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Real-Time Smart Charging of Electric Vehicles for
Demand Charge Reduction at Non-Residential Sites

Guanchen Zhang, Student Member, IEEE, Shaoqing Tim Tan, G. Gary Wang

Abstract—Smart Electric Vehicle (EV) charging deals with
increasing demand charges caused by EV load on Electric Vehicle
Supply Equipment (EVSE) hosts. This paper proposes a real-
time smart charging algorithm that can be integrated with
Commercial & Industrial (C&I) EVSE hosts through Building
Energy Management System (BEMS) or with utility back office
through the Advanced Metering Infrastructure (AMI). The
proposed charging scheme implements a real-time water-filling
algorithm (RTWF-n1) able to reduce the peak demand and to
prioritize EV charging based on the data of plugged-in EVs. The
algorithm also accommodates utility and local Demand Response
and Load Control (DRLC) signals for extensive peak shaving.
Real-world EV charging data from different types of venues are
used to develop and evaluate the smart charging scheme for
demand charge reduction at Medium & Large General Service
locations. The results show that even at constrained venues such
as large retails, monthly demand charges caused by EVs can
be reduced by 20-35% for 30% EV penetration level without
depreciating EVs’ charging demand.

Index Terms—Electric Vehicle, Smart Charging, Demand
Charge, Peak Shaving, Demand Response, Direct Load Control.

NOMENCLATURE

Abbreviations
AMI Advanced Metering Infrastructure
BEMS Building Energy Management System
C&I Commercial & Industrial
DCFC DC Fast Charger
DR Demand Response
DRLC Demand Response and Load Control
EV Electric Vehicle
EVSE EV Supply Equipment
L2 Level-2 Charging (208/240V)
LB Lower Bound
LGS Large General Service
MGS Medium General Service
OPEX Operational Expense
PHEV Plug-in Hybrid Electric Vehicle
RTWF Real-Time Water Filling
SC Smart Charging
SOC State of Charge
TOU Time of Use
Variables
∆t Smart meter sampling period, or the SC control time

step
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η Average charging efficiency
t∗u Unplug time of EVs in {EV1} as of tm
τ1, τ2 Start and end time of the DRLC event
θ Charging flexibility of the i′th EV
Ẽ Average deferrable energy for SC in an EV
{EV1} Group of EVs with the earliest leaving time as of tm
{EV(−1)} Group of EVs not in {EV1} as of tm
a Binary term indicating whether the i′th EV is plugged

in at time t
Ed Total energy demand of an EV
E
′

d New feasible energy demand after curtailment
E(+) Maximum energy can be charged to {EV(−1)} before

all EVs in {EV1} leave
E(−) Minimum energy must be charged to {EV(−1)} before

all EVs in {EV1} leave
E

(j)
ε Remaining energy to be charged as of tm for the j′th

EV in {EV1}
L0 Original charging power profile
LFD Power profile of fully deferrable charging session
LPD Power profile of partially deferrable charging session
Nt Number of EVs plugged in at t
Nν Number of unplugged EVs (done charging) at t = tu
NEV Total umber of EVs come to charge in a day
N∗EV Number of EVs in {EV1}
pc Constant-current charging power of an EV
pλ Provisional lower bound for handling uncertainties

towards ts
Pυ Upper bound of building-level demand by DRLC at

time t
pυ Maximum charging power subject to SOC
pζ Applied lower bound for the charging power of the

i′th EV at t
pmin Minimum charging power limited by EVSE hardware

or software
T Number of control steps for SC in a day
TF Average flexible duration for SC
tm Current time in a SC control window
tp Plug-in time of an EV
Ts Number of control steps in each real-time SC window
ts End time of a SC control window
t∗s Earliest unplug time of EVs in {EV1}
tu Unplug time of an EV
x(i) Charging power of the i′th EV at t ∈ [tm, ts]
xb Building’s non-EV demand at time t
XEV Total demand of all plugged-in EVs at time t
Y Aggregate load profile including building and all EVs
yt Total demand in kW at time t
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I. INTRODUCTION

IN Canada, EV sales increased by 32% in 2015 [1]. L2
EVSE almost doubled, and the number of DCFCs increased

by 250% in 2015 [2]. Large EV charging loads impose new
challenges on the power grid in terms of higher peak load and
infrastructure overloading. On a smaller scale, excessive EV
loading may increase demand charges on EVSE hosts.

EV SC based on various objectives target at different scales
and levels. This paper focuses on the SC at MGS and LGS
buildings where demand charges apply. Demand charge is the
cost associated with the maximum power the smart meter
measures in a billing period under one utility account. Table
I shows the demand charge rates from BC Hydro for MGS
and LGS [3]. Demand charges are more critical than energy
charges for MGS and LGS sites due to 1) electricity resale is
prohibited in many jurisdictions 2) where electricity resale is
allowed, energy charges can be recovered from drivers, that is,
drivers pay by $/kWh but hosts still need to pay for demand
charges 3) demand charges may exceed energy charges. For
example, for the busiest L2 station in B.C. (Table 4 in [4]), the
average monthly energy cost for the host is C$388, whereas
the demand cost could be C$474.

TABLE I
BC HYDRO DEMAND CHARGE RATES

Tier Rate [C$]

First 35 kW 0.00
Next 115 kW 5.72
Remaining kW 10.97

Demand charges from EV charging can be controlled on
EVSEs integrable to the distribution or building grid. Utility-
integrated EVSEs may be leveraged by the AMI mesh network
and Business-to-Business (B2B) models. Compatible EVSEs
can also be integrated into BEMS as controllable loads. BEMS
manages EV charging on behalf of building manager or as fa-
cilitator for utility’s DR. Fig. 1 shows the general architecture
in EV charging control. For the purpose of demand charge
reduction, the BEMS pathway provides direct access to real-
time building load and aligning SC with building’s benefit.

Fig. 1. EV charging control pathways

Most literature on SC deal with long plug-in durations and
probabilistic data to infer EV charging demand and plug-

in times in the residential context [5]–[11]. In particular,
residential SC has been extensively studied because it typically
addresses substation demand peak and the fact that more than
80% EV charging occur at home [12], [13]. As charging
infrastructure grows, range anxiety from drivers will ease, and
non-residential charging activities will keep growing [4]. From
a practical point of view, demand charge reduction requires
real-time track of demand (at least synchronized with smart
meters) with prompt and accurate control that cannot fully rely
on probabilistic data. The SC control at non-residential sites
also requires granularity to handle more frequent EV mobility
and individual charging satisfaction.

In general, unidirectional SC in the literature are designed
for 1) minimizing grid impact from various aspects [7], [14],
[15], 2) multi-level charging control minimizing charging cost
on all stakeholders [5], [16], [17], 3) TOU-based charging for
cost minimization [18], 4) integrated charging with renewable
generation [19]. Few studies directly deal with demand charges
for EVSE hosts. However, some existing approaches are
adaptive to non-residential SC.

Chen et al. [15] prove that, in offline cases, valley filling
in SC generates the optimal and unique charging profile
independent of the power flow optimization from the grid.
For online cases, charging deadlines are considered to address
the uncertainties in predicting non-EV and EV loads that
are used to infer the optimal valley level. Gan et al. [5]
propose two SC algorithms-Optimal Decentralized Charging
(ODC) and Asynchronous ODC (AODC). Both algorithms
are proved to provide the optimal valley filling regardless
of EV plug-in time, charging deadline, energy demand, and
maximum charging rate. Real-time ODC (RTODC) considers
EVs that are currently plugged in but EV uncertainties towards
charging deadlines potentially cause charging rebound. Grid-
level rebound could be controlled by charging coordination
over night [20], whereas building-level SC is not so flexible
considering that the average charge events at the top busiest
L2 stations are less than 2 hours [4]. Charging can also be
controlled based on the prediction of EV availability [11].
However, unlike at substation level, the prediction of EV
loads in the C&I context is challenged by EV mobility.
Although prediction could be achieved by machine learning
and mathematical models [21], [22], more studies are needed
for generalization in various host types. Another factor that
drives SC is price-based charging in which energy charges
are typically considered [18], [22]. Regarding demand charges
reduction, rates issued by utilities may not correspond to local
demand peaks, thus the impact on EVSE hosts will be sub-
optimal or even adverse.

This paper elaborates the valley-filling SC for demand
charge reduction at C&I sites where EVSE hosts manage L2
stations for OPEX reduction. We use the term water filling to
denote combined valley filling and peak shaving. EVSE hosts
may publish power limit on the building grid as the highest
water level for demand charges reduction. The paper aims to
find SC solutions to handle high EV mobility and the charging
rebound problem. The main contributions include:
• Evaluation of real-world SC potential at various non-

residential sites
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• Real-time SC in non-residential context with tight control
flexibilities, adapting to both grid and local DRLC

• Prioritized charging based on arrival and departure times
and energy demand to 1) satisfy EV charging require-
ment, and 2) reduce optimization dimensions

• Balance of demand charge savings and the quality of EV
charging service

• SC for C&I sites where demand charges are more critical
than energy charges or energy cost can be recovered as
station usage fees

Many L2 stations in B.C. are free to customers and employ-
ees, so a decrease in OPEX by SC will encourage the growth
of public charging infrastructure.

The remaining of the paper is organized as the following:
Section II studies real-world EV charging data at different
non-residential venues and analyzes EV charging flexibilities.
Section III analyzes demand charge saving potential in a
deterministic case, and discusses the real-time smart charging
algorithm. Section IV presents SC results and evaluates the
performance. Section V concludes this paper.

II. EV CHARGING FLEXIBILITY ANALYSIS

This paper uses real-world EVSE data from evCloud1 to
analyze charging flexibility and develop the SC algorithm.
We choose data from public L2 stations of different venue
types for analysis: large retail, medium retail, workplace/small
business and recreation. L2 stations are mainly focused in this
paper because of their high volume of usage (compared to
DCFCs) and wide availability. L2 stations in B.C. typically
allow up to 7.2 kW charging rate.

The L2 charging power follows a nonlinear curve [23],
featuring a constant-current (linear) and constant-voltage mode
(nonlinear). The original curve in Fig. 2 shows the typical
charging profile of Nissan Leaf MY13 [24].
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Fig. 2. Nissan Leaf MY13 AC charging profile (adapted from [24]) and
illustration of flexible charging

Compared to constant-current charging, charging in
constant-voltage mode could be viewed as less efficient charg-
ing that can be targeted by load curtailment. SC could defer
charging loads in the constant-current mode to the constant-
voltage period, potentially increasing charging flexibility at
tightly constrained venues.

1evCloud: www.fleetcarma.com/evcloud

Definition 1. Charging sessions with constant-voltage mode
longer than ∆t are flexible. Otherwise the charging sessions
are inflexible.

In this paper, flexible charging is further categorized as fully
and partially deferrable charging (Fig. 2) as (1). For simplicity,
both types are referred as deferrable.

Fully Deferrable⇔
∫
LFDdt =

∫
L0dt, (1a)

Partially Deferrable⇔
∫
LPDdt <

∫
L0dt. (1b)

A. Sample EVSE Site

EV charging at large retails features shorter charging dura-
tion and higher EV mobility. The studied large retail location
is equipped with dual-port EVSEs with dedicated 30A circuit
for each port at 240V. More than 80% of the charging sessions
are shorter than 3 hours. We categorize EVs into two groups
based on typical charging rates, 3.6 and 6.6 kW. Each EV is
assumed being charged at 90% efficiency during the constant-
current mode. We use the typical charging rates and charging
efficiency to infer the time needed for each EV to complete
constant-current charging. The rest of the plug-in time is
considered as flexible times that the constant-current charging
can be deferred to. Completing the constant-current charging
session could at least charge EVs to a relatively high SOC (e.g.
86% for LEAF MY13 [24]). In practice, users may choose to
opt out if they prefer top-ups.
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Fig. 3. EV charging flexibility analysis on real-world data

Fig. 3 illustrates the potential charging flexibility from
realistic charging data in a week. The x-axes represent the
maximum possible charging energy if charging is sustained in
constant-current mode during the full charging session. The
y-axes show the corresponding actual amount of energy dis-
pensed. Most the points far away from the 45◦ line correspond
to top-up charging in constant-voltage mode for typical EVs.
A total of 164 charge events occur during this selected week,
71 (43%) of which are flexible according to Definition 1 with
∆t = 15 min. Note that some squares correspond to old
PHEVs, but based on their market share in B.C. [1], PHEVs
with low charging rates are not considered in this paper.
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B. Charging Flexibility Summary

Table II summarizes charging flexibility analysis for all
selected venues, assuming ∆t = 15min. Workplace and
recreation venues see the most charging flexibilities due to
longer plug-in durations.

TABLE II
EV CHARGING FLEXIBILITY SUMMARY BASED ON REAL-WORLD DATA

Venue type Flexible
charge
sessionsi

Flexible
durationii

Average
deferrable
energyiii

Average
charging
poweriv

Retail large 43% 58 min 2.8 kWh 3.8 kW
Retail small 46% 53 min 2.4 kWh 3.7 kW
Recreation 58% 58 min 3.7 kWh 4.2 kW
Workplace 61% 90 min 8.1 kWh 3.4 kW

i Derived from Fig. 3.
ii Average duration in constant-voltage charging mode and/or full

charge. Deferred energy (column 4) from constant-current charging
mode is potentially recoverable in this time period.

iii For each EV, this refers to the maximum amount of energy in constant-
current period (if exists) that can be deferred to constant-voltage
period if the original energy dispensed in constant-voltage period
is deducted. This column represents the maximum energy could be
curtailed without severely depreciating charging.

iv Average charging power per EV, or the potential demand peak reduc-
tion per EV.

In the lack of granular charging profiles and SOC data,
Flexible Duration in Table II is estimated as (2). The Average
Deferrable Energy in Table II is simplified as (3).

TF = tu − (tp +
Ed
pc · η

). (2)

Ẽ = min(TF · pc · η, Ed). (3)

III. THEORETICAL ANALYSIS

A. Offline Charging Control

This section discusses an offline scenario with water-filling
charging algorithm to demonstrate the maximum potential in
demand charge reduction from the aggregate level. The a priori
inputs used in this section are:

• Real-world start and end times of EV charging sessions
• Energy dispensed in each session

The water-filling algorithm aims to achieve an aggregate
load profile (base + EV load) with minimum possible variance.
The water-filling concept in this section is different from [5]
and [15] in tighter EV constraints. Refs. [5] and [15] prove
that the water-filling is optimal and equivalent to minimizing
the load variance, or the `2 norm of the charging profile, Y .
The offline results are compared with the online water-filling
algorithm discussed in Section IV.

The offline water-filling problem on the aggregate level
could be defined as:

min : ||Y ||2, (4a)

Y = (y1, y2, ..., yt, ...yT ) ∈ RT , (4b)
yt = xb +XEV , (4c)

s.t. : 0 ≤ XEV ≤ η ·
NEV∑
i=1

(pc · a),∀t ∈ RT , (5a)

∆t

tu∑
t=1

XEV ≥
Nν∑
i=1

Ed,∀tu ∈ RNν , (5b)

∆t
T∑
t=1

XEV =

NEV∑
i=1

Ed. (5c)

Eq. (5a) describe the bounds of the solving variables,
XEV , from the aggregate level. Eq. (5b) denotes (NEV − 1)
constraints for the aggregate charging energy at each tu
(Nν < NEV ). At each tu, the total energy dispensed needs to
be no smaller than the total energy demand from all EVs that
have finished charging. Eq. (5c) defines the equality constraint
for the total energy dispensed to all the EVs when the last EV
leaves.

Definition 2. The water filling solution from the aggregate
level (AWF) is feasible and optimal (defined as Type-0 optimal)
if each EV is charged exactly by Ed by deadline and the overall
water level is at the lowest possible value.

Definition 3. For a given aggregate EV charging profile,
the AWF solution is reasonably feasible and optimal (Type-
S optimal) if it is never less optimal than the Type-0 solution.

Lemma 1. For a given aggregate EV charging profile, the
AWF solution in the region defined by (5a-5c) is Type-S
optimal.

Proof. Assume

tu∑
t=tp

x = Ed + Eδ,∀i ∈ ZNEV ,

where x denotes the time-based charging profile of the i′th
EV, and Eδ denotes the error in the total charged energy of
the i′th EV by tu.

The Type-0 solution resides in the following feasible region:

R0 : Eδ = 0,∀i ∈ ZNEV .

At t = T ,

∆t
T∑
t=1

XEV =

NEV∑
i=1

(Ed + Eδ),

therefore Eδ = 0 infers (5c), and:

R0 ⊆ R1,

where R1 is the feasible region defined by (5c).
Constraint (5b) is equivalent to:

∆t

tu∑
t=1

XEV =

Nν∑
k=1

(Ed + Eδ) +

Nr∑
j=1

Eg,

Nν∑
k=1

(Ed + Eδ) +

Nr∑
j=1

Eg ≥
Nν∑
k=1

Ed,
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where Nr denotes the number of EVs that are still being
charged at tu, and Eg is the amount of energy the j′th EV in
ZNr has been charged. Ed ≥ 0 and Eg ≥ 0.

When Eδ = 0, R0 ⊆ R2, and therefore

R0 ⊆ (R1 ∩R2),

where R2 is the feasible region defined by (5b).
For random aggregate charging profiles, each optimal water

level can be solved in each of the following problem:

Hi = F ({Si}),

where Hi is a water-filling problem dealing with one type
of aggregate charging profile in the scenario set {Si}. Within
each {Si}, the aggregate profile is the same but the EV arrival
and departure times vary.

For every {Si}, there exists a special case, S∗i , when:

t(k)u > t(k−1)u , and,

t(k)p > t(k−1)p , ∀k ∈ ZNEV .

In S∗i , it can be proved that:

R0 = (R1 ∩R2).

Therefore, the equality in R0 ⊆ (R1 ∩ R2) is valid, and the
solution in (5a-5c) is feasible and optimal in at least one case
while satisfying R0. In other words, the solution from (5a-5c)
is Type-S optimal.

Lemma 1 indicates that under one aggregate charging pro-
file, (4a-5c) solve for the most optimal water level that satisfies
all charging demands. Depending on the actual EV availability,
the solution from (4a-5c) may not always be feasible. How-
ever, for random cases, (4a-5c) only cause 3% error in the
optimal water level for retail venues (see Appendix).

B. Real-Time Charging Control

1) Overview: This section expands the water-filling to
the real-time context. The real-time water-filling algorithm is
developed in a decentralized context at the building level. The
idea is to implement the water-filling scheme on currently
plugged-in EVs with the provision of future high demand.
The overall solution resides on the following assumptions:

• The BEMS onsite controls EV charging.
• The BEMS is able to forecast short-term building de-

mand.
• The BEMS has access to individual EV charging data

including energy demand, plug-in and unplug time, charg-
ing power, and battery SOC.

• The BEMS complies with DR signals from utility.
• EVs do not stay longer than the original leaving time

(tu).

2) Problem Formulation: The proposed approach solves the
optimal charging problem in a receding optimization window
similar to [25], [26]. At each step, the BEMS receives new
status from the building and EVSEs and update charging
constraints. The charging objective at the current time instance
m is formulated as:

min : ||Y ||2, (6a)

Y = (ym, ..., yt, ...ys) ∈ RTs , (6b)

yt = xb +

Nt∑
i=1

x(i), (6c)

where s denotes the end of the EV controlling window with
length Ts.

The difference from the literature in this paper is that Ts
is not the full plug-in duration of an EV, but represents the
receding plug-in duration of the EVs with the earliest leaving
time in set {EV1}, that is:

Ts = min(tu)− tm. (7)

The span of Ts in the literature is typically chosen as 1) the
full-day control window [25] or 2) to the time when the last
EV leaves (Eq. (16) in [26]). The full-day span requires a priori
knowledge or prediction of all EVs. Option 2) unnecessarily
involves more computation in high-mobility scenarios when
inputs are frequently updated. In receding horizons, future
arrival of EVs will obsolete the previously calculated charging
schedule. Thus, receding horizons with longer span contribute
less in the dynamic environment.

The definition of Ts in this paper 1) facilitates priority
charging for {EV1}, and 2) shrinks the receding window.
Priority is defined as full charging demand satisfaction for EVs
in {EV1}. An equality constraint of energy is set specifically
for {EV1} in Ts to assign high priority. The optimization of
other EVs, {EV(−1)}, only deals with inequality constraints
of energy in Ts, allowing more flexibility to accommodate the
immediate deadline of {EV1}. At each step in the receding
window, {EV1}, {EV(−1)}, and the corresponding constraints
are updated. The setup of receding window ensures the opti-
mization horizon does not expand when new EVs arrive, if
{EV1} remains the same.

Fig. 4. Receding optimization window with charging priorities

Fig. 4 illustrates the concept of receding optimization win-
dow with prioritized charging. In an ideal case when the
information of all EVs in the current optimization window is a
priori at random tm, the constraints for {EV1} and {EV(−1)}
could be expressed as (8-13) and the problem can be solved
at {EV1} and {EV(−1)} levels.
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∆t

ts∑
tm

x(j) = E(j)
ε , ∀j ∈ ZN

∗
EV . (8)

E(j)
ε = E

(j)
d −∆t

tm∑
t=t

(j)
p

x(j). (9)

E(−) ≤ ∆t

NEV −N∗EV∑
k=1

ts∑
tm

x(k) ≤ E(+),∀k ∈ ZNEV −N
∗
EV .

(10)

E(+) = Ts

NEV −N∗EV∑
k=1

p(k)c . (11)

E(−) =

NEV −N∗EV∑
k=1

(
E(k)
ε − (t(k)u − ts) ∗ p(k)c

)
. (12)

pmin ≤ x(i) ≤ p(i)c , j ∪ k = i. (13)

Constraints (8-9) ensure priority charging for all EVs in
{EV1}. Constraints (10-13) define the bounds for {EV(−1)}
that accommodate {EV1} priority while ensuring each demand
in {EV(−1)} be satisfied in the future when the EV moves
into {EV1}. E(+) and E(−) respectively concern the periods
in [tm, ts] and (ts, tu]. A potential problem in constraints (8-
13) is the possibility of new demand peak towards ts, similar
to the RTODC (Real-time Optimal Decentralized Charging)
results from Figs. 11-12 in [5]. The new peak could be caused
by 1) demand rebound from plugged-in EVs when more EVs
are grouped into {EV1}, and 2) demand from new arriving
EVs close to ts.

The solution to this problem is to reformulate (10-13) to
manage charging on individual EVs. Eqs. (14-16) are the new
constraints on individual EVs. The upper bound (14) defines
the maximum energy can be charged into the i′th EV by ts.
The lower bound (16) is based on the maximum energy can
be charged between ts and t(i)u .

E
(i)
(−) ≤ ∆t

ts∑
tm

x(i) ≤ E(i)
(+), ∀i ∈ ZNEV , (14)

E
(i)
(+) = Ts · p(i)c . (15)

E
(i)
(−) = E(i)

ε − (t(i)u − ts) · p(i)c . (16)

To further handle potential peaks towards each ts caused
by uncertainties such as the leaving times of plugged-in EVs
and number of new arriving EVs, a dynamic LB, pζ , for the
real-time water-filling problem is defined in (17).

pζ = min(pλ, pυ), (17a)
θ = Eε/Emax, (17b)
Emax = (tu − tp) · pυ, (17c)
pλ = `(θ) = θ · p̄, (17d)
p̄ = Ed/(tu − tp). (17e)

pλ reduces the likelihood of high peak towards each ts. θ is
derived based on Fig. 3. Ed and Emax represent the y-axis
and x-axis of Fig. 3.

In this paper, pλ is defined as a linear model of θ. EVs with
low flexibility (larger θ) are assigned with higher pλ. At each
time step, θ is updated. For the charging profile of each EV,
p̄ denotes the optimal water level that also ensures charging
demand satisfaction. θ scales p̄ down to increase overall
charging flexibility. Compared to zero-kW lower bound, pλ
avoids inflexibility and high peak towards ts by allowing a
non-zero minimum charging power throughout the session.
Eq. (17) also ensures EVs with high flexibility be utilized for
demand shift, and EVs with low flexibility be prioritized for
full charge. Fig. 5 illustrates the concept of pζ , in which the
result from pζ (S2) allows higher flexibility towards the end
if new EVs arrive.
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Fig. 5. Concept of dynamic lower bound (S0: perfect water-filling. S1: fixed
lower bound at 0 kW. S2: dynamic lower bound)

Eq. (18) defines a new constraint that accommodates local
and utility DRLC. Note that high-criticality and aggressive
DRLC may cause charging dissatisfaction.

Nt∑
i=1

(x(i)) + xb ≤ Pυ,∀t ∈ [τ1,min(τ2, ts)]. (18)

In addition, the DRLC will affect the optimization in
the succeeding optimization frames by altering the energy
constraints in (8-9) and (14)-(16). In particular, (9) for the
j′th EV will be transformed to (19):

Eε = E
′

d −∆t
t∑

t=τ2

x, ∀t ∈ (τ2, ts], (19a)

E
′

d = min

(
Ed −∆t

τ2∑
t=tp

x, pυ(ts − τ2)

)
, (19b)

Eε = Ed −∆t

( t∑
t=tp

x+
t∑

t=τ1

(x̃− x)

)
,∀t ∈ [τ1, τ2], (19c)

where x̃ is the calculated power of the j′th EV at τ1 − 1 for
t ∈ [τ1, τ2] ∈ [tp, tu] when the DRLC is not anticipated by
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the algorithm, and τ1− 1 denotes the time instance before the
DRLC event starts.

Eq. (19b) compares the original demand after curtailment
with the maximum possible energy after τ2, ensuring that each
EV is charged by the maximum amount close to its original
demand. During the DRLC event, (19c) relaxes the modified
optimization problem in [τ1, τ2] for general feasibility by
assuming the curtailed energy is not deferrable. Algorithm 1
summarizes the real-time water-filling algorithm (RTWF-n1).

Algorithm 1: Real-time water filling with priority charging
Input
• Every month: monthly maximum demand estimation
• Every time step:

– Building: real-time demand, xb
– EV: plug-in times (tp, tu), SOC, typical charging

rate (pc), energy demand (Ed), number of EVs
(NEV , Nt, Nν), energy charged to each EV
(∆t

∑
x), EV groups ({EV1}, {EV(−1)}),

optimization window based on {EV1} (Ts)
Settings and Calculation (at each time step)
• Initial points for optimization:
x0 = min(pλ, pυ) ∈ RNt×(ts−t)

• Max/min energy can be charged to the i′th EV:
E(+), E(−)

• Set up optimization constraints:
– {EV1}: Energy equality constraint from (8)

∆t


∑ts
t=tm

x
(1)
t

...∑ts
t=tm

x
(N∗EV )
t

 =


E

(1)
ε

...
E

(N∗EV )
ε


– {EV(−1)}: Energy inequality constraint from

(15-18)

E(−) ≤ ∆t


∑ts
t=tm

x
(1)
t

...∑ts
t=tm

x
(NEV −1)
t

 ≤ E(+)

• Bounds: update θ and re-evaluate pζ based on x in
[tp, tm]

• Adjust for DRLC:
– Save x̃ ∈ RNt×(τ2−τ1) at t = τ1 − 1
– Update Eε in (19)

Output (at each time step)
• x

(i)
t ∈ RNt×Ts , t ∈ Ts, i ∈ Nt

• xt=tm ∈ RNt as the final solution at tm

IV. NUMERICAL RESULTS

A. Offline Results

Fig. 6 shows the offline water-filling results for four types
of venues on a single day, considering 30% EV demand
penetration level. Each subplot compares the total demand of
the building with and without the water-filling. The base load
denotes the building’s demand without EV.
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Fig. 6. Offline water-filling results

Table III shows the theoretical savings in demand charges
if the peaks in Fig. 6 are the highest in the month. The peak
reduction percentages are based on the EV peaks before the
water-filling. Generally, venues with higher charging flexibility
tend to see more savings in demand charges by EVs.

TABLE III
ESTIMATED MONTHLY DEMAND CHARGE SAVINGS

Large
Retail

Small
Retail

Business Recreation

Peak reduction
(kW)

52.33
(40%)

22.83
(37%)

2.95
(10%)

9.39
(45%)

Savings (C$) 574.02 250.39 32.33 53.72

B. Real-Time Results - No DRLC

The RTWF-n1 algorithm is tested on the large retail venue.
Real-world charging data from multiple days are lumped
into one day to form large penetration levels. The RTWF-n1
performs optimization at 15-minute frequency. Building load
profile is obtained from the LGS sector in [27]. Two scenarios
are tested-1) RTWF without DRLC, and 2) with DRLC.
Scenario 1) maintains that all EVs are charged to the user
set points, and Scenario 2) is tested to balance peak reduction
and EV charging satisfaction. The RTWF-n1 is carried out in
MATLAB R2015b on a computer with 2.26 GHz Intel Core
2 Duo and 8 GB RAM. For 164 EVs (30% penetration), the
optimization at each control step takes 0.2-0.3s on average
thanks to the linear formulation of the RTWF-n1.

Fig. 7 compares the aggregate EV charging profile under
RTWF-n1 with the profile under no control for 30% EV
penetration level. The result satisfies (1a). Fig. 7 shows that
close to 25 kW peak demand can be avoided. That is, almost
50% of the theoretical maximum, 52 kW, from Table III.
Assuming EVs’ unplug time uncertainty has a mean of 15
minutes and variance of 10 minutes, about 20 kW peak can
still be reduced in this scenario.
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Fig. 7. Scenario 1) result - full charging accommodation

C. Real-Time Results - With DRLC

Both the building-level curtailment and utility DRLC are
simulated. Fig. 8 illustrates the results. The BEMS is assumed
to publish a 630 kW limit throughout the day, and the utility
negotiates a 520 kW limit on the building during the evening
peak hours. Charging sessions outside the control windows are
controlled without prior knowledge of the DRLC events.

The BEMS local curtailment occurs from 12:30 to 14:00,
reducing 45 kW peak demand (86% of the theoretical max-
imum) on the cost of 0.7 kWh deduction per affected EV.
For a LEAF MY13 with 24-kWh battery, that is about 3%
SOC less. As a comparison, in the case when RTWF-n1 is not
applied and the BEMS publishes the 630 kW limit regardless,
curtailed EVs will have 2.3 kWh less, or 10% SOC less for
LEAF MY13 and 14% for Volt MY13 (16.5 kWh). Therefore,
another benefit of the RTWF-n1 is to balance the impact on
both EVSE hosts and EV drivers.
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Fig. 8. Scenario 2) result - local and utility DRLC

Upon two DRLC events, around 2.6 kWh energy is de-
ducted from each curtailed EV. Nevertheless, 94% of the
daily charging energy demand could still be satisfied while
the building could potentially reduce $500 demand charges
per month. Both DRLC signals need to coordinate with each
other to reduce the impact on EV drivers. Recall that this paper

assumes each EV stays no longer than its original deadline, tu.
The RTWF-n1 under DRLC charges fully deferrable EVs to
full demand, and partially deferrable EVs by the most possible
amount of energy before deadline (19).

Fig. 9 shows how individual EVs respond to the local DRLC
signal between 12:30 and 14:00. EV 19 and 24 pause charging
temporarily to give priorities to EV 30, 33-35 and 38 which
need to meet charging deadlines. EVs undergo the whole
DRLC event charge at slower rates and recover back up after
the event. Each EV is bounded by its own highest charging
rate (3.6 or 6.6 kW times efficiency).

Fig. 9. Estimated EV charging profile under DRLC

D. Real-Time Results - Other Venues

Compared with the large retail venue, EVs at locations with
longer plug-in duration will be more flexible and the benefit
of RTWF-n1 will be more substantial. Based on the data that
we cannot disclose, the RTWF-n1 without DRLC at typical
C&I workplace can avoid 50 kW peak demand for 30% EV
penetration (or 60 EVs in this case), which is equivalent to
$6000 annual demand charge savings.

E. Real-Time Results - Sensitivity

This section examines the performance of the RTWF-n1
in various scales, and compares the results with different
algorithm settings. Fig. 10 shows that the RTWF-n1 without
DRLC generally reduces half of the possible reduction amount.
The RTWF-n1 with dynamic LB and variants outperforms that
with fixed LB as more EVs plug in. In the refined-LB case,
dynamic LBs are applied only during high-volume EV inrush.
More peak reduction can be achieved as a result. The DRLC
maintains each affected EV is curtailed by less than one kWh.

For large scales with more EVs and less flexibility, inflexible
EVs are excluded from the RTWF-n1 problem. The overall
demand still counts the inflexible EVs. Large scales do not
affect the RTWF-n1 structure. However, receding windows
will be updated more frequently.

Fig. 11 compares the impact of DRLC on EV charging
demand. The same DRLC signals are applied to both methods.
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The DRLC combined with RTWF-n1 shows less impact on EV
drivers compared to the fixed-power-limit case.

Fig. 12a shows the average dimension reduction of RTWF-
n1 under various EV penetration levels. The Principle Com-
ponent Analysis (PCA) in Fig. 12b shows that the dimension
reduction percentage, O, is inversely affected by Nm and ψm.
This is because the priority charging limits the optimization
problem in each receding window to expand only on the
direction of Nm, not on the time horizon. When the current
EVs in {EV1} remain plugged in, new arriving EVs are only
possible to shrink the length of the receding window if they
leave earlier than {EV1}. The receding window remains the
same if the new arriving EVs leave later than the current
{EV1}. When EV charging deadlines are close to each other
at large scales, O saturates around 40%.

F. Financial Analysis

This section studies the energy cost on EVSE hosts and
drivers under the RTWF-n1 in a two-tier TOU context. The
water filling of demand inherently reduces energy cost if
the base load profile follows the TOU profile. We consider
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various on-peak windows with different start and end times,
and generated Fig. 13 for the average energy savings per EV1.
The total savings for the host are summarized and compared
in Table IV.
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Fig. 13. Average energy cost reduction ($) by RTWF-n1 no DRLC for each
EV in a day. Off-peak rate: $0.0536/kWh; on-peak rate: $0.1072/kWh

For locations where electricity resale is prohibited, EVSE
hosts have limited options for reducing energy cost. For other
locations where energy cost can be recovered by $/kWh or
parking, EVSE hosts will mainly need to concern demand
charges. However, EVSE hosts may need to consider low
energy rates for drivers so that public charging is not dis-
couraged.

In case of free charging, moderate DRLC that may re-
duce small amount of charging energy on particular EVs is
more likely acceptable for general drivers. In case charging

1Consider $0.0536/kWh for Part-1 energy charge for LGS, assuming
the overall energy is around baseline. (https://www.bchydro.com/accounts-
billing/rates-energy-use/electricity-rates/business-rates.html)
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TABLE IV
MONTHLY SAVINGS COMPARISON FOR 30% EV PENETRATION AT

LARGE RETAIL

RTWF-n1 Energy savingsi Demand savings Total savings

No DRLC C$102 C$263 C$365
Local DRLC C$173 C$494 C$667
Two DRLC C$251 C$494 C$745ii

i Assuming curtailed energy as savings for the host
ii Omitting incentives from utility for DR support

is not free, because the demand charges savings are more
compelling, EVSE hosts will have flexible options for com-
pensating drivers who opt in DRLC (e.g. discount offer).

V. CONCLUSION

This paper introduces a demand-charge-reducing approach
that combines water filling and active DRLC. Real-world
EV charging data are used to study the potential in demand
charge reduction at non-residential sites. The proposed real-
time water filling with priority charging (RTWF-n1) shows
that demand charge reduction can reach more than 80% of the
theoretical maximum when combined with DRLC. For 30%
EV penetration, the studied large retail venue is able to save
C$6000 in demand charge per year. The impact of DRLC on
EV charging demand is reduced by more than 70% when the
RTWF-n1 is applied.

In the future if station hosts install battery systems to further
reduce demand charges, the RTWF-n1 is able to help lower the
required battery power capacity, thus reducing more demand
charges with less capital cost.

APPENDIX
ERROR ANALYSIS IN OFFLINE WATER FILLING

Eqs. (4a-5c) may generate infeasible water levels that cannot
satisfy R0 in Lemma 1 when more than three EVs are being
charged at the same time, and

t(i)p = min(tp), and, (20a)

t(i)u = max(tu), ∀i ∈ ZNt . (20b)
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Fig. 14. Type-S (4a-5c) vs Type-0 optimum (21): peak difference in % (circle
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To study the infeasibility in (4a-5c) and to avoid opti-
mization in non-deterministic polynomial time (NP) on the
aggregate level, we re-solve the offline problem on individual
EV level. The new optimization is formulated as a least-square
(lsq) problem:

min : F = ||Cx` + Xb||2, (21a)

C =


U 0 . . . 0

0 U 0
...

...
...

. . .
...

0 0 0 U

 , (21b)

U = [1] ∈ Z1×NEV , (21c)

x` =
[
xt=1 xt=2 . . . xt=96

]T
, (21d)

xt=i =
[
x(1) x(2) . . . x(NEV )

]T
, (21e)

s.t. : Aeqx` = Ed, (21f)

Aeq =


at=1
1 at=2

1 . . . at=96
1

at=1
2 at=2

2 . . . at=96
2

...
...

...
...

at=1
NEV

at=2
NEV

. . . at=96
NEV

 , (21g)

0 ≤ x` ≤ pc, (21h)

pc =
[
pt=1
c pt=2

c . . . pt=96
c

]T
, (21i)

pt=i
c =

[
p
(1)
c p

(2)
c . . . p

(NEV )
c

]T
. (21j)

The lsq problem guarantees feasible solutions. However, (21)
requires huge memory to solve at large scales. For example,
for 300 EVs at ∆t = 15min, (21) needs to solve for 28,800
variables, requiring more than 8 Gb of memory.
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Fig. 15. Type-S (4a-5c) vs Type-0 optimum (21): peak difference in kW

Fig. 14 compares the peak reduction performance between
(4a-5c) and (21):
• For large and small retails with frequent EV mobility, the

Type-0 optimum from (21) is 3% lower than the Type-S
optimum from (4a-5c);

• Error in Type-S optimum is higher at the venues with
longer plug-in duration.

With available data, a generic linear model (LM) is approxi-
mated in Fig. 15 for all types of venues:

Pε = 0.0544NEV + 2.116, (22)
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where Pε denotes the error in the maximum peak shaving
potential in (4a-5c).

With the LM and the Type-S solution, the peak shaving
potential on daily basis can be efficiently estimated given the
historical charging data.
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