.2979 0.2554 0.2786 0.2551
x3 83801 84670 84670 84670 83801
x4 49236 49236 53865 53865 53865
x5 20 52 52 65 70
x6 81 81 81 81 81
x7 27 27 27 27 27
Fuel efficiency (miles/gallon) 203.82 189.98 184.55 118.99 87.45
Cost ($) 2840.0 2841.3 2941.7 2941.7 2940.5
CO2 emissions (grams/mile) 152.54 156.07 157.83 169.60 183.09
AOF 2.39 1.27 1.91 1.94 1.46

Table 11. Comparison of our method to the individual optima.

Variant Difference (%)

1 Fuel efficiency Cost Emissions AOF
2 2.7319 0.6807 −1.2494 5.7778
3 −1.4269 −0.6747 0.0834 0
4 −1.3893 0.1634 0.0317 −1.0363
5 4.4688 −0.1087 −0.6444 3.7433
Average change −9.8732 −1.1630 1.2498 −16.0920
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