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Mode-Pursuing Sampling Method
Using Discriminative Coordinate
Perturbation for High-
Dimensional Expensive Black-
Box Optimization
This article presents a novel mode-pursuing sampling method using discriminative coordi-
nate perturbation (MPS-DCP) to further improve the convergence performance of solving
high-dimensional, expensive, and black-box (HEB) problems. In MPS-DCP, a discrimina-
tive coordinate perturbation strategy is integrated into the original mode-pursuing sam-
pling (MPS) framework for sequential sampling. During optimization, the importance of
variables is defined by approximated global sensitivities, while the perturbation probabil-
ities of variables are dynamically adjusted according to the number of optimization stalling
iterations. Expensive points considering both optimality and space-filling property are
selected from cheap points generated by perturbing the current best point, which balances
between global exploration and local exploitation. The convergence property of MPS-DCP
is theoretically analyzed. The performance of MPS-DCP is tested on several numerical
benchmarks and compared with state-of-the-art metamodel-based design optimization
methods for HEB problems. The results indicate that MPS-DCP generally outperforms
the competitive methods regarding convergence and robustness performances. Finally,
the proposed MPS-DCP is applied to a stepped cantilever beam design optimization
problem and an all-electric satellite multidisciplinary design optimization (MDO)
problem. The results demonstrate that MPS-DCP can find better feasible optima with the
same or less computational cost than the competitive methods, which demonstrates its effec-
tiveness and practicality in solving real-world engineering problems.
[DOI: 10.1115/1.4047909]
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1 Introduction
Expensive black-box simulation models (e.g., finite element anal-

ysis, computational fluid dynamics, and computational electromag-
netics) have been widely applied to modern engineering systems
design practices. The application of expensive simulations signifi-
cantly increases the computational cost, which becomes a critical
challenge for engineering design optimization [1]. To alleviate the
computational burden, a series of metamodel-based design optimi-
zation (MBDO) methods have been developed [2]. In MBDO
methods, cheap-to-evaluate metamodels are constructed based on
limited sample points to predict the responses of expensive analysis
models. Commonly used metamodels include polynomial response
surface (PRS), radial basis function (RBF), Kriging, support vector
regression (SVR), and so on [3]. Moreover, a number of novel
metamodeling techniques such as multi-model fusion [4–6], ensem-
ble of metamodels [7,8], and gradient-enhanced surrogates [9] have
been developed to further improve the approximation accuracy and
robustness.
In recent years, a number of novel MBDO methods using adap-

tive metamodeling techniques have been developed to improve the
optimization efficiency and convergence performance [10–13]. In
the adaptive MBDO methods, metamodels are constructed and
adaptively refined to lead the search to the optimum. The mode-

pursuing sampling (MPS) method presented by Wang et al. [14]
is a typical adaptive MBDO method, where sequential samples
are generated toward the global optimum according to a constructed
probability density function. Wang et al. [14] theoretically prove the
global convergence of MPS. Owing to the promising global optimi-
zation capacity of the mode-pursuing sampling mechanism, a series
of MPS variants have been tailored to tackle different kinds of
black-box optimization problems. For instances, Kazemi et al.
[15] proposed the Constraint-importance Mode-Pursuing Sampling
(CiMPS) method for solving constrained optimization problems;
using a novel double-sphere strategy, Sharif et al. [16] developed
the discrete variable MPS (D-MPS) for solving discrete variable
optimization problems.
The effectiveness of MBDO methods for solving middle and low

dimensional engineering design optimization problems (i.e., prob-
lems with no more than ten variables [17]) have been widely
approved in the literature [18–21]. However, the high-dimensional,
expensive, and black-box (HEB) optimization problems are still
challenging due to the “curse of dimensionality.” Since the com-
plexity of optimization grows exponentially with the problem
dimensionality, the high-dimensional design space can hardly be
thoroughly explored. It is well acknowledged that the efficiency
and convergence capability of MBDO methods need to be further
improved for HEB optimization problems. As for the original
MPS algorithm, it would require tens of thousands expensive func-
tion evaluations for solving HEB problems, which generally results
in computational memory overflow and unacceptable computa-
tional expenses [22,23]. To relieve the computational expense of
MPS for solving HEB problems, Cheng et al. [22] developed the
trust region-based MPS (TRMPS) method. In TRMPS, two trust
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regions are defined within two hypercubes, respectively, whose
sizes are adjusted dynamically. Sequential sampling is performed
alternately in the two trust regions. However, the convergence
and robustness performances of TRMPS need to be further
improved according to the authors’ literature survey [3,24].
To address the challenge of solving HEB problems, a novel MPS

variant called mode-pursuing sampling method using discrimina-
tive coordinate perturbation (MPS-DCP) is proposed in this
paper. Different from the trust region method in TRMPS, the coor-
dinate perturbation (CP) strategy from dynamic coordinate search
using response surface models (DYCORS) [25] is introduced and
customized to guide the discriminative sampling in MPS. Different
from the original DYCORS, the proposed discriminative coordinate
perturbation technique assigns different priorities to variables in
perturbation according to the approximate global sensitivity analy-
sis results to improve the global exploration and local exploitation
capacity, which is a new endeavor for solving high-dimensional
expensive black-box optimization problems. In this work, the pro-
posed MPS-DCP mainly focuses on HEBs with 10–30 variables,
which is the most common in engineering practices. Moreover,
the convergence performance and convergence rate of MPS-DCP
are theoretically analyzed, which is a contribution for metamodel-
based design optimization research.
The rest of the paper is organized as follows. Section 2 briefly

reviews the original MPS and DYCORS. Section 3 presents the
methodology of the proposedMPS-DCP, especially for the sensitiv-
ity analysis based discriminative coordinate perturbation strategy.
And the convergence analysis and a customized constraint handling
strategy are also presented. In Sec. 4, the proposed MPS-DCP is
tested on several numerical benchmarks and compared with
state-of-the-art MBDO methods for HEB problems, including
MPS, DYCORS, TRMPS, and optimization on metamodeling-sup-
ported iterative decomposition (OMID). The effectiveness of
MPS-DCP in solving real-world engineering design optimization
problems is demonstrated in Sec. 5 through a stepped cantilever
optimization problem and an all-electric satellite multidisciplinary
design optimization (MDO) problem. The conclusions and future
work are summarized in Sec. 6.

2 Review of Mode-Pursuing Sampling Method and
Dynamic Coordinate Search
In this section, the original MPS and DYCORS are briefly

reviewed, which form the theoretical foundations of the proposed
MPS-DCP. Several concepts in MPS and DYCORS are clarified
as follows [14,25].
DEFINITION 1 (cheap points). Cheap points refer to points whose
responses are obtained by evaluating a metamodel. Since no expen-
sive simulations is invoked, the computational cost of generating
cheap points can be neglected.
DEFINITION 2 (expensive points). Expensive points refer to
points whose responses are obtained by evaluating the original
HEB function. The number of expensive points ne is regarded as
the number of expensive function evaluations. Expensive points
are used to construct the RBF metamodel and quadratic PRS
metamodel.
DEFINITION 3 (current best point). Current best point refers to
the expensive point whose objective value is the lowest at the
current iteration.
DEFINITION 4 (current best objective). Current best objective
refers to the objective value of the current best point.
DEFINITION 5 (optimization improves). The optimization
improves when the current best objective is lower than the best
objective of the last iteration.
DEFINITION 6 (optimization stalls). The optimization stalls when
the current best objective equals to the best objective of the last
iteration.
DEFINITION 7 (step size). Step size refers to the standard devia-
tion of Gaussian distributed random perturbation.

2.1 Mode-Pursuing Sampling Method. The procedure of
MPS includes design of computational experiments, approximation
models construction and update, and local optimization on the
metamodel, which is introduced as follows [14].
The number of initial expensive points equals to [14]

n0 =
(nv + 1)(nv + 2)

2
+ 1 − nv (1)

where nv is the number of variables. A linear RBFmetamodel is con-
structed. Then, numerous cheap points xc are uniformly generated in
the entire design space, and their responses are evaluated by the RBF
metamodel. The cheap points are sorted in ascending order by RBF
responses and then evenly divided into K groups. The average
response values of cheap points in each group are calculated to
form a cumulative distribution function on the groups, which
defines the probabilities of the groups to be chosen. The distribution
function is adjusted using a speed control factor r to bias toward
groups with lower average responses. Then, expensive points are
selected from cheap points based on the distribution function. A qua-
dratic PRS metamodel is built using a specific number of expensive
points around the current best point x∗e and is expressed as

f̂PRS(x) = β(0) +
∑nv
i=1

β(i)x(i) +
∑nv
i=1

β(ii)(x(i))
2
+
∑nv
i=1

∑nv
j>i

β(ij)x(i)x(j) (2)

where coefficients β(0), β(i), β(ii), and β(ij) can be calculated via least
squares approximation. As mentioned in Ref. [14], if the quadratic
PRS metamodel could accurately approximate the expensive objec-
tive within a small sub-region around the current optimum, it is rea-
sonable to believe that the optimization reaches the unimodal area
around the global optimum, in which the local optimization is per-
formed. The coefficient of determination R2 and the maximum abso-
lute error in terms of L∞-norm Diff are used to evaluate metamodel
approximation accuracy, as calculated below:

R2 = 1 −

∑nt
i=1

(y(i) − ŷ(i))
2

∑nt
i=1

(y(i) − �y(i))2
, Diff =max {|y(i) − ŷ(i)|, i = 1, . . . , nt}

(3)

where ŷ(i) and y(i) are the approximated value and objective value of
the expensive points, respectively, �y(i) is the mean value of the objec-
tive values, and nt is the number of test points. nt is calculated by
Eq. (4) [14]:

nt =
(nv + 1)(nv + 2)

2
+ 1 +

nv
2

(4)

The local optimization is performed on the quadratic PRS meta-
model, and the resulting best point is evaluated by the expensive
objective. When the optimization termination criterion [14] is
reached, the algorithm terminates.

2.2 Dynamic Coordinate Search Using Response Surface
Models. The contour-based discriminative sampling strategy in
the original MPS is replaced by a discriminative coordinate pertur-
bation strategy in the proposed MPS-DCP. In DYCORS, numerous
cheap points are generated by applying perturbations on some vari-
ables of the current best point. The perturbed variables are randomly
selected at each iteration. The perturbation obeys the normal distri-
bution with a mean value of zero and a specific standard deviation
(referred to as the step size). The step size is adjusted according to
the number of improving or stalling iterations. The perturbation
probability of coordinates decreases with the number of expensive
points, which is calculated by Eq. (5) [25]:

p = φ(ne) =min
20
nv

, 1
{ }

· 1 −
ln (ne − n0 + 1)
ln (Nmax − n0)

( )
(5)
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Expensive points are selected from the cheap points with lower
approximated value evaluated by multiquadric RBF metamodels
and larger distance from existing expensive points. The weighted
sum of the normalized RBF prediction and the opposite of the
minimum distance from existing expensive points is shown in Eq.
(6) [25]:

c(xc) = w ·
f̂ RBF(xc) − min

xc∈Xe

{f̂ RBF(xc)}

max
xc∈Xe

{f̂ RBF(xc)} − min
xc∈Xe

{f̂ RBF(xc)}
+ (1 − w)

·
max
xc∈Xe

{−dmin(xc)} + dmin(xc)

max
xc∈Xe

{−dmin(xc)} − min
xc∈Xe

{−dmin(xc)}
(6)

where w is the weight coefficient. w cycles through the set of {0.3,
0.5, 0.8, 0.95} for each sequentially generated expensive point to
help the sampling process maintain the balance of local exploitation
and global exploration [25].
The proposed discriminative coordinate perturbation strategy is

customized from the native DYCORS algorithm. Figure 1 compares
the flowcharts of coordinate perturbation processes (enclosed
in dashed lines) in DYCORS and MPS-DCP. Different from
DYCORS, the coordinate perturbation probabilities are discrimi-
nated by the estimated global sensitivities, i.e., the probabilities of
perturbing globally sensitive variables are increased when local
exploitation is expected to be enhanced, and vice versa. The discri-
minative coordinate perturbation in MPS-DCP helps the proposed
MPS-DCP to balance the global exploration and local exploitation,
as detailed in Sec. 3.2.

2.3 Discussions. As pointed out in Refs. [22,24], MPS
becomes time-consuming when tackling high-dimensional prob-
lems. The reasons why MPS is not suitable for HEB problems are
explained as follows. The basic theory of the contour-based discri-
minative sampling process assumes that the RBF metamodel can
globally approximate the trend of the expensive objective to
guide the sampling toward optimum. However, due to “the curse
of dimensionality,” it is difficult for the metamodels to achieve
good global accuracy with a limited computational budget for
HEB problems. Therefore, MPS and its vairiants are generally inef-
ficient when tackling high-dimensional problems. Considering the
merits of discriminative coordinate perturbation techniques in
exploring the high-dimensional design space, it is promising to

incorporate DYCORS with MPS to address the challenges in
solving HEB problems. In this paper, a novel MPS variant using
discriminative coordinate perturbation is proposed by using con-
cepts of DYCORS, as detailed in Sec. 3.

3 Methodology of Mode-Pursuing Sampling Using
Discriminative Coordinate Perturbation
In this section, the overall procedure of the proposed MPS-DCP

is presented first. Then, the approach to the sensitivity analysis
based DCP is detailed to describe the perturbed coordinates selec-
tion process and the improvement in the optimization efficiency
via the perturbation operation.

3.1 Overall Procedure. To improve the performance of the
algorithm, the design space is normalized to [0, 1]. The overall
flowchart of the proposed MPS-DCP is illustrated in Fig. 2. The
procedure of MPS-DCP is introduced as follows.

Step 1: Configuration.
The initial parameters of MPS-DCP are configured, including

the number of initial expensive points n0, the number of sequen-
tial expensive points ns generated at each iteration, the number of
cheap points nc generated at each iteration, and the maximum
number of expensive function evaluations Nmax. The default set-
tings of n0, ns, and nc are shown in Table 1.
Step 2: Initial sampling.

Initial sampling is performed using the Latin hypercube design
with the maximin criterion (Maximin-LHD). The expensive
objective is evaluated on the initial points.
Step 3: RBF metamodel construction.

The RBF metamodel is constructed or refitted with a number
of promising expensive points whose objective values are the
lowest. In this work, the number of promising expensive points
for fitting RBF metamodel is set to be min{ne, 10 · nv}. A two-
dimensional identification process of 10 · nv expensive points is
depicted in Fig. 3(a), where pentagram, filled circles, and
hollow circles represent the current best point, the promising
expensive points, and the other expensive points, respectively.
In this way, the approximation accuracy of the RBF metamodel
in the vicinity of the current best point can be enhanced to
improve the convergence performance of the metamodel-based
optimization.

(a) (b)

Fig. 1 Flowcharts of the coordinate perturbation processes: (a) coordinate perturbation in DYCORS and (b) coordinate perturba-
tion in MPS-DCP
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Step 4: Sensitivity analysis based DCP.
ns sequential expensive points are generated using the sensi-

tivity analysis based discriminative coordinate perturbation
method at each iteration to explore the design space. For the
first iteration, the initial step size σ0 is set to be 0.2. Since the
quadratic PRS metamodel has not been constructed at the first
iteration, the sensitivity indicator for guiding discriminative
coordinate perturbation is not available at the beginning of opti-
mization. Thus, the perturbation probabilities of different design
variables are identical, as calculated by Eq. (5) [25]. As the opti-
mization proceeds, the perturbation probabilities are influenced
by the calculated sensitivity indicator vector s. Tolerances
Timprove, Tstall,1, and Tstall,2 are adopted for deciding when to
adjust the step size σk. The methods to determine the sensitivity
indicators, the perturbation probabilities, and the step size are
detailed in Sec. 3.2.
Step 5: Quadratic PRS metamodel construction.

An interpolation quadratic PRS metamodel is constructed with
Eq. (2) using nk= (nv+ 1)(nv+ 2)/2+ 2 expensive points with
minimum Euclidean distance to the current best point x∗e . As
illustrated in Fig. 3(b), the pentagram stands for x∗e , and the
filled circles stand for the selected nk points. If the R2 value of
the quadratic PRS metamodel is larger than 0.9, nv/6 expensive
points are generated using the Maximin-LHD method in the
local exploitation region defined by the envelope of the nk
points. All the existing expensive points are used to refine the
quadratic PRS metamodel, whose approximation accuracy is
examined by evaluating the R2 and Diff values. If Diff < 0.01
and R2 > 0.9999, the local exploitation area is regarded to be
unimodal [14]; thus, the optimization process turns to Step 6.
Otherwise, go to Step 7.
Step 6: Local search.

A local search is performed on the PRS metamodel using the
sequential quadratic programming (SQP) method. The current
best point x∗e is set as the starting point of SQP. The optimum
found by SQP is evaluated by the objective function and added
to the expensive point set.
Step 7: Termination criteria checking

MPS-DCP adopts two different termination criteria, i.e., the
maximum number of function evaluations Nmax criterion and
the maximum number of stalling iterations Cmax

stall criterion. If
Nmax or Cmax

stall is reached, the optimization terminates and the
current best point is regarded as the optimized solution. Other-
wise, the process turns to Step 3.

3.2 Sensitivity Analysis Based Discriminative Coordinate
Perturbation. In the proposed MPS-DCP, sequential expensive
points are generated by using the sensitivity analysis based DCP
method. The process of the proposed DCP method is summarized
in Algorithm 1. The DCP method consists of four parts, i.e., deter-
mination of perturbation probabilities, cheap points generation,
sequential expensive points selection, and step size adjustment.

Algorithm 1 DCP method

Input: expensive points set Xe, current best point x∗e , current best objective
y∗e , number of initial expensive points n0, number of existing expensive
points ne, maximum number of expensive function evaluations Nmax,
number of iterations niter, number of cheap points nc, coefficients of the qua-
dratic PRS metamodel β, initial step size σ0, minimum step size σmin, current
step size σk, cheap points coincident tolerance Tcoincide, step size tolerances
Timprove, Tstall,1, and Tstall,2, number of improving iterations Cimprove, and
number of stalling iterations Cstall.
Output: expensive points sets [Xe, Ye], current best point x∗e , current best
objective y∗e , number of improving iterations Cimprove, number of stalling
iterations Cstall, step size in the next iteration σk+1.
Begin

1 If niter= 1 then
2 p ← CalculatePerturbationProbability(n0, ne, Nmax);
3 else
4 s ← CalculateSensitivityIndicators(β);
5 p ← CalculatePerturbationProbability(s, n0, ne, Nmax, niter , Cstall);
6 end
7 Xc ← GenerateCheapPoints(p, Xe, nc, σk);
8 Xnew ← SelectSequentialPoints(Xc, Xe, Tcoincide);
9 Ynew ← EvaluateFunction(Xnew)
10 Xe ← Xe∪Xnew; Ye ← Ye∪Ynew

11 If Exist(Ynew < y∗e ) then
12 Cimprove = Cimprove + 1; Cstall = 0;
13 x∗e ← ArgumentOfTheMinimum(Ynew); y∗e = Minimum(Ynew);
14 else
15 Cimprove = 0; Cstall = Cstall + 1;
16 end
17 σk+ 1 ← AdjustStepSize(σk , σ0 , σmin, Cimprove, Cstall , Timprove, Tstall1 , Tstall2);

18 return [Xe, Ye, x∗e , y∗e , Cimprove, Cstall, σk+1]

Fig. 2 Flowchart of MPS-DCP

Table 1 Default settings of several algorithm parameters

Parameter n0 ns nc

Default
value

(nv+ 1)(nv+ 2)/2+ 1− ns round(nv/3) min{100 · nv, 5000}
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3.2.1 Determination of Perturbation Probabilities. In the orig-
inal DYCORS method, the perturbation probability is the same for
each variable. Since the importance of different variables is differ-
ent, it is necessary to identify the critical variables in terms of the
perturbation probability. As demonstrated in Ref. [26], increasing
the perturbation probabilities of sensitive variables is beneficial to
local exploitation; otherwise, the global exploration ability can be
enhanced. From the aforementioned discussions, the perturbation
probabilities are determined based on the global sensitivities and
objective improvement at the current iteration. The global sensitiv-
ities are approximated by averaging the absolute value of coeffi-
cients of the quadratic PRS metamodel corresponding to each
variable. The process of determining the perturbation probabilities
is detailed as below.

Step 1: For the first iteration, the perturbation probabilities for
coordinates are calculated by φ(ne) [25] as formulated in
Eq. (5) and the process terminates; otherwise, calculate the
sensitivity indicators of the design variables, i.e., the global
sensitivities represented by the coefficients of the quadratic
PRS model. The indicator of global sensitivity of the ith
design variablex(i) is expressed as

s(i) =
β(i) + β(ii) +

∑nv
j≠i β

(ij)
∣∣∣ ∣∣∣

nv + 1
, i = 1, . . . , nv (7)

where s(i) is the sensitivity indicator of x(i) and β(i), β(ii), and
β(ij) are the associated quadratic PRS metamodel coefficients
for x(i) as shown in Eq. (2). The sensitivity indicators are
expressed as s = {s(i)}, i = 1, 2, . . . , nv.

Step 2:Modify the sensitivity indicators according to the number
of stalling iterations. Once the optimization improves, it indi-
cates that the sensitivity indicators of variables with larger
global sensitivities should be shrunk to improve the global
exploration capability. In this condition, each indicator s(i)

is modified to be its reciprocal, as shown in Eq. (8). Note
that if the optimization stalls for consecutive two or more
iterations, it is indicated that the local exploitation capability
of the algorithm should be improved. In this condition, the

modified indicator s′(i) equals to s(i), as shown in Eq. (8):

s′(i)

=
1
s(i)

, if optimization improves

s(i), if optimization stalls for more than one iteration

⎧⎨
⎩ ,

i = 1, . . . , nv
(8)

Step 3: Calculate the perturbation probability of each variable.
The perturbation probability p(i) for the ith variable is calcu-
lated by Eq. (9):

p(i) =
s′(i) −min {s′(i)}

max {s′(i)} −min {s′(i)}
· φ(ne), i = 1, . . . , nv (9)

3.2.2 Cheap Points Generation. Numerous cheap points are
generated at each iteration by perturbing some of the variables of
the current best point x∗e . A random coefficient r(i) obeying [0, 1]
uniform distribution is generated to determine whether x(i) would
be disturbed as shown in Eq. (10):

x(i)c = x∗(i)e + z, if r(i) < p(i)

x∗(i)e , if r(i) ≥ p(i)

{
(10)

where z ∼ N (0, σk) follows the Gaussian distribution. The step
size is updated iteratively to control the distribution range of
cheap points in the design space. The detailed cheap points gener-
ation procedure is described in Ref. [25]. When expensive points
are overcrowded in the promising region, the coefficient matrices
of RBF are likely to be ill-conditioned, which may cause the numer-
ical difficulties or even the failure for RBF construction. To address
this issue, the cheap points whose minimum distances from other
expensive points, notated as dmin(·), are less than the predefined tol-
erance Tcoincide, should be eliminated.

3.2.3 Sequential Expensive Points Selection. Two criteria are
used to select expensive points from the numerous cheap points,

Fig. 3 Schematic diagram of identifying specific expensive points using different criteria: (a) identifying 10∙nv expensive points
with the lowest objective values and (b) identifying nk expensive points nearest to current best point
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i.e., the RBF criterion and the distance criterion. Cheap points are
sorted in ascending order with respect to the weighted sum of its
normalized RBF prediction and the opposite of its minimum dis-
tance from existing expensive points, c(x), as shown in Eq. (6)
[25]. The first ns cheap points with lowest c(xc) values are selected
as the sequential expensive points for RBF refinement. Responses
of the sequential expensive points are obtained by evaluating the
expensive function. The RBF metamodel is constructed in Step 3
of Sec. 3.1. A detailed procedure can be found in Ref. [25].

3.2.4 Step Size Adjustment. The process of step size adjust-
ment is exhibited in Algorithm 2 and described as follows. When
the number of improved optimization iterations exceeds Timprove,
the step size σk is doubled to enhance global exploration. When
optimization stalls, if 0 <Cstall≤ Tstall,1, the step size σk is reduced
by half to narrow the spread area of cheap points, so that the
local exploitation is facilitated. If Tstall,1 <Cstall≤ Tstall,2, σk is
enlarged by two times to avoid being trapped in a local optimum.
If Cstall >Tstall,2, which means optimization fails to find a sub-region
better than the current by exploring a wider area, then σk is halved
iteratively to improve the efficiency of exploiting the local area.
Moreover, the minimum step size σmin is set to be 10 · Tcoincide ·���
nv

√
to avoid overcrowding. In this work, tolerances Timprove,

Tstall,1, and Tstall,2 are set as 2, 2, and 6, respectively.

Algorithm 2 Step size adjustment method

Input: initial step size σ0, current step size σk, minimum step size σmin, cheap
points coincident tolerance Tcoincide, step size tolerances Timprove, Tstall,1, and
Tstall,2, number of optimization improving iterations Cimprove, and number of
optimization stalling iterations Cstall.
Output: step size in the next iteration σk+1, number of improving iterations
Cimprove, and number of stalling iterations Cstall.
Begin

1 If Exist(Ynew < y∗e ) then
2 Cimprove = Cimprove + 1; Cstall = 0;
3 if Cimprove≥Timprove then
4 σk+ 1 ← min (2σk , σ0);
5 Cimprove ← 0; Cstall ← 0;
6 end
7 else
8 Cimprove = 0; Cstall = Cstall + 1;
9 If Cstall≤Tstall,1 then
10 σk+1 ← max (σk/2, σmin);
11 elseif Tstall,1 <Cstall≤ Tstall,2 then
12 σk+1 ← min (2σk , σ0);
13 else
14 σk+1 ← max (σk/2, σmin);
15 end
16 end
17 return [σk+ 1, Cimprove, Cstall]

3.2.5 Convergence Analysis. In this section, the convergence
property of MPS-DCP is theoretically analyzed and numerically
demonstrated, which contributes to the mathematical foundation
of the proposed method.

Proof of convergence: ▪
DEFINITION 8 (the best sequence of a stochastic algorithm con-
verges with probability 1) [27]. Let y∗n be the objective value of
the best point in the first n iterations. The best sequence of a sto-
chastic algorithm is defined to converge with probability 1, if

P lim
n�∞

y∗n=y
∗∗

( )
= 1, where y** is a real number.

THEOREM 1 [27]. The best sequence of a stochastic algorithm
converges with probability 1, if the algorithm satisfies the following
two conditions.

(1) The algorithm adopts elite reserve strategy, that is

y∗k+1=
f (xk+1), f (xk+1) < y∗k
y∗k , otherwise

{
(11)

where y∗k is the current best objective at the kth iteration,
which is stored in the sample database, and xk+1 is the best
point among all the newly added points at the kth iteration.

(2) Let x′ be any point other than the global optimal point, the
probability of transforming from x′ to its corresponding
level set, L(x′) = {x| f (x) < f (x′), x ∈ S}, is not equal to
zero. S represents the entire design space.

The convergence of MPS-DCP is proved using Theorem 1,
which leads to Theorem 2.
THEOREM 2. The best sequence of MPS-DCP converges with
probability 1.

Proof. The current best point x∗e at each iteration are added into
existing expensive points set Xe, and it is reserved during the opti-
mization procedure. Thus, MPS-DCP adopts the elite reserve strat-
egy. During MPS-DCP procedure, at the k-th iteration, massive
cheap points are generated by adding normally distributed perturba-
tion on some variables of current best point x∗e, k. The probability of
generating an arbitrary cheap point xc, which is denoted by
pcheap(xc), is determined by perturbation probabilities of variables
pvar and probabilities of cheap points coordinates pcord(xc).
pcheap(xc) is expressed as Eq. (12):

pcheap(xc) =
∏nv
i=1

[
p(i)var · p(i)cord(x(i)c )

]
(12)

The perturbation probability of the i-th variable p(i)var, is calculated
by Eq. (9), which is positive for i= 1, 2, …, nv.
Note that the design space is normalized to [0, 1]nv , so that if x(i)c

exceeds [0, 1], it is reflected into the design space. As a result, the
probability of generating the ith coordinate of the cheap point is cal-
culated by

p(i)cord(x
(i)
c ) =

∑∞
j=0

[
fGaussian(2j + x(i)c ; x∗(i)e , σk)

+ fGaussian(2j + 2 − x(i)c ; x∗(i)e , σk)
] (13)

where fGaussian(·) is the probability density function of the Gaussian
distribution. p(i)cord(x

(i)
c ) is positive for x

(i)
c ∈ [0, 1].

Based on Eqs. (12) and (13), pcheap(xc) satisfies

pcheap(xc) > 0, ∀xc ∈ [0, 1]nv (14)

Expensive points are selected from cheap points according to the
RBF criterion and distance criterion. As shown in Eq. (6), cheap
points with lowest c(xc) are selected. The selection probability of
xc is denoted as pselect(xc).
On the basis of aforementioned discussion, the probability of

generating an arbitrary expensive point is expressed as Eq. (15):

p(x) = pcheap(x) · pselect(x) (15)

Let x′ be any point other than the global optimal point, and its cor-
responding level set is L(x′) = {x| f (x) < f (x′), x ∈ S}. Since the
RBF metamodel has the ability of approximating the expensive
objective function, the probability of points in L(x′) to be selected
from cheap points is positive, i.e., pselect(x) > 0 for x ∈ L(x′).
Thus, p(x) > 0 for x ∈ L(x′).
In other words, the probability of transforming from x′ to its level

set L(x′) is not equal to zero. According to Theorem 1, the best
sequence of MPS-DCP converges with probability 1. ▪

3.2.6 Convergence Rate Analysis. Via comparing with SQP,
the convergence rate of MPS-DCP is investigated on PUR-T1-13
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problems (notated as PUR problems) [37] as displayed in Appen-
dix. Note that SQP is proved to converge superlinearly under rea-
sonable assumptions near a strongly stationary point [28].
Convergence curves of SQP and MPS-DCP on PUR problems for
ten runs are illustrated in Fig. 4.
Figure 4(a) shows that the converge rate of SQP and MPS-DCP

are similar on PUR10 problem. Figures 4(b) and 4(c) indicate that
for PUR20 and PUR30 problems, MPS-DCP converges slower
than SQP at the early stage of optimization. As the optimization pro-
ceeds, MPS-DCP gradually converges faster than SQP. Thus,
MPS-DCP is expected to converge superlinearly via the comparison
results with SQP.

3.2.7 Constraint Handling Strategy. The fundamental
MPS-DCP mainly aims at solving HEBs with bounds on the vari-
ables, namely, unconstrained problems. Since real-world engineer-
ing design optimization problems generally involve expensive
constraints, MPS-DCP customizes a constraint handling strategy
to accomplish constrained optimization, which is described as
follows.

(1) At the initial sampling stage (Step 2 in Sec. 3.1), if initial
expensive points are all infeasible, a sub-optimization to
improve sample point feasibility is executed until at least
one feasible point is obtained or the computational budget
is exhausted.

(2) During the metamodeling process, the RBF metamodels for
constraints are also constructed or updated using the
min{ne, 10 · nv} expensive points with lowest constraints

responses. And the fitted RBF metamodels are employed to
replace the original expensive black-box constraints for
global optimization in Step 3 and local search in Step 6 in
Sec. 3.1.

(3) In the DCP strategy, cheap points with nonpositive predicted
responses of RBF constraints are regarded as potential feasi-
ble cheap points, and expensive points are selected from
potential feasible cheap points followed by the same mecha-
nism in Step 4 in Sec. 3.1.

3.3 Illustration of MPS-DCP on Two-Dimensional
Problem. To intuitively illustrate the optimization process of
MPS-DCP, a 2D Peaks problem (PK) shown in Eq. (16) is investi-
gated in this section. In this study, ns and Nmax are set to be 3 and 20,
respectively. The optimization process of MPS-DCP is graphically
depicted in Fig. 5

min f (x) = 3(1 − x(1))2 exp [−x(1)2 − (x(2) + 1)
2
]

−10
x(1)

5
− x(1)3 − x(2)5

( )
exp [−x(1)2 − x(2)2]

−
1
3
exp [−(x(1) + 1)

2 − x(2)2]

x ∈ [−3, 3]2 (16)

As depicted in Fig. 5(a), five expensive points are generated during
initial sampling to construct the RBF metamodel of the objective
function. At the first iteration, the perturbation step size is initialized

Fig. 4 Convergence curves of SQP andMPS-DCP for PUR problems: (a) PUR10 problem, (b) PUR20 problem, and (c)
PUR30 problem
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as 0.2 to explore the design space, and three expensive points are
generated by coordinate perturbation, as shown in Fig. 5(b).
Figures 5(c)–5(e) indicate that as the optimization process proceeds,
the sequential expensive points are generated toward the global
optimum. After the fifth iteration, the maximum number of function
evaluations is reached, and the global optimum is successfully
reached as shown in Fig. 5( f ). The optimization process for the
PK problem illustrates the effectiveness of MPS-DCP.

4 Tests on Numerical Benchmark Problems
In this section, the performance of the proposed MPS-DCP

method is compared with several MBDO algorithms for HEB prob-
lems, including MPS, DYCORS, TRMPS, and OMID [24]. Sixteen
high-dimensional numerical benchmarks with the dimensionality
from 10 to 30 are adopted for the tests. Although the benchmarks
are analytical, they are assumed to represent HEB problems to
test the optimization performance of different methods. The optimi-
zation results are compared and discussed in detail to illustrate the
merits of MPS-DCP.

4.1 Test Framework. The numerical benchmarks are sum-
marized in Table 2, including the dimensionality (nv), theoretical
optimum, and maximum numbers of expensive function evalua-
tions (Nmax). The mathematical formulas of the benchmarks are
given in Appendix. For the convenience of comparison, the
maximum number of function evaluations termination criterion is
used for different numerical benchmarks in this study. Note that
Nmax is determined according to Ref. [22] for fair comparison,
and Cmax

stall is set to be empty in MPS-DCP.
For all the algorithms, ten runs are carried out to alleviate random

variation on simulation results. DYCORS is implemented using
codes presented by Mueller [29]. The number of sequential expen-
sive points is set to be round(nv/3) in DYCORS, which is the same
as that of MPS-DCP. Optimization results of MPS, TRMPS, and
OMID are directly cited from Ref. [24]. The mean value and stan-
dard deviation of the optimized objective value for each benchmark
problem are recorded to show the convergence and robustness per-
formances of the five algorithms.

4.2 Comparison of Optimization Results. The optimization
results of MPS-DCP compared with MPS, DYCORS, TRMPS,

Fig. 5 Optimization process of MPS-DCP for the PK problem: (a) initial sampling, (b) after the first iteration, (c) after the second
iteration, (d ) after the third iteration, (e) after the fourth iteration, and ( f ) after the fifth iteration

Table 2 Information of numerical benchmark problems

Problem F16 R10 R20 R30 SUR10 SUR20 SUR30 PUR10

nv 16 10 20 30 10 20 30 10
Theoretical optimum 25.875 0 0 0 0 0 0 0
Nmax 700 3828 5000 5000 5000 5000 5000 4153

Problem PUR20 PUR30 GR10 GR20 GR30 ZF10 ZF20 ZF30

nv 20 30 10 20 30 10 20 30
Theoretical optimum 0 0 0 0 0 0 0 0
Nmax 5000 5000 2352 5000 5000 3532 5000 5000
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Table 3 Mean and standard deviation of the best objective values obtained by MPS, DYCORS, TRMPS, OMID, and MPS-DCP

Problem

MPS DYCORS TRMPS OMID MPS-DCP

Mean Std Mean Std Mean Std Mean Std Mean Std

F16 29.07 28.9 25.8754 1.0283 × 10−4 25.928 0.148 25.8852 0.0064 25.8750 1.0550× 10−6

R10 229.5 177.8 6.6509 0.3190 5.548 1.99 19.7823 29.4380 4.2172 0.7094
R20 3.315 × 104 3.49 × 104 17.5883 0.8006 17.98 1.41 41.2 29.7582 14.5436 0.2993
R30 9.45 × 104 9.65 × 105 42.9148 19.4130 21.53 7.54 117 59.4922 26.4711 1.0311
SUR10 20.11 15.1 0.9961 0.0944 1.086 0.201 1.2207 0.2734 0.9547 0.0059
SUR20 6765 6476 2.1689 1.9171 2.192 0.848 2.41 1.4306 1.4032 0.4828
SUR30 3.42 × 104 3.38 × 104 88.0583 140.7335 3.536 1.536 54.8 106.0589 2.0394 1.2022
PUR10 4.237 × 107 6.675 × 105 0.0334 0.0358 9.84 26.2 0 0 3.7679× 10−12 5.5796× 10−12

PUR20 2.182 × 1013 1.572 × 1013 4.0997× 103 6.3766 × 103 8.399 × 105 1.45e × 106 0.805 1.6064 0.0426 0.0841
PUR30 7.18 × 1015 6.345 × 1015 3.6909× 108 2.6788 × 108 3.189 × 108 3.55 × 108 657 1184.42 286.7752 435.3574
GR10 0.184 0.042 0.5336 0.0973 0.133 0.0901 N/A N/A 0.0342 0.0203
GR20 205.9 209.44 0.7883 0.1013 0.138 0.0370 N/A N/A 0.0214 0.0134
GR30 396.6 405.2 0.8802 0.1756 0.252 0.0506 N/A N/A 0.0194 0.0103
ZF10 2.73 × 106 1.65 × 106 0.5166 0.3130 0.371 0.764 0.203 0.1661 1.3802× 10−5 7.4179× 10−6

ZF20 2.36 × 1011 2.31 × 1011 2.6858 3.4750 0.235 0.189 123 66.4936 6.4981 4.2109
ZF30 1.112 × 1013 1.18 × 1013 70.7065 27.8559 31.03 14.71 284 72.0840 109.8613 30.2526

Note: The best results are expressed in bold. Std represents the standard deviation of optimized objective value. Reference [24] did not provide results of
OMID for GR10, GR20, and GR30.

Fig. 6 Convergence curves of DYCORS and MPS-DCP: (a) F16, (b) R10, (c) R20, (d ) R30, (e) SUR10, (f ) SUR20, (g) SUR30,
(h) PUR10, (i) PUR20, ( j) PUR30, (k) GR10, (l ) GR20, (m) GR30, (n) ZF10, (o) ZF20, and (p) ZF30

Journal of Mechanical Design APRIL 2021, Vol. 143 / 041703-9

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/143/4/041703/6661240/m
d_143_4_041703.pdf by Sim

on Fraser U
niversity user on 21 D

ecem
ber 2021



and OMID are shown in Table 3, and the convergence curves of
DYCORS and MPS-DCP are illustrated in Fig. 6. In Fig. 6, the
x-axis label is the number of function evaluations. Results indicate
that MPS-DCP outperforms the competitive algorithms in terms of
converging to the global optimum for most benchmarks except for
R30, ZF20, and ZF30. In these cases, MPS-DCP still finds better
global solutions than MPS and OMID. Besides, apart from the
early stage of the optimization process, MPS-DCP generally con-
verges faster than DYCORS except for F16, ZF20, and ZF30. The
detailed analysis of the optimization results is presented as follows.
According to the benchmark test, MPS yields the worst results

among the algorithms in terms of optimality and robustness. On
the contrary, MPS-DCP generally consistently finds better solutions
than DYCORS, TRMPS, and OMID for all the problems (except
R30, ZF20, and ZF30) with the same computational budget. Espe-
cially for SUR30, PUR20–PUR30, and ZF10 problems, the advan-
tage of MPS-DCP becomes more obvious compared with other
algorithms since the mean optimized objective values produced
by MPS-DCP are several orders of magnitudes lower. This super-
iority of MPS-DCP is largely due to its unique capability to
capture the relatively significant improvement caused by trivial var-
iations in variable coordinates, which is further discussed in Sec.
4.3.2. Moreover, MPS-DCP also shows the best performance in
solving GR10–GR30 problems with massive widespread local

optima [30], which illustrates that MPS-DCP can escape from
being trapped in local optima.
In conclusion, with the same computational cost, MPS-DCP gen-

erally outperforms the competitors in terms of optimization effec-
tiveness and robustness, which demonstrates the effectiveness of
MPS-DCP for solving HEB problems.

4.3 Discussions

4.3.1 Comparison With Mode-Pursuing Sampling Using
Conventional Coordinate Perturbation Strategy. In the original
DYCORS using conventional CP strategy, the variable perturbation
probabilities simply change with ne during the optimization, as
shown in Eq. (5). Different from CP, note that the variable pertur-
bation probabilities in our proposed DCP technique are determined
by ne, the approximated global sensitivities of design variables, and
the number of stalling iterations during the optimization simulta-
neously, as shown in Eqs. (7)–(9). According to Ref. [26], increas-
ing the perturbation probabilities of sensitive variables is beneficial
to local exploitation; otherwise, the global exploration ability can be
enhanced. Thus, the customized perturbation coordinate probability
is expected to improve the optimization performance of MPS-DCP
compared with the algorithm using CP.

Fig. 7 Boxplots of the best objective values obtained by DYCORS, MPS-CP, and MPS-DCP: (a) F16, (b) R10, (c) R20, (d ) R30,
(e) SUR10, (f ) SUR20, (g) SUR30, (h) PUR10, (i) PUR20, ( j) PUR30, (k) GR10, (l ) GR20, (m) GR30, (n) ZF10, (o) ZF20, and (p) ZF30
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To further illustrate the effectiveness of the proposed DCP tech-
nique, the performance of a simple combination of the MPS frame-
work and CP technique (notated as MPS-CP) is also investigated.
Figure 7 shows the boxplots of the best objective values obtained
by DYCORS, MPS-CP, and MPS-DCP for ten runs. It is shown
that MPS-CP yields better results than DYCORS only in R10–20,
SUR20–30, PUR30, GR10–30, and ZF10. By using the DCP tech-
nique, MPS-DCP significantly outperforms DYCORS andMPS-CP
in terms of optimality and robustness in all the mentioned problems
except SUR20, PUR10, ZF20, and ZF30. It is concluded that the
proposed DCP technique helps MPS-DCP to yield better results
compared with classical algorithms.

4.3.2 Effects of Tuning Parameters and Termination Criteria in
MPS-DCP. In this part, effects of several critical tuning parameters
(i.e., the number of sequential expensive points ns and the tolerance
parameters Tcoincide, Tstall,1, Timprove, and Tstall,2) on the optimization

results of R30, PUR30, GR30, and ZF30 are investigated at first, in
order to find reasonable default settings for MPS-DCP. The param-
eter settings in different cases are summarized in Table 4. The
parameters in Case VII are our recommended default settings of
MPS-DCP. The mean objective values in ten runs (sorted in
descending order) with different tuning parameters are graphically
expressed in Fig. 8.
The first tuning parameter is the number of sequential expensive

points ns. The case adopting a larger ns is referred to as Case I,
where ns equals to nv, the same as the original MPS. As shown in
Fig. 8, for the first 1000 largest objective values, the convergence
performances of MPS-DCP with different ns are almost the same.
However, after that, MPS-DCP with the default settings (Case
VII) significantly converges faster, especially for R30, PUR30,
and GR30.
The expensive point coincidence tolerance Tcoincide is examined.

It is also modified by the value in the original DYCORS, i.e.,

Fig. 8 Tuning parameters sensitivity analysis results: (a) R30 problem, (b) PUR30 problem, (c) GR30 problem, and (d ) ZF30
problem

Table 4 Parameter setting in different cases

Case I Case II Case III Case IV Case V Case VI Case VII

ns nv round(nv/3) round(nv/3) round(nv/3) round(nv/3) round(nv/3) round(nv/3)
Tcoincide 5 × 10−5 · ���

nv
√

1 × 10−3 · ���
nv

√
5 × 10−5 · ���

nv
√

5 × 10−5 · ���
nv

√
5 × 10−5 · ���

nv
√

5 × 10−5 · ���
nv

√
5 × 10−5 · ���

nv
√

TStall,1 2 2 max{5, nv} 2 2 2 2
Timprove 2 2 2 3 2 2 2
Tstall,2 6 6 6 6 4 8 6
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Tcoincide = 1 × 10−3 · ���
nv

√
, to see its effects on convergence perfor-

mance. The new case is named as Case II. Figure 8 shows that
although the sensitivity of Tcoincide on algorithm performance
varies for different problems, to tolerate denser cheap points in
design space under the premise of not leading to the failure of
RBF construction generally benefits finding promising solutions.
It is because that this modification might capture the improvement
caused by trivial variations in variable coordinates.
The optimization stalling tolerance Tstall,1 and improving toler-

ance Timprove are also examined. Original DYCORS suggests
Tstall,1=max{5, nv} and Timprove= 3 [25], while in MPS-DCP,
Tstall,1= 2 and Timprove= 2. MPS-DCP was also run with Tstall,1=
max{5, nv} and Timprove= 3, which are referred to as Case III and
Case IV, respectively. Figure 8 shows substantial deteriorations in
the performance of MPS-DCP on these problems when using a
larger stalling tolerance Tstall,1 and a larger improving tolerance
Timprove. This indicates that the original value of Tstall,1 and Timprove

suggested by DYCORS are rather conservative and the conver-
gence performance could be enhanced when adopting a greedier
step size reduction strategy.
The last discussed tuning parameter is the other stalling tolerance

Tstall,2 introduced by MPS-DCP. When the number of stalling iter-
ations reaches Tstall,2, it is indicated that the MPS-DCP fails to find
better points in global exploration, so that MPS-DCP focuses on
exploiting the local area. A smaller and a larger tolerance value,
i.e., 4 and 8, are also tested, which are referred to as Case V and
Case VI, respectively. Figure 8 illustrates that for R30, PUR30,
and GR30, the usage of improper Tstall,2 values slow down the
pace of convergence. For the final stage of optimizing ZF30, the
variants of MPS-DCP in Case V and Case VI yield slightly better
results. However, the default settings of current MPS-DCP are
still recommended in most cases.
In addition, the effects of Cmax

stall criterion are demonstrated on
GR30 problem. The termination criteria in different cases are sum-
marized in Table 5. The convergence curves of these cases are
graphically expressed in Fig. 9.
Figure 9 indicates that adopting a relatively small Cmax

stall (20 for
GR30 problem) leads to a premature termination, while adopting
a relatively larger Cmax

stall (100 for GR30 problem) yields better

solutions at the expense of large computational cost. Besides,
Cases XI and XII indicate that MPS-DCP generally finds better
solutions as Nmaxincreasing.

5 Engineering Design Optimization Problem
Engineering design optimization problems with the objective and

constraints arising from black-box computation-intensive simula-
tions are challenging in practices. In literature, many state-of-the-art
MBDO methods such as adaptive response surface method using
intelligent space exploration strategy (ARSM-ISES) [21], con-
strained optimization by radial basis function interpolation
(COBRA) [31], surrogate-based constrained global optimization
using space reduction (SCGOSR) [32], and general sequential con-
straints updating approach based on the confidence intervals from
the Kriging surrogate model (SCU–CI) [33] have been developed
and successfully applied to practical engineering optimization.
To further demonstrate the effectiveness and practicality of
MPS-DCP in solving real-world engineering design optimization
problems, a stepped cantilever beam design problem and an all-
electric geostationary orbit (GEO) satellite (AEGS) MDO
problem are investigated in this section.

5.1 Stepped Cantilever Beam Design Problem

5.1.1 Problem Description. The 30D stepped cantilever beam
design problem (CP30) is referred from Ref. [34]. The stepped can-
tilever beam has ten sections, as shown in Fig. 10. A 50 kN load, P,
is applied at the tip. Young’s modulus E and the maximum allowed
stress σallow in each section are 200 GPa and 350 MPa, respectively.
There are three variables in each section: width b(i), height h(i), and
length l(i). Then, the 30 design variables are presented as follows:

X = [b(1), h(1), l(1), b(2), h(2), l(2), . . . , b(10), h(10), l(10)] (17)

The objective is to minimize the tip deflection of the beam, δ,
expressed as below [34]:

δ =
∫l(10)
0

Px(10)2

EI(10)
dx(10) +

∫l(9)
0

P(x(9) + l(10))
2

EI(9)
dx(9) + · · ·

+
∫l(1)
0

P(x(1) + l(2) + l(3) + · · · + l(9))
EI(1)

dx(1)

=
P

3E

∑10
i=1

12
b(i)h(i)3

∑10
j=i

l(j)
( )3

−
∑10
j=i+1

l(j)
( )3

⎛
⎝

⎞
⎠

⎡
⎣

⎤
⎦ (18)

where I(i) is the rotary inertia about a neutral axis for each section.
Stress concentration in the beam is not taken into account.

Fig. 10 Illustration of the stepped cantilever beam

Table 5 Termination criteria in different cases

Case VIII Case IX Case X Case XI Case XII

Nmax – – – 3000 5000
Cmax
stall 20 50 100 – –

Fig. 9 Convergence curves of MPS-DCP with different termina-
tion criteria
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Constraints consist of maximum bending stress, maximum aspect
ratio, and minimum beam length.
The stepped cantilever beam design problem can be formulated

as follows:

find x = [b(1), h(1), l(1), b(2), h(2), l(2), . . . , b(10), h(10), l(10)]

min δ =
P

3E

∑10
i=1

12
x(3i−2)x(3i−1)2

∑10
j=i

x(3j)
( )3

−
∑10
j=i+1

x(3j)
( )3

⎛
⎝

⎞
⎠

⎡
⎣

⎤
⎦

s.t.
6P

x(3i−2)x(3i−1)2
∑10
j=i

x(3j) ≤ σallow,
x(3i−1)

x(3i−2)
≤ AR,

∑10
j=1

x(3i−2)x(3i−1)x(3j) ≤ Vmax, −
∑10
j=1

x(3j) ≤ −Lmin,

0.01m ≤ b(i) ≤ 0.05m, 0.30m ≤ h(i) ≤ 0.65m,

0.50m ≤ l(i) ≤ 1.00m i = 1, 2, . . . , 10 (19)

Although the objective and constraints are explicitly formulated,
they are assumed to be black-box models for illustrative and bench-
marking purposes.

5.1.2 Optimization Results. To examine the merit of the pro-
posed method, MPS-DCP is also compared with MPS and
TRMPS, as shown in Table 6. The results of MPS and TRMPS
are directly cited from Ref. [22]. Because DYCORS does not inher-
ently support constraint handling, it is not involved in the compar-
ison. To make a fair comparison, Nmax is set as 990 for MPS-DCP,
the same as the settings in Ref. [22]. And Cmax

stall is set to be 20.
Figure 11 plots the objective convergence history of MPS-DCP.
Note that the current optima at each iteration during MPS-DCP
are all feasible.
Figure 11 exhibits that MPS-DCP yields a 60.62% reduction in

the feasible optimum, compared with the best point from initial
sampling, 0.0387. As shown in Table 6, in the 30-dimensional

stepped cantilever beam design problem, MPS-DCP and TRMPS
produce nearly comparable results, among which MPS-DCP is
the best. The two algorithms significantly outperform MPS in con-
vergence performance and efficiency. In conclusion, MPS-DCP is
expected to be efficient and effective in solving constrained HEB
problems.

5.2 All-Electric GEO Satellite Multidisciplinary Design
Optimization Problem

5.2.1 Problem Description. The studied AEGS is comprised of
payload module, service module, and solar arrays, as shown in
Fig. 12 [35]. This problem involves four disciplines, ten design vari-
ables, and seven constraints. The coupling relationship of this MDO
problem is organized in the design structure matrix (DSM) and
shown in Fig. 13, and the disciplinary modeling approach is detailed
in Ref. [35]. The objective of the MDO problem is to minimize the
total mass of the satellite [35]. The MDO problem is formulated in
Eq. (20). The details of the design variables and constraints are pre-
sented in Ref. [35]

find x = [α, dT, dN, Asa, HS, HC, HTB, PS, PC, PTB]

minMsatellite = mpayload + mcontrol + mpower + mstructure + mothers

s.t.

tf ≤ 180Day, λmax ≤ 0.05 deg , imax ≤ 0.05 deg ,

PBOL ≥ 22.90 kW, PEOL ≥ 16.30 kW

fX ≥ 12Hz, fY ≥ 12Hz

⎧⎪⎨
⎪⎩ (20)

The implementation of time-consuming calculation models such as
orbit dynamics model and structural finite element analysis model
combined with the iterative process of multidisciplinary analysis
(MDA) makes the AEGS MDO problem extremely computation-
ally expensive. The mean running time of the MDA process is
about 10 min on a computer equipped with Intel Xeon 3.40 GHz
CPU and 8 GB memory.

5.2.2 Optimization Results. The maximum number of expen-
sive points Nmax is set to be 500, and the maximum number of
stall iterations Cmax

stall is set to be 20. The initial design variables
are determined according to Ref. [35]. The design variables, objec-
tive, and constraints of the initial design and the optimized designs
are listed in Tables 7–9. The optimization result obtained by
MPS-DCP is compared with that of MPS and that of the authors’

Fig. 13 DSM of the AEGS MDO problem

Fig. 12 Illustration of the AEGS

Fig. 11 Convergence history for the stepped cantilever beam
design problem using MPS-DCP

Table 6 ne and mean tip deflection obtained by MPS, TRMPS,
and MPS-DCP

MPS TRMPS MPS-DCP

ne 5000 990 990
Mean tip deflection 0.0320 0.0153 0.0150
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previously developed efficient ARSM-ISES [21]. MPS is imple-
mented using available open-source codes [36]. DYCORS and
TRMPS are not involved in the comparison due to the incapability
of handling constraints and the inaccessibility of source codes,
respectively.

As shown in Table 8, the optimized design obtained by
MPS-DCP yields an 87.1 kg decrease in total mass, which is
7.1% of the satellite components being optimized (i.e., fuel mass,
solar array mass, and structure mass) [35]. Figure 14 illustrates
the convergence curves of MPS, ARSM-ISES, and MPS-DCP. It
is indicated that the MPS-DCP shows better convergence perfor-
mance than MPS and ARSM-ISES within the same maximum
number of expensive points. The optimized design obtained by
MPS-DCP is feasible according to Table 9, compared with the
initial design that violates the constraint of the beginning-of-life
power PBOL. The optimality of the optimized design is further dem-
onstrated by the fact that some of the constraints are active, includ-
ing the beginning-of-life power and the first-order rotational modal
frequencies. Besides, the optimized solution of MPS-DCP is also
much better than those of MPS and ARSM-ISES. The comparison
results indicate that MPS-DCP shows better convergence perfor-
mance within the same computational cost compared with MPS
and ARSM-ISES in the studied AEGS MDO problem, which dem-
onstrates the effectiveness and practicality of MPS-DCP in solving
real-world HEB engineering design optimization problems.

6 Conclusions and Future Work
Referring to the dynamic coordinate perturbation strategy pro-

posed in DYCORS, a novel sensitivity analysis based DCP strategy
is developed. Based on the novel DCP strategy, an enhanced MPS
method for high-dimensional expensive black-box problems,

Table 7 Initial and optimized design variables of the AEGS MDO problem

Design variable Symbol Unit Range
Initial
design

Optimized design
(MPS)

Optimized design
(ARSM-ISES)

Optimized design
(MPS-DCP)

Yaw angle in first stage of
geostationary transfer orbit (GTO)

α deg [0, 60] 0 30.56 29.79 29.61

T position of thruster dT mm [500, 1180] 1180 655.22 503.28 503.68
N position of thruster dN mm [800, 1050] 1050 1032.58 962.40 1042.32
Area of solar arrays Asa m2 [90, 120] 110 119.01 117.49 117.41
Core thickness of service cabin plates HS mm [14, 26] 20 16.77 16.64 15.93
Core thickness of communication cabin
plates

HC mm [14, 26] 20 18.17 17.09 16.55

Core thickness of central cylinder HTB mm [14, 26] 20 24.90 22.36 14.61
Ply thickness of service cabin plates PS μm [0.07, 0.13] 0.1 0.118 0.095 0.071
Ply thickness of communication cabin
plates

PC μm [0.07, 0.13] 0.1 0.104 0.081 0.070

Ply thickness of bearing cylinder PTB μm [0.07, 0.13] 0.1 0.091 0.078 0.077

Table 9 Constraints of initial design and optimized design of the AEGS MDO problem

Constraint Symbol Unit Range
Initial
design

Optimized design
(MPS)

Optimized design
(ARSM-ISES)

Optimized design
(MPS-DCP)

Total orbit transfer time tf Day ≤180 166.11 131.27 130.10 128.63
East/west station keeping accuracy λmax deg ≤0.05 0.035 0.029 0.027 0.028
North/south station keeping
accuracy

imax deg ≤0.05 0.036 0.035 0.036 0.036

Beginning-of-life power PBOL kW ≥22.90 21.41 23.10 22.90 22.90
Ending-of-life power PEOL kW ≥16.30 19.86 21.43 21.20 21.25
First-order rotational modal
frequency round X

fX Hz ≥12 13.48 13.03 12.25 12.12

First-order rotational modal
frequency round Y

fY Hz ≥12 13.39 12.93 12.16 12.00

Fig. 14 Convergence history curve for the AEGS MDO problem
using MPS-DCP

Table 8 Initial and optimized objective of the AEGS MDO problem

Objective Initial design Optimized design (MPS) Optimized design (ARSM-ISES) Optimized design (MPS-DCP)

Total mass/kg 2552.4 2513.98 2497.1 2465.3

Note: The best result is expressed in bold.
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notated as MPS-DCP, is proposed. In MPS-DCP, the sensitivity
indicators are identified using the coefficients of a polynomial
response surface and used to generate the discriminative perturba-
tions. The extent of coordinate perturbation is automatically
enlarged or shrunk during the optimization so that cheap points
are effectively generated toward global optimum from which the
expensive points are picked. The convergency of MPS-DCP is
also proved based on the convergency analysis theory of stochastic
algorithms. The optimization results of numerical benchmarks show
promising merits of MPS-DCP compared with the original MPS,
DYCORS, TRMPS, and OMID in terms of convergence and
robustness performances. All the simulation results suggest that
MPS-DCP is a promising global optimization algorithm for HEB
problems. Finally, a stepped cantilever beam design optimization
problem and an all-electric GEO satellite MDO problem are inves-
tigated to evaluate its effectiveness and practicality for real-world
engineering design problems. The results show that MPS-DCP
yields better feasible optima with the same or less computational
cost compared with the competitive optimization methods.
However, due to the inherent limitations of the MPS framework,

the convergence and robustness performances of MPS-DCP on
extremely high-dimensional problems with hundreds of variables
still need to be enhanced. In future work, MPS-DCP is expected
to be enhanced by the space mapping and high-dimensional
model representation techniques to further improve its capacity
for solving extremely high-dimensional problems. Besides, con-
structing PRS metamodel requires a large number of expensive
points when solving high-dimensional problems. More flexible
metamodeling techniques such as RBF and Kriging will be
adopted in MPS-DCP to further reduce the high-dimensional opti-
mization cost. In addition, more effective constraints handling tech-
nique such as Kreisselmeier–Steinhauser (KS) function is expected
to be applied to enhance the applicability of MPS-DCP in solving
real-world engineering design optimization problem.
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Appendix
The formulations of the numerical benchmark problems are pre-

sented as follows.
(1) 16-variable function (F16)

f (x) =
∑16
i=1

∑16
j=1

a(ij)(x(i)2 + x(i) + 1) (x(j)2 + x(j) + 1) (A1)

a(ij) =

1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1
0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A2)

Number of variables: nv= 16.
Design space: [− 1, 1]16.
Global optimum value: 25.875 [14].
(2) 10D, 20D, and 30D Rosenbrock functions (R10, R20, and

R30)

f (x) =
∑nv−1
i=1

(100(x(i) − x(i)2)
2
+ (x(i)−1)2) (A3)

Number of variables: nv = 10, 20, or 30.
Design space: [−5, 5]10,20, or 30.
Global optimum value: 0 [23].
(3) 10D, 20D, and 30D SUR-T1-14 functions (SUR10, SUR20,

and SUR30)

f (x) = (x(1)−1)2 + (x(nv)−1)2 + nv
∑nv−1
i=1

(nv − i)(x(i)2 − x(i+1))
2

(A4)

Number of variables: nv = 10, 20, or 30.
Design space: [−3, 2]10,20, or 30.
Global optimum value: 0 [37].
(4) 10D, 20D, and 30D PUR-T1-13 functions (PUR10, PUR20,

and PUR30)

f (x) =
∑nv
i=1

i3(x(i)−1)2
[ ]3

(A5)

Number of variables: nv = 10, 20, or 30.
Design space: [−3, 3]10,20, or 30.
Global optimum value: 0 [37].
(5) 10D, 20D, and 30D Griewank functions (GR10, GR20, and

GR30)

f (x) =
∑nv
i=1

x(i)2

4000
−
∏nv
i=1

cos
x(i)�
i

√
( )

+ 1 (A6)

Number of variables: nv = 10, 20, or 30.
Design space: [−600, 600]10,20, or 30.
Global optimum value: 0 [22].
(6) 10D, 20D, and 30D Zakharov functions (ZF10, ZF20, and

ZF30)

f (x) =
∑nv
i=1

x(i)2 +
∑nv
i=1

0.5ix(i)
( )2

+
∑nv
i=1

0.5ix(i)
( )4

(A7)

Number of variables: nv = 10, 20, or 30.
Design space: [−5, 10]10,20, or 30.
Global optimum value: 0 [22].
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