
George H. Cheng
Product Design and Optimization Laboratory

(PDOL),
Simon Fraser University,

Surrey, BC, V3T 0A3, Canada
e-mail: ghc2@sfu.ca

G. Gary Wang1
Product Design and Optimization Laboratory

(PDOL),
Simon Fraser University,

Surrey, BC, V3T 0A3, Canada
e-mail: gwa5@sfu.ca, gary_wang@sfu.ca

Yeong-Maw Hwang
Metal Forming Technology Laboratory,

National Sun Yat-sen University,
Kaohsiung 80424, Taiwan

e-mail: ymhwang@mail.nsysu.edu.tw

Multi-Objective Optimization for
High-Dimensional Expensively
Constrained Black-Box Problems
Multi-objective optimization (MOO) problems with computationally expensive constraints
are commonly seen in real-world engineering design. However, metamodel-based design
optimization (MBDO) approaches for MOO are often not suitable for high-dimensional
problems and often do not support expensive constraints. In this work, the situational adap-
tive Kreisselmeier and Steinhauser (SAKS) method was combined with a new multi-objec-
tive trust region optimizer (MTRO) strategy to form the SAKS-MTRO method for MOO
problems with expensive black-box constraint functions. The SAKS method is an approach
that hybridizes the modeling and aggregation of expensive constraints and adds an adaptive
strategy to control the level of hybridization. The MTRO strategy uses a combination of
objective decomposition and K-means clustering to handle MOO problems. SAKS-MTRO
was benchmarked against four popular multi-objective optimizers and demonstrated supe-
rior performance on average. SAKS-MTRO was also applied to optimize the design of a
semiconductor substrate and the design of an industrial recessed impeller.
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Introduction
Computer simulations are widely used in engineering design as

a form of digital prototyping, and optimization can be used in con-
junction with simulation models to solve design challenges and
constraints. However, these simulation models are typically com-
putationally expensive, which make many optimization methods
not viable because they require tens to hundreds of thousands of
simulation calls. For example, Pérez et al. in 2016 simulated the
heat distribution of an engine room in an advanced electrical propul-
sion ship using computational fluid dynamics (CFD), which took
5.5 h per simulation [1] and Díaz-Ovalle in 2017 used CFD to simu-
late a convection oven, which took up to five hours per simulation
[2]; 10,000 runs of such models require 5 years of run time to com-
plete, which is simply infeasible.
Finite element analysis (FEA) and CFD simulations are consid-

ered black-box, where the inner structure is hidden to the user or
external programs and where gradients are not readily available
or unreliable. This makes classical gradient-based optimization
methods very costly or unsuitable to use since the gradient must
be approximated and the cost of gradient approximation increases
dramatically with the number of variables and objectives. Further-
more, problems of higher dimensionality (i.e., 10 variables or
greater) have exponentially larger search spaces [3,4], which
increases the difficulty of optimization. The combination of the
above traits forms a class of problems that are high-dimensional,
expensive (computationally), and black-box (High-dimensional,
Expensive, Black-box (HEB)) [5].
Figure 1 presents an overview of black-box multi-objective opti-

mization methods, which can be approximately segmented between
evolutionary and metamodel-based methods. Because the optimum

for multi-objective optimization (MOO) problems is usually a set of
designs, evolutionary algorithms (EAs) such as NSGA [6], NPGA
[7], and NSGA-II [8] have proved to be well suited to multi-
objective problems since they natively work with populations of
solutions. NSGA-II is a genetic algorithm that incorporates fast
nondominated sorting and crowding-distance-based Pareto set
diversity preservation. The nondominated sorting method alleviates
some of the computational inefficiencies of prior EA algorithms,
while the diversity preservation method enables NSGA-II to
evolve evenly distributed Pareto sets. According to Zhou et al.,
NSGA-II is a framework that the majority of Multi-Objective
EAs (MOEAs) are based on [9]. Many other types of MOEAs
exist such as MOEA/D [10,11] that natively decompose the
MOO problem into scalar optimization subproblems, the Indicator-
based Evolutionary Algorithm (IBEA) [12,13] that uses an indicator
such as generational distance or hypervolume to compare candidate
designs, and Multi-Objective Feasibility Enhanced Particle Swarm
Optimization (MOFEPSO) [14] that maintains separate feasible and

Fig. 1 Overview of black-box multi-objective optimization
approaches
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infeasible particles to handle constrained optimization problems.
Metamodel-based evolutionary methods are becoming more
common in recent years to address the issue of expensive black-box
problems [15]. For example, MOEA/D was extended using a radial
basis function (RBF) in Ref. [16] and NSGA-II was extended using
Kriging in Ref. [17], among many other methods [18,19]. While a
large body of work is present in evolutionary optimization, Chugh
et. al. noted that there was a lack of algorithms that “considered con-
straints besides the bounds for the decision variables” [15].
Another class of MOO methods is non-nature metamodel-based

methods, where approximation models such as RBF and Kriging
are used to approximate computationally expensive black-box
models or the Pareto Frontier directly. From Tabatabaei et al.
[20], metamodel-based MOO methods are generally classified as
either sequential or adaptive. Sequential methods focus on the con-
struction of accurate metamodels, which are then used to solve for
the Pareto frontier. Wilson et al. developed a sampling-based
method where the expensive models are approximated using a
second-order polynomial and a Kriging model, which are made
accurate via an iterative process of sampling [21]. They then use
a large number of samples to find the Pareto frontier using the
approximation models. Su et al. hybridized a polynomial response
surface model and a Gaussian RBF to create the hybrid RBF
(HRBF) model, which they used to approximate a noisy crashwor-
thiness model [22]. They then applied an MOEA on the HRBF
model to solve for the Pareto frontier. Adaptive methods, on the
other hand, improve the accuracy of the metamodels throughout
the optimization process by iteratively reconstructing the metamo-
del using newly obtained design points. Yang et al. combined a
single-objective optimizer and a multi-objective optimizer to
solve for the Pareto frontier using Kriging metamodels [23]. The
single-objective method helps to find the extreme points on the
Pareto frontier, while the multi-objective optimizer helps to
develop the entire frontier. Shan and Wang developed the PSP
method which uses a quadratic polynomial and an RBF to approx-
imate the expensive functions [24]. A discriminative sampling
process is used in two stages to bias the sampling towards the
Pareto frontier as well as the extreme points. Although there have
been more metamodel-based MOO methods in recent years, they
have overwhelmingly focused on low-dimensional optimization
and inexpensive constraints [20].
Survey papers such as Refs. [9,15,20,25] can be consulted for

detailed reviews of the relevant literature. The motivation of this
work is to develop a non-nature metamodel-based MOO method
designed to handle expensive objectives and inequality constraints
as well as high numbers of design variables, which is an important
area of research. We aim to solve problems with the following
mathematical formulation

min
x

F(x) = { f1(x), . . . , fi(x)}

s.t. gj(x) ≤ 0

i = 1, . . . , m; j = 1, . . . , p

(1)

where x are the design variables; F is the set of m objective func-
tions; and gj are expensive inequality constraints. The constraint
handling method used is the situational adaptive Kreisselmeier
and Steinhauser (SAKS) method [26], which uses an adaptive
enveloping function to avoid modeling all constraints using the sur-
rogate. The SAKS method is combined with a new MOO global
optimization strategy that uses a combination of objective function
decomposition and K-means clustering in a trust region framework
to form the SAKS-multi-objective trust region optimizer (SAKS-
MTRO), an adaptive metamodel-based approach. SAKS-MTRO
is then compared to a set of popular MOO methods on a suite of
benchmark functions with inequality constraints and applied to
the design of a semiconductor substrate and an industrial recessed
impeller. This work demonstrates that our method can perform
well on both unconstrained and constrained MOO problems
without changing the code or hyperparameters.

Radial Basis Function Surrogate
The chosen surrogate method for this work is an RBF composed

of a sum of thin-plate splines and a linear polynomial based on
success with prior work [26,27]

f̂ (x) =
∑n
i=1

βi|x − xi|2 log |x − xi| + P(x)

∑n
i=1

βip(x) = 0, P(x) = pα = [ p1, p2, . . . , pq][α1, α2, . . . , αq]T

(2)

where xi are the evaluated n number of center points; and β and α
are the resultant coefficients of the model fitting process. P(x) is
the linear polynomial where q= d+ 1, with d being the number
of variables.

Review of the SAKS Method
The SAKS method is a strategy to intelligently aggregate black-

box inequality constraints to reduce the number of constraints being
modeled. The method leverages the modified KS function, devel-
oped by Raspanti et al. [28] based on the original work by Kreissel-
meier and Steinhauser [29], for function aggregation and employs
an adaptive strategy to determine which constraints to aggregate
during the optimization process. The modified KS function is a con-
tinuous aggregation function with the following formulation:

KS[g(x)] = gmax(x) +
1
ρ
ln
∑n
i=1

eρ(gi(x)−gmax(x))

[ ]
(3)

where g(x) are the constraint values at x design points, gmax(x) is the
maximum constraint value at design point x, and ρ is a shape param-
eter. KS is a conservative envelope function that tends to stay above
the maximum constraint value for each design point. ρ controls the
degree of conservatism of the KS function, with a smaller ρ gener-
ating more conservative estimates. The KS function can conserva-
tively envelope the feasible space and aggregate any number of
constraints into one function [30].
The SAKS method uses an RBF surrogate to model the KS func-

tion to construct aggregated constraint functions that reduce the
number of surrogate models required. Because the KS enveloping
function is smooth and conservative, it is suitable for use as a con-
straint aggregator and helps to compensate for surrogate modeling
inaccuracies.
SAKS hybridizes the two strategies of individual constraint mod-

eling and constraint aggregation. In each iteration, SAKS classifies
constraints for either individual modeling or aggregation, based on
the constraint violation history of each constraint function as
follows:

{gind}1 = {g}, {gagg}1 =∅

{gind}i = {gviol}i−l,i−l+1,...,i−1 ∈ {g}

{gagg}i = {g}\{gind}i

(4)

where {g} is the full set of expensive inequality constraints; {gind}i
is the set of expensive inequality constraints that are to be individ-
ually modeled in the ith iteration, {gviol}i−l,i−l+1,…,i−1 is the set of
violated expensive inequality constraints for the last l iterations,
and {gagg}i is the set of expensive inequality constraints that are
to be aggregated in the ith iteration. This classification strategy
biases the algorithm toward individually modeling constraints at
the beginning and transitioning to aggregation bias as the optimiza-
tion progresses.
Next, the set {ĉ}i of RBF surrogates is constructed at the ith iter-

ation where {ĉind}i is the set of individually modeled constraints
and ĉiagg is the RBF surrogate of the KS aggregate of {gagg}i.
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{gagg(x)}i, which represents the constraint values of {gagg}i at x, is
normalized to prevent bias

gjagg,norm(x) =
normalized to [−1, 0], if gjagg(x) ≤ 0

normalized to (0, 1], if gjagg(x) > 0

{
(5)

where gjagg(x) is the output of the jth function in {gagg}i. {gagg,norm(x)}
is the set of outputs for all {gagg}i, which is then aggregated into
a single function using the KS method. Equation (3) can then be
modified to

KS[{gagg,norm(x)}] = gmax(x) +
1
ρ
ln
∑n
j=1

eρ(g
j
agg,norm(x)−gmax(x))

[ ]

gmax(x) =max({gagg,norm(x)})

(6)

KS[{gagg,norm(x)}] is then used to construct ĉiagg based on Eq. (6).
ρ is computed at each iteration as follows:

ρk+1 =
2 · ρk if {g(xk)} ≤ 0 or xk =∅
0.5 · ρk if any {g(xk)} > 0

{

1 ≤ ρ ≤ 8192

(7)

where k is the current iteration and x k−1 is the previous iteration’s
candidate design. The second term in Eq. (6) is set to zero when
the value of ρ reaches the maximum value. For further details on
the SAKS method, refer to Ref. [26].

MTRO Methodology
The MTRO method adds two strategies that build on the dual

trust region strategy introduced in TRMPS [31], which help to
balance exploitation and exploration in a single-objective optimiza-
tion. The two new strategies extend the dual trust region strategy
into the multi-objective space by adding two trust regions to form
two pairs of trust regions. One pair of trust regions (TA1 and TA2)
focus on exploitation and uses the first strategy, Random Objective
Decomposition (ROD), which concentrates on extreme point gener-
ation. The other pair (TB1 and TB2) concentrates on exploration and
uses the second strategy, K-Means Opposition Search (K-Opp),
which advances the overall frontier. Each pair of trust regions has
the same radius but can have different centroids.

Random Objective Decomposition. ROD is used in the exploi-
tation trust regions and employs two different decomposition
approaches. The first approach focuses on extreme point generation
using single-objective optimization. Given m objectives, ROD ran-
domly selects an objective oi at each iteration. The design with
minimum value in oi in the current frontier Fc is selected as the cen-
troid for TA1 for the current iteration. Sampling and selection of can-
didate designs are focused on achieving lower values in oi. In
addition, a small distance-based penalty is applied to prevent new
designs from being too close to existing designs, which has been
observed to create overly-concentrated pockets of designs on the
frontier. Search using the first approach can be expressed as

min[(1 − wp) f
∗
oi + wp(1 − d)]

dj =min (‖x∗j − x‖) (8)

where wp= 0.1 is the penalty weight, f ∗oi are the normalized surro-
gate predicted oi objective values, d are the normalized minimal
Euclidian distances between candidate designs and existing
designs, dj is the jth design in d, x∗j is the location vector of the
jth candidate design, and x is the location matrix of all existing
designs. The value for wp was chosen because of good performance
after testing several values between 0 and 1. Further examination of
the effect of wp on performance should be done in the future.

The second approach enables targeted frontier exploitation
by combining all objectives using randomized weights into a
single-objective problem. The approach used is inspired by the
weighted sum approach as applied in MOEA/D [10]. At each iter-
ation, a set of weights λ= (λ1, …, λm), where m is the number of
objectives, is randomly generated such that λi≥ 0 and

∑
λ = 1. A

new objective oλ =
∑m

i=1 λioi is formed and the design with
minimum value in oλ in the current frontier Fc is selected as the cen-
troid for TA2 for the current iteration. Search using this second
approach can be expressed as

min
∑m
i=1

∑n
j=1

λi f
∗
i,j

( )
(9)

where f ∗i,j is the normalized surrogate predicted value at the ith
objective and jth candidate design.

K-Means Opposition Search. K-Opp is used in the exploration
trust regions and advances the frontier iteratively. It uses the
k-means clustering method [32] and opposition-based learning
(OBL) [33] to choose centroids for TB1 and TB2 in a randomized
and unbiased manner, and the G function [34] is used to select can-
didate designs for evaluation with the black-box functions.
K-means is a popular clustering method that partitions a set of

designs into clusters such that designs are in clusters with the
nearest mean, as calculated using the Euclidian distance. The
method first initializes the coordinates of the centroids of K clusters,
where K is user-defined. Then, the method iteratively assigns points
to their closest clusters and re-computes the cluster centroids until
the centroids exhibit minimal change. This process can be expressed
as the minimization of the sum of squared error (SSE) within clus-
ters [35]

min
∑K
k=1

∑
x∈Ci

‖x − ci‖2 (10)

where C is the set of all clusters, and ci is the centroid of cluster Ci.
The implementation of k-means used for this work is MATLAB’s
k-means clustering which, in addition to the standard iterative
process, also uses the k-means++ method [36] to initialize cluster
centroids.
K-Opp uses k-means to select the trust region centroid of TB1

from the designs in the current frontier. The frontier designs are
clustered into K clusters

K =
Nf

2

⌈ ⌉
if Nf < 2Kmax

Kmax otherwise

⎧⎨
⎩ (11)

where Nf is the number of frontier points and Kmax= 50 is the
maximum number of clusters. A random cluster is chosen, and a
random design is selected from within the cluster to be the trust
region centroid. This method discretizes the frontier into more
uniform clusters and thus minimizes bias toward heavily concen-
trated areas of the frontier in the process of selecting the trust
region centroid. A design chosen at random would favor more con-
centrated areas of the frontier, which means new designs are also
more likely to be sampled in those areas.
While k-means is used for within-region centroid selection, the

concept of opposition is used to select the centroid of TB2 in relation
to TB1. OBL is a theory of sampling where the opposites of a set of
candidates are also sampled [37]. These opposite candidates are
defined in relation to the bounded search space. From Fig. 2,
given a point P with coordinates (x1, x2), it’s opposite point P̌ has
coordinates (x̌1, x̌2) where x̌= a+ b− x. a and b represent the
lower and upper bounds, respectively, of the search space for the
given dimension.
The objective for OBL-based sampling methods is to increase the

probability of sampling closer to the optimum. However, for
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K-Opp, OBL is used to reduce sampling bias and maintain more
uniform coverage of the search space by TB1 and TB2. Using oppo-
sition, the centroid for TB2 is a design selected from the frontier Fc

that is closest to the opposite of the centroid for TB1.
The search is guided in each of the trust regions using the G func-

tion, as defined below

Gi = [1 −max
j≠i

(min ( f ∗i1 − f ∗j1, f
∗
i2 − f ∗j2, . . . , f

∗
im − f ∗jm))]

s (12)

where Gi represents the fitness of the ith candidate relative to the
other candidates, f ∗im is the normalized surrogate predicted kth objec-
tive value of the ith candidate for k= 1, …, m, and l is a frontier
exponent. s= 1, as defined in PSP [24]. Values of G range

between [0, 2], where values below 1 predict dominated designs
and values at or above 1 predict nondominated frontier designs.
The goal of the search in TB1 and TB2 is to select candidate
designs that have G values above 1 to iteratively push the frontier
toward the Pareto frontier. In each iteration and for each trust
region, after drawing candidate designs {x∗} from the trust
region, predicted objective values are generated for those designs
using the RBF surrogate model and normalized to form the set
{ f ∗}. { f ∗} is combined with the set of normalized frontier
designs Fc-norm and evaluated using the G function. The design
with maximal G value that has a value above 1 is selected for eval-
uation with the black-box. This method maximizes the probability
of advancing the frontier.

Effect of Random Objective Decomposition and K-Opp.
Figure 3 shows the contribution of the ROD and K-Opp strategies
to the frontier during optimization of a constrained two-objective
problem, with points contributed by ROD represented by circles
and those contributed by K-Opp represented by squares. The left
plot shows the frontier after 100 function evaluations, with many
points on the extremes of the frontier contributed by ROD. At the
200 function evaluations mark, the right plot shows the K-Opp con-
tribution of filling in and gradually advancing the frontier. These
plots show that ROD and K-Opp work effectively in tandem,
with ROD aggressively expanding the frontier via extreme point
generation early on and K-Opp advancing the entire frontier.

SAKS-MTRO
This work augments the SAKS-TRO algorithm with the MTRO

strategy to form the SAKS-MTRO multi-objective optimizer.
SAKS-MTRO has a total of four trust regions during regular oper-
ation compared to the two in SAKS-TRO. The four trust regions
divided into exploitation and exploration trust regions allow the bal-
ancing of extreme points generation with targeted and broad frontier
advancement. When there are no feasible solutions, SAKS-MTRO
operates exactly like SAKS-TRO with two trust regions. Unlike
TRMPS and SAKS-TRO which maintain a single centroid, in
SAKS-MTRO, each trust region maintains its own centroid while
the trust region radius for each pair of regions is identical. This
enables the trust regions to be more distributed in the search
space and enable broader advancement of the frontier. The trust
region radii update procedure has also been modified to use frontier
advancement as the criterion for assessing iterative progress.
In a major departure from TRMPS and SAKS-TRO,

SAKS-MTRO uses all available expensive designs to construct

Fig. 2 Illustration of opposition-based sampling [37] (Reprinted
with permission from Elsevier © 2012)

Fig. 3 Contribution of ROD and K-Opp after 100 designs (left) and 200 designs (right)
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RBF surrogates. This is due to the difference in nature between
single and multi-objective problems. MOO seeks broad and even
frontier advancement, which is very different from the focused
nature of single-objective optimization. Thus, constructing RBF
surrogates using all available designs improves the modeling accu-
racy over the entire search space.

SAKS-MTRO Algorithm
Here, we follow the nomenclature established in Ref. [26] with

several differences. We define sets of points {y}, {yA1}, {yA2},
{yB1}, and {yB2}, where {yA1}, {yA2}, {yB1}, {yB2}⊆{y} and over-
laps are allowed between sets. Define the best set of designs of the
ith iteration as frontier Fi, and ρiA and ρiB are the conservativeness
parameters for the pairs of exploitation and exploration trust
regions at the ith iteration, respectively.
Step 1: Initial Sampling

• Sample ninit uniform random points {y} in the design spce, and
evaluate {y} with the black-box function.

• For each point in {y}, place it in every trust region that it fits in,
and place it in frontier Fi if it is feasible and nondominated.

• Set ρ1S = ρ1B = 50.

Step 2: Constraint Classification

• Classify the expensive constraint functions according to Eq.
(4) using the constraint function values of {y}.

Step 3: Constraint Surrogates Construction

• Construct the RBF surrogates {ĉind}i according to Eq. (2)
using expensive points {yA1} in TA1. Construct the aggregate
RBF surrogate ĉiagg by first aggregating constraint values
using Eqs. (5) and (6), then building the RBF model with
Eq. (2) and expensive points {yA1}.

• Repeat for TA2.

Step 4: Mode Selection

• If a feasible point is present, go to Step 5, else go to Step 7.

Step 5: Surrogate Point Accumulation

• Set the centroids of TA1 and TA2 according to the ROD strat-
egy. Sample a relatively large number of uniform random
points, e.g., n0= 5000, for each region TA1 and TA2. Fit the
points that satisfy the cheap constraints onto the corresponding
{ĉind}i and ĉiagg surrogates. The points that satisfy the con-
straint surrogates {ĉind}i and ĉiagg are added to the point sets
{zA1} and {zA2}. This process is repeated until a good
number of (e.g., 500) feasible samples have been accumulated
in each set.

Step 6: Objective Surrogate Construction

• Construct the RBF surrogates f̂ of the objective function using
Eq. (2) and expensive points {yA1} and {yA2}.

• Go to Step 9a.

Step 7: Constraint-penalizing Merit Function

• Set the centroid of TA1 as the design in {yA1} that is closest to
feasibility. Sample n0= 5000 uniform random points in TA1
and fit the ones that satisfy the cheap constraints onto the
{ĉind}i and ĉiagg surrogates. Use Eq. (2) to compute candidate
point fitness values.

• Repeat for TA2.
• Go to Step 8.

Step 8: Contour Selection (Constraint-Penalty)

• Use the discriminative sampling procedure [31] and the
constraint-penalizing merit function in Ref. [26] to select a
design xA1i from {zA1}. Evaluate xA1i with the black-box to
obtain results f xA1i and cxA1i . Place xA1i in {yA1}. Repeat for TA2.

Step 9a: Contour Selection (Exploitation)

• Use the discriminative sampling procedure to select designs
xA1i and xA2i from {zA1} and {zA2}, respectively. Use the
ROD strategy with Eqs. (8) and (9) as the merit functions
for TA1 and TA2, respectively. Evaluate xA1i with the black-box
to obtain results f xA1i and cxA1i . Place xA1i in {yA1}. Do the same
for xA2i and {yA2}.

• Go to Step 10.

Step 9b: Contour Selection (Exploration)

• Use the discriminative sampling procedure to select designs
xB1i and xB2i from {zB1} and {zB2}, respectively. Use the
K-Opp strategy with Eq. (12) as the merit function. Evaluate
xB1i with the black-box to obtain results f xB1i and cxB1i . Place
xB1i in {yB1}. Do the same for xB2i and {yB2}.

Step 10: Update SAKS Conservativeness

• Using cxA1i and cxA2i , update ρ
i+1
A according to Eq. (7).

Step 11: B Regions

• Perform Steps 2–10 for TB1 and TB2, and going to Steps 9b
instead of 9a.

Step 12: Region Updates

• Update frontier Fi.
• For TA1, if the frontier has been improved at this iteration

with the induction of new nondominated points, RA1=RA1/
kreduction, where RA1 is the normalized region size and kreduction
is a region shrinkage factor.

• Else if no improvement for stall iterations, RA=RA · kreduction.
• Repeat the above for TA2, TB1, and TB2.
• {yA1}, {yA2}, {yB1}, {yB2} =∅
• For each pt in {y}, place in every trust region that it fits in.
• i= i+ 1

Step 13: Convergence Criteria

• If either the max nfe (number of function evaluations) or
minimum fval (function value) criteria is met, then stop.
Otherwise, go to Step 2.

Benchmark Process and Results
Frontier Evaluation Metrics. A variety of different metrics

exist to evaluate the quality of Pareto frontiers [38]. The metrics
used in this work are the hypervolume indicator (S-metric) [39]
and a modified version of set coverage (C-metric) [10] called
mean set coverage (CMean). These two metrics are chosen
because they are complementary, and both do not require knowl-
edge of the true Pareto frontier. As the true Pareto frontier is not
known for many of the benchmark problems and all the simulation-
based problems, the S and C metrics combined provide a good indi-
cation of algorithm performance that can be applied universally.

Hypervolume Indicator (S-metric). The S-metric measures the
volume in the objective space that is encapsulated by the nondomi-
nated solutions and a reference point. The reference point should
have objective values that are at least the maximum of all objective
values in the set of nondominated solutions. When comparing mul-
tiple algorithms, the reference point for each problem should be
defined as the maximum of all objective values in all sets of nondo-
minated solutions to establish a consistent metric. The method gen-
erates a hypercube vi for each nondominated point i in a set of
nondominated points such that point i and the reference point are
diagonal corners of the hypercube [40]. The method then calculates
the union of all hypercubes for the set of nondominated points to
determine the S-metric value:

Smetric = volume
⋃|F|

i=1
vi

( )
(13)
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where F is the set of nondominated solutions. Figure 4 is a two-
dimensional (2D) illustration of the hypervolume indicator. The
area within the dotted lines represents the S-metric volume that is
calculated. Frontiers with larger S-metric values are closer to the
Pareto frontier, and thus, larger S-metric values indicate better algo-
rithm performance. The implementation of the S-metric used in this
work is a hypervolume approximator by Bringmann and Friedrich
[41] implemented in the software package PaGMO [42].

Mean Set Coverage (CMean). The C-metric compares two
frontiers A and B by computing the percentage of designs in frontier
B that are dominated by at least one design in frontier A [10]

Cmetric(A, B) =
|u ∈ B∃v ∈ A: v dominates u|

|B| (14)

This metric complements the S-metric because a frontier that has a
higher hypervolume value may have a large percentage of its
designs being dominated by a different frontier with a lower hyper-
volume value. The hypervolume indicator favors convex frontiers
[39], which C-metric can counterbalance.
One drawback of C-metric is that it can only compare two fron-

tiers. When algorithms are run for multiple runs as part of a stochas-
tic benchmarking process, it is desirable to compare two sets of
frontiers. This work introduces the mean set coverage (CMean)
metric, where C-metric is calculated for all combinations of fron-
tiers between the two sets, and the results are averaged to obtain
a true comparison between two algorithms. The CMean metric is
computed as

CMean({A}, {B}) =

∑h
i

∑k
j
Cmetric(A(i), B(j))

k

h
(15)

where {A} and {B} are two sets of frontiers generated by two dif-
ferent algorithms, and h and k are the numbers of frontiers in
each set, respectively.

Test Methodology. SAKS-MTRO was compared to four differ-
ent MOO algorithms in two different test suites. In the uncon-
strained test suite, SAKS-MTRO was compared to PSP [24], and
the PaGMO [43,44] implementations of MOEA/D [10] and
NSGA-II [8] on 11 unconstrained MOO benchmark problems. In
the constrained test suite, SAKS-MTRO was compared to
NSGA-II Program in Matlab(NPGM) [45], an implementation of
Deb’s NSGA-II that supports expensive constraints, and
MOFEPSO [14] on seven constrained MOO benchmark problems.
The unconstrained benchmark problems range from 10 to 30

variables and between two and five objectives. The constrained
benchmark problems range from 8 to 30 variables, two to three
objectives, and 1 to 21 constraints. Table 1 summarizes the proper-
ties of the test problems. Because NPGM and MOFEPSO struggled
to find any feasible solutions for some constrained problems, four of
the constrained problems were simplified by removing some con-
straints. These problems have the “mod” postfix. See the Appendix
for details on each of the benchmark problems. Each of the algo-
rithms was run with each of the benchmark problems 30 times to
minimize the effect of random variation and starting point location
on algorithm performance. To test the constraint handling efficiency
of the algorithms, all constraints are considered to be computation-
ally expensive, calculated along each evaluation of the objective
function. In this work, NFE is the total number of function evalua-
tions, with each function evaluation computing the results for all
functions. All benchmark runs were limited to 500 NFEs because
many industrial simulations are very computationally expensive,
and thus, it is impractical to perform optimization with thousands
of evaluations. Due to this limit, most benchmark results in this
study do not resemble the true Pareto frontiers.

Pareto Set Pursuing. PSP [24] is a surrogate-based MOO that
relies on a discriminative sampling of the surrogates to iteratively
achieve frontier improvement. During each iteration, PSP con-
structs a surrogate model to generate many predictions at random
designs. Discriminative sampling and the G function are used to
select promising candidate designs to be evaluated using the black-
box functions.

MOEA/D. MOEA/D is a decomposition-based evolutionary
MOO algorithm [10]. It decomposes a multi-objective problem
into a finite set of single-objective subproblems, with the number
of subproblems corresponding to the population size. It iteratively
evolves the population by using genetic operators and combines
good solutions from neighboring problems to achieve frontier
improvement. The PaGMO implementation of MOEA/D uses the
rand/2/exp Differential Evolution operator and a polynomial muta-
tion for population reproduction, and the Tchebycheff method for
decomposition [11]. In the benchmarks, the population size and
number of generations for MOEA/D vary according to Table 2.
This results in at least 500 NFEs for each case as the PaGMO imple-
mentation does not count the initial population as a generation.
Because of a limitation in the PaGMO implementation on popula-
tion sizes, the population size needs to be selected from a discrete
set of values that differ according to the number of objectives.
The values in Table 2 were chosen because they generally produced
better results than other randomly tried population sizes.

NSGA-II. NSGA-II is a popular classic evolutionary MOO that
combines a fast nondominated sorting approach with a crowded-
comparison operator to iteratively improve the frontier [8]. At
each iteration, it uses crossover and mutation operators to generate
offspring. The offspring are then selected using the crowded-
comparison operator which combines the domination and
crowding-distance criteria to choose the new population. In the
benchmarks, the population size was set to 24 and the number of
generations was set to 20 for NSGA-II, which results in 504
NFEs per run. As with MOEA/D, this implementation does not
count the initial population as a generation. A population size of
24 was selected as it gave better results than other choices. The
PaGMO implementation also limits the population size to a multiple
of four.

NPGM. NPGM is a MATLAB implementation of NSGA-II that
adds rudimentary expensive constraint handling [45]. The method
handles constraints by computing the sum of violated constraints
for each expensive candidate design and penalizing their domina-
tion level during the nondominated sorting process. This

Fig. 4 Illustration of the hypervolume indicator [40] (Reprinted
with permission from Elsevier © 2011)
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significantly reduces the likelihood that a candidate will be selected
to form the new population at each iteration. In the benchmarks, the
population size was set to 20 and the number of generations was set
to 25 for NPGM, which results in 500 NFEs per run; 20 was
selected for population size as it gave better results than other ran-
domly tried choices. NPGM also limits the population size to even
numbers.-OFEPSO
MOFEPSO is a partical swarm optimization (PSO)-based

approach that employs different strategies for feasible and infeasible
particles to handle constrained MOO problems [14]. Infeasible par-
ticles aim to reach feasibility by prioritizing a single violated con-
straint. The movement of infeasible particles is restricted to the
parameters for which the chosen constraint is sensitive. The imple-
mentation of MOFEPSO was obtained from MATLAB Central File
Exchange [46]. In the benchmarks, the swarm size was set to 10
and the number of generations was limited to achieve a target
average NFEs of 500 per run.

Benchmark Results

Unconstrained Benchmark Results
Tables 3 and 4 contain the S-metric and CMean results, respec-

tively, for the unconstrained benchmark cases. The results show
that SAKS-MTRO achieves the best S-metric results for six of
the 11 cases and has the best CMean performance in seven of the
11 cases. While the S-metric performance is worse than the
CMean performance, SAKS-MTRO trails the best results by rela-
tively small margins in the cases where it does not have the best
S-metric result. In the cases where SAKS-MTRO has the best
S-metric result, it generally does so by very wide margins.
SAKS-MTRO is followed by NSGA-II in terms of overall perfor-
mance. NSGA-II has the best S-metric results for three cases and
beats SAKS-MTRO in CMean performance in two cases.
NSGA-II is followed by MOEA/D, with PSP having the worst
overall performance. While PSP and MOEA/D both have the one
case with best performing S-metric results, PSP performs worse
than MOEA/D on most problems. In many of the problems the
results for our method, NSGA-II, and PSP demonstrate crowding
in knee regions of the frontier with only MOEA/D demonstrating
relatively even distributions of points.
In the bi-objective Zitzler Deb Thiele (ZDT) test suite,

SAKS-MTRO performs well in all cases except for the ZDT3 and
ZDT4 problems where it trails NSGA-II in performance. Figures
5–7 are single-run frontier plots for the ZDT test suite that reflect

the average performance of each method. Figure 5 shows that
SAKS-MTRO performs well for the standard convex (ZDT1)-
and non-convex (ZDT2)-type problems. Figure 6 shows that
SAKS-MTRO is close to NSGA-II’s performance for ZDT3 but
lags substantially for ZDT4, which is a highly multimodal
problem with 219 local Pareto-optimal fronts [47]. Figure 7
shows SAKS-MTRO performing substantially better than the
other three algorithms on ZDT6, which is a problem that has a
lower density of solutions near the Pareto-optimal front [47].
SAKS-MTRO performs similarly as other algorithms for the

DTLZ1 test problems with three and five objectives. For
DTLZ1-3 and DTLZ1-5, SAKS-MTRO has very close results in
the S-metric compared to the other methods but comes third and
second in the CMean results. Performance in the DTLZ2 problems
is much better, with SAKS-MTRO beating the other methods in
both S-metric and CMean for DTLZ2-3. Although it has slightly
worse S-metric performance on DTLZ2-5 compared to PSP, it
has much better CMean performance. For the DTLZ7 problems,
SAKS-MTRO has a much better performance compared to the
other methods across the board.

Constrained Benchmark Results
Table 5 contains all numerical results for the constrained bench-

mark cases. The Success Rate column indicates the percentage of
runs that result in feasible solutions. The “*” symbol indicates
that feasible solutions are found by random sampling during the
initial sampling stage of the algorithm, while the “-” symbol indi-
cates that no feasible solutions were found on any runs. The
results show that SAKS-MTRO has the best results overall com-
pared to NPGM and MOFEPSO, oftentimes with very large perfor-
mance leads. NPGM performs well for loosely constrained
problems but performs poorly for problems with more or tighter
constraints. In some cases, it fails to find feasible solutions in the
given computational budget. MOFEPSO generally traded blows
with NPGM depending on the problem. In the following results,
all figures are single-run results that reflect the average performance
for each algorithm on the given problems.
Figure 8 shows one trial run of SAKS-MTRO, NPGM, and

MOFEPSO on the bi-objective single-constraint CF6 and CF7
problems. While SAKS-MTRO has a solid performance lead,
NPGM comes close in performance due to the presence of only a
single constraint with MOFEPSO lagging. SAKS-MTRO and
NPGM both have significant crowding around knee regions while
MOFEPSO has better-distributed results.

Fig. 5 Comparison of SAKS-MTRO on ZDT1 (left) and ZDT2 (right) frontier plots
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From Fig. 9, NPGM has difficulty exploring the search space
with the presence of multiple expensive constraints. This has
resulted in NPGM producing very short fronts. Table 5 also
shows that 30% of NPGM runs for the P113mod problem were
unable to produce feasible solutions and that it takes hundreds of
NFEs to achieve feasibility for both problems during the runs that
were successful. MOFEPSO performed much better on P113mod
but failed to obtain any feasible designs in all 30 runs on the
TP3mod problem despite the presence of only three constraints.
This contrasts with SAKS-MTRO, which was able to generate
broad and well-distributed frontiers under the same circumstances.
Figure 10 shows NPGM struggling to achieve feasibility on the
P106mod problem. NPGM only manages to achieve feasibility in
16.7% of runs. It does better on the Beam problem but lags
SAKS-MTRO significantly. MOFEPSO does well on P106mod
while performing similarly to NPGM for the Beam problem.
SAKS-MTRO demonstrates the best overall performance in

unconstrained MOO problems while losing to NSGA-II and
MOEA/D on a few problems (notably, ZDT3, ZDT4, and
DTLZ1). Overall, NSGA-II also performed very well, often per-
forming just behind or just ahead of SAKS-MTRO. However,
when there are expensive constraints present, SAKS-MTRO

Fig. 6 Comparison of SAKS-MTRO on ZDT3 (left) and ZDT4 (right) frontier plots

Fig. 7 Comparison of SAKS-MTRO on ZDT6 frontier plot

Fig. 8 Comparison of SAKS-MTRO on CF6 (left) and CF7 (right) frontier plots
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demonstrates a large and consistent performance lead compared to
NPGM, the constrained version of NSGA-II, and MOFEPSO.

Industrial Applications of SAKS-MTRO
As part of this work, SAKS-MTRO is used to optimize the

designs of an embedded copper trace substrate and an industrial
recessed impeller for use in slurry pumping applications.

Embedded Copper Trace Substrate Optimization. Substrate
packaging technology has been moving to coreless designs to
reduce package size. Coreless technology relies on a temporary
carrier platform as a base to build up material, which is removed
at the end of the process. While coreless technology has advantages
such as thinner packages, higher interconnect density, and better
electrical performance [48], a disadvantage of removing the core
is the increased warpage due to reduced structural rigidity [49]
and the high temperatures of the layering process [48]. The
warpage produces gaps between the substrate and silicon (see
Fig. 11), which can lead to bonding failure because of the solder
balls failing to connect the silicon to the copper traces. Even if
the bonding was successful during the packaging process, the pack-
ages need to undergo rigorous stress and drop tests to ensure

reliability and quality [51]. A warped substrate with weak bonds
is more likely to fail during a drop test.
To address the warpage issue, SAKS-MTRO was used to opti-

mize the substrate properties represented by an ANSYSMechanical
FEA model developed by Hwang et al. [50] that simulates the
thermal deformation of a coreless embedded trace substrate
during the packaging process.

Simulation Model. Because the structure of an embedded
copper trace substrate is complicated [52], the substrate model
geometry was simplified to reduce the computational cost of

Fig. 9 Comparison of SAKS-MTRO on P113mod (left) and TP3mod (right) frontier plots

Fig. 10 Comparison of SAKS-MTRO on P106mod (left) and Beam (right) frontier plots

Fig. 11 Substrate warpage [50]

Journal of Mechanical Design NOVEMBER 2021, Vol. 143 / 111704-9

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/143/11/111704/6701952/m
d_143_11_111704.pdf by Sim

on Fraser U
niversity user on 21 D

ecem
ber 2021



analysis [50]. Figure 12 shows the top view of the substrate, with
the area indicated in the center with length A= 2.8 mm representing
the actual geometry simulated using FEA.
The model is composed of three kinds of materials: copper (Cu),

polypropylene (PP), and solder resist (SR). The substrate structure
is composed primarily of five layers, as shown in Fig. 13: top
solder resist (SR1), top copper trace (CT1), polypropylene (PP),
bottom copper trace (CT2), and bottom solder resist (SR2).
The SR1, SR2, and PP layers depend on the geometry of CT1 and

CT2 as the copper trace layers are partially embedded in the SR1,

SR2, and PP layers. The layers are parameterized using the follow-
ing nine unique variables:

SR1 (1 variable): thickness HSR1;
SR2 (2 variables): thickness HSR2, circular opening diameter

DSR2;
CT1 (3 variables): thicknessHCT1, the length lCT1 and width wCT1

of each rectangular trace;
CT2 (2 variables): thicknessHCT2, diameterDCT2 of each circular

trace; and
PP (1 variable): thickness Hpp.

Table 6 shows the bounds for each variable. To shorten the com-
putational cost of the simulation, the symmetrical properties of the
model were leveraged to reduce the simulation geometry to
one-eighth of the original size. To simulate the packaging
process, the temperature was set to 25 °C initially and then
increased to 183 °C during the heating process. The goal of the opti-
mization is to minimize substrate warping as well as substrate thick-
ness. Substrate warping data can be obtained from the simulation by
extracting the maximum Z-axis displacement. Substrate thickness
can be trivially calculated by summing the thickness variables.
The full optimization problem formulation is as follows:

min
wrt HCT1,HCT2 ,

HSR1,Hpp ,HSR2 ,

DCT2,DSR2 ,wCT1,lCT1

F1 = |max (Z − displacement)|
F2 = HCT1 + HCT2 + HSR1 + Hpp + HSR2

s.t. 13 ≤ HCT1 ≤ 23

15 ≤ HCT2 ≤ 20

13 ≤ HSR1 ≤ 23

75 ≤ HPP ≤ 85

15 ≤ HSR2 ≤ 20

135 ≤ DCT2 ≤ 145

110 ≤ DSR2 ≤ 120

40 ≤ wCT1 ≤ 50

70 ≤ lCT1 ≤ 90 (16)

Unconstrained Multi-Objective Optimization. The substrate
optimization problem was solved using SAKS-MTRO and the
unconstrained optimizers PSP, MOEA/D, and NSGA-II. Because
the simulation model ran quickly, 10 optimization runs were per-
formed for each algorithm with a target NFE of 500. Table 7
shows the results for both S-metric and CMean. The results show
that SAKS-MTRO obtained the best results for both the S-metric
and CMean results. Figure 14 is a single-run frontier plot where,
for each algorithm, the run that has the closest S-metric value to
the S-metric average for that algorithm was selected for the plot.
The figure clearly shows the high quality of the SAKS-MTRO fron-
tier, with designs that are well distributed along the front. The plot
shows a clear trade-off behavior between substrate thickness and
warpage, with warpage accelerating as the substrate becomes
thinner. From the SAKS-MTRO frontier, a solution with a good
compromise between thickness and warpage has 139.6 µm thick-
ness and 2.189 µm warpage.

Constrained Optimization of an Industrial Recessed
Impeller. Slurry pumps are a type of centrifugal pump that are
commonly used in the oil and gas, mining, and power generation
industries. The slurry is a semiliquid mixture where solid particles
are suspended in a liquid. Until recently, the design of slurry
pumps has relied primarily on engineers’ knowledge and experi-
ence, and physical prototyping and testing [53]. In this work, we
used the same CFD model as in Ref. [26], which is a full model
of the impeller and volute [54]. ANSYS BladeModeler was used
to build the impeller and volute geometry. ANSYS Meshing was

Fig. 12 Top view of the substrate [50]

Fig. 13 Substrate cross section [50]

Fig. 14 Substrate optimization frontier plot
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used to generate a mesh of the fluid domain of the impeller
and volute. ANSYS CFX was used to setup and run the simulation.
CFX simulations were run at two different volumetric flowrates,
with the higher flowrate at approximately the best efficiency point
(BEP).
SAKS-MTRO was applied to explore the trade-off behavior

between the high flowrate efficiency, head at lowest flowrate
(head at shutoff), and torque at high flowrate. Head is the ability
of the pump to raise water to a certain height while shutoff is the
lowest pump flowrate. The high flowrate efficiency and torque are
referred to as BEP efficiency and torque. Inequality constraints
are placed on the output torques to ensure they are positive, as
the CFD model sometimes output erroneous results when the
torque values are at 0 or below. Also, the head at all flowrates are
constrained to be within reasonable bounds as there were cases of
head values being extremely high, which were anomalies of the
low-fidelity simulation model as the head values obtained on the
same designs using the high-fidelity model were quite low. Since
head, efficiency, and torque values are all output from the CFD
simulation, these constraints are all computationally expensive. In
addition, nine math constraints were added to constrain the input
parameters to reduce the incidence of meshing and solver failures
due to bad geometry. We defined 12 input parameters representing
different geometric features of the impeller blades as specified in
Ref. [26]. Due to confidentiality, the input parameters and operating
velocities are generalized and values are expressed relative to
nominal. The multi-objective problem formulation is as follows:

f1(x) = −efficiency at mid flow rate

f2(x) = −head at low flow rate

f3(x) = −torque at mid flow rate

g1,2(x) � head at low and mid flow rates ≤ maximum head limit

g3,4(x) = head at low and mid flow rates ≥ 0

g5,6(x) = torque at low and mid flow rates ≥ 0

g7�15(x) = various mathematical constraints on input parameters

(17)

The multi-objective impeller optimization problem was solved
using the constrained optimizers SAKS-MTRO, NPGM, and
MOFEPSO. Because of the lengthy simulation runs, a single opti-
mization run was performed for each algorithm with a target NFE
of 200.
Table 8 shows the results for both S-metric and C-metric. For con-

fidentiality reasons, the S-metric result for SAKS-MTRO is shown
as a percentage of the NPGM and MOFEPSO S-metric values.
The results show that SAKS-MTRO obtained the best results for

both the S-metric and C-metric results. Figure 15 shows the normal-
ized frontier plot for the impeller optimization for SAKS-MTRO,
NPGM, and MOFEPSO. There is a clear relationship between
BEP torque and efficiency, with torque increasing significantly
only when efficiency has dropped past the 0.6 normalized mark.
On the other hand, there is not a clear trade-off between head at
shutoff and BEP efficiency, which means there is the possibility to
keep both high without sacrificing one or the other.

Final Remarks
This work proposed the SAKS-Multi-objective Trust Region

Optimizer (SAKS-MTRO) for expensively constrained and high-
dimensional black-box multi-objective optimization. The Random
Objective Decomposition (ROD) and K-Means Opposition Search
(K-Opp) strategies were introduced, which balances exploitation
and exploration in the multi-objective space. The SAKS-TRO
method was also modified to accommodate four semi-independent
trust regions that use ROD and K-Opp to perform constrained
multi-objective optimization. The method was benchmarked
against three other unconstrained multi-objective optimizers and
two constrained multi-objective optimizers on a suite of uncon-
strained and constrained benchmark problems. The method was
also benchmarked on two industrial optimization applications.
The benchmarks show that SAKS-MTRO performs well com-

pared to PSP, MOEA/D, and NSGA-II on the unconstrained prob-
lems, and has a significant performance lead compared to NPGM
and MOFEPSO on the constrained problems. The results show
that our method can perform well for both unconstrained and con-
strained MOO problems without tuning the hyperparameters.
However, some limitations of our method are issues with concentra-
tion of frontier points around knee regions and a lack of testing
around many-objective problems, which will be the focus of
future work.
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Appendix
Unconstrained Benchmark Problems

ZDT Test Suite [47]

ZDT1

F1(x) = x1

F2(x) = g(x) 1 −

������
F1(x)
g(x)

√( )

g(x) = 1 + 9
∑n
i=2

xi

( )/
(n−1)

x ∈ [0, 1]
n = 30

(A1)

ZDT2

F1(x) = x1

F2(x) = g(x) 1 −
F1(x)
g(x)

( )2
( )

g(x) = 1 + 9
∑n
i=2

xi

( )/
(n−1)

x ∈ [0, 1]
n = 30

(A2)

ZDT3

F1(x) = x1

F2(x) = g(x) 1 −

������
F1(x)
g(x)

√
−

F1(x)
g(x)

( )
sin(10πF1(x))

( )

g(x) = 1 + 9
∑n
i=2

xi

( )/
(n−1)

x ∈ [0, 1]
n = 30

(A3)

ZDT4

F1(x) = x1

F2(x) = g(x) 1 −

������
F1(x)
g(x)

√( )

g(x) = 1 + 10(n−1) +
∑n
i=2

x2i −10 cos(4πxi)
( )

x1 ∈ [0, 1]; x2, . . . , xn ∈ [−5, 5]
n = 10

(A4)

ZDT6

F1(x) = 1 − exp(−4x1)sin6(6πx1)

F2(x) = g(x) 1 −
F1(x)
g(x)

( )2
( )

g(x) = 1 + 9

∑n
i=2

xi

( )
(n−1)

⎛
⎜⎜⎝

⎞
⎟⎟⎠

0.25

x ∈ [0, 1]
n = 10

(A5)

DTLZ Test Suite [55]

DTLZ1

F1(x) = 0.5x1x2 . . . xM−1(1 + g(XM))
F2(x) = 0.5x1x2 . . . (1 − xM−1)(1 + g(XM))

..

.

FM−1(x) = 0.5x1(1 − x2)(1 + g(XM))
FM(x) = 0.5(1 − x2)(1 + g(XM))

g(XM) = 100 |XM | +
∑
xi∈XM

(xi−0.5)2 − cos(20π(xi−0.5))
[ ]

x ∈ [0, 1]; |XM | = 5

n =M + 4

(A6)

Table 1 Properties of multi-objective test problems

Problem # Variables # Objectives # Constraints

ZDT1 30 2 0
ZDT2 30 2 0
ZDT3 30 2 0
ZDT4 10 2 0
ZDT6 10 2 0
DTLZ1-3 7 3 0
DTLZ1-5 9 5 0
DTLZ2-3 12 3 0
DTLZ2-5 14 5 0
DTLZ7-3 22 3 0
DTLZ7-5 24 5 0
CF6 10 2 2
CF7 10 2 2
P113mod 10 2 4
TP3mod 13 2 3
P106mod 8 2 3
P116mod 13 3 8
Beam 30 2 21

Table 2 MOEA/D parameters

# Objectives Population size # Generations

2 25 19
3 28 17
5 35 15

111704-12 / Vol. 143, NOVEMBER 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/143/11/111704/6701952/m
d_143_11_111704.pdf by Sim

on Fraser U
niversity user on 21 D

ecem
ber 2021



Table 4 SAKS-MTRO unconstrained benchmark results (CMean, %)

Problem

SAKS-MTRO PSP MOEA/D NSGA-II

CMean versus
PSP

CMean versus
MOEA/D

CMean versus
NSGA-II

CMean versus
SAKS-MTRO

CMean versus
SAKS-MTRO

CMean versus
SAKS-MTRO

ZDT1 99.92 99.93 91.04 0.000 0.000 3.54
ZDT2 100 99.72 98.59 0.000 0.01 0.05
ZDT3 99.68 93.76 6.61 0.17 1.86 73.34
ZDT4 94.67 57.47 1.90 1.70 6.67 50.79
ZDT6 94.71 89.56 51.98 1.73 5.07 14.57
DTLZ1-3 69.63 8.38 7.20 7.53 69.44 57.64
DTLZ1-5 47.68 0.37 15.38 11.81 66.46 15.22
DTLZ2-3 72.41 30.94 31.57 4.39 1.54 12.53
DTLZ2-5 48.62 9.61 37.29 2.56 1.47 0.60
DTLZ7-3 97.56 83.15 49.8 0.23 0.47 11.69
DTLZ7-5 90.49 23.25 50.78 0.53 1.72 3.18

Note: Bold text indicates the algorithm that performed best for that metric.

Table 5 SAKS-MTRO constrained benchmark results

SAKS-MTRO

Problem S-Metric mean S-Metric STD
CMean versus

NPGM
CMean versus
MOFEPSO

Success
rate

Mean NFE to
feasible

CF6 84.64 1.77 59.90 0.8687 100 *
CF7 485.0 21.8 50.47 0.9169 100 *
P113mod 7.312 × 105 3.55 × 103 98.77 0.9964 100 *
TP3mod 181.4 7.53 96.28 1.000 100 28.00
P106mod 1.867 × 104 16.7 100 0.04976 100 *
P116mod 75.43 0.843 90.29 0.9791 100 18.667
Beam 0.02495 0.00134 99.42 0.9992 100 11.333

NPGM MOFEPSO

Problem
S-metric
mean

S-metric
STD

CMean
versus

SAKS-MTRO
Success
rate

Mean NFE
to Feasible

S-metric
mean

S-metric
STD

CMean versus
SAKS-MTRO

Success
rate

Mean NFE
to Feasible

CF6 81.33 2.43 7.23 100 * 73.95 5.82 0.0202 100 152.9
CF7 475.0 24.5 28.13 100 * 400.2 31.4 0.0271 100 154.8
P113mod 3.611 × 105 9.85 × 104 0.10 70.0 257.0 6.000 × 105 3.14 × 104 3.440e−4 100 171.0
TP3mod 39.04 10.7 0.00 100 355.6 – – – 0 –
P106mod 613.9 722 0.00 16.7 368.2 1.311 × 104 5.82 × 103 0.5681 100 128.9
P116mod 41.36 16.7 0.11 100 42.07 18.35 11.6 9.486e−5 100 200.6
Beam 0.01243 0.00337 0.000 100 106.7 0.01310 0.00199 0.000 100 458.4

Note: Bold text indicates the algorithm that performed best for that metric.

Table 3 SAKS-MTRO unconstrained benchmark results (S-metric)

Problem

SAKS-MTRO PSP MOEA/D NSGA-II

Mean STD Mean STD Mean STD Mean STD

ZDT1 5.372 0.093 3.486 0.0628 3.807 0.302 4.913 0.184
ZDT2 6.012 0.0808 3.414 0.151 3.539 0.280 4.685 0.290
ZDT3 4.893 0.155 3.911 0.0937 4.100 0.253 5.360 0.162
ZDT4 180.0 8.15 152.7 7.54 147.7 28.3 201.5 7.83
ZDT6 3.647 0.671 1.847 0.266 1.979 0.695 2.735 0.457
DTLZ1-3 9.937 × 107 1.40 × 105 9.927 × 107 1.14 × 105 9.940 × 107 1.00 × 105 9.951 × 107 6.61 × 104

DTLZ1-5 2.075 × 1013 6.50 × 1010 2.075 × 1013 4.40 × 1010 2.079 × 1013 3.86 × 1010 2.070 × 1013 8.71 × 1010

DTLZ2-3 33.39 0.0481 33.13 0.0252 30.63 0.490 32.96 0.328
DTLZ2-5 393.2 7.59 398.0 0.912 348.0 14.9 376.1 9.94
DTLZ7-3 17.89 0.517 15.37 0.189 8.508 2.17 16.99 0.685
DTLZ7-5 27.67 1.19 21.73 0.434 13.03 3.54 19.94 3.94

Note: Bold text indicates the algorithm that performed best for that metric.
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DTLZ2

F1(x) = (1 + g(XM))cos(x1π/2)cos(x2π/2)
· · · cos(xM−2π/2)cos(xM−1π/2)

F2(x) = (1 + g(XM))cos(x1π/2)cos(x2π/2)
· · · cos(xM−2π/2)sin(xM−1π/2)

F3(x) = (1 + g(XM))cos(x1π/2)cos(x2π/2) · · · sin(xM−2π/2)
..
.

FM−1(x) = (1 + g(XM))cos(x1π/2)sin(x2π/2)
FM(x) = (1 + g(XM))sin(x1π/2)
g(XM) =

∑
xi∈XM

(xi−0.5)2

x ∈ [0, 1]; |XM | = 10

n =M + 9 (A7)

DTLZ7

F1(x) = x1
F2(x) = x2

..

.

FM−1(x) = xM−1

FM(x) = (1 + g(XM))h(F1, F2, . . . , FM−1, g)

g(XM) = 1 +
9

|XM |
∑
xi∈XM

xi

h(F1, F2, . . . , FM−1, g) =M −
∑M−1

i=1

fi
1 + g

(1 + sin(3πfi))
[ ]

x ∈ [0, 1]; |XM | = 20

n =M + 19 (A8)

Table 6 Substrate model variable bounds

Parameter name Lower bound (µm) Upper bound (µm)

HCT1 13 23
HCT2 15 20
HSR1 13 23
Hpp 75 85
HSR2 15 20
DCT2 135 145
DSR2 110 120
wCT1 40 50
lCT1 70 90

Table 7 Substrate optimization results for S-metric (top) and CMean (bottom, %)

S-metric

SAKS-MTRO PSP MOEA/D NSGA-II

Mean STD Mean STD Mean STD Mean STD

60.42 0.454 49.68 5.30 52.39 3.39 55.01 2.81

SAKS-MTRO PSP MOEA/D NSGA-II

CMean versus
PSP

CMean versus
MOEA/D

CMean versus
NSGA-II

CMean versus
SAKS-MTRO

CMean versus
SAKS-MTRO

CMean versus
SAKS-MTRO

98.51 81.66 89.46 0.37 3.57 4.65

Table 8 Impeller optimization results for S-metric and C-metric

SAKS-MTRO

S-metric versus NPGM S-metric versus MOFEPSO C-metric versus NPGM C-metric versus MOFEPSO NFE to Feasible

138.3% 125.4% 59.90% 57.14% <20

NPGM MOFEPSO

C-metric versus SAKS-MTRO NFE to Feasible C-metric versus SAKS-MTRO NFE to Feasible

7.23% 23 21.43% 52
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KS-MTRO Constrained Benchmark Problems

CF6

F1(x)= x1 +
∑
j∈J1

y2j

F2(x)= (1− x1)2 +
∑
j∈J2

y2j

g1(x)= x2−0.8x1 sin 6πx1 +
2π
n

( )

− sign(0.5(1− x1)− (1− x1)2)
�������������������������
|0.5(1− x1)− (1− x1)2|
√

≥ 0

g2(x)= x4−0.8x1 sin 6πx1 +
4π
n

( )

− sign(0.25(1− x1)− 0.5(1− x1))
�����������������������������
|0.25(1− x1)− 0.5(1− x1)|
√

≥ 0

J1 = { j|j is odd and 2≤ j≤ n}
J2 = { j|j is even and 2≤ j≤ n}

yj =
xj−0.8x1 cos 6πx1 +

jπ

n

( )
if j ∈ J1

xj−0.8x1 sin 6πx1 +
jπ

n

( )
if j ∈ J2

⎧⎪⎪⎨
⎪⎪⎩
x1 ∈ [0, 1]; x2, . . . , xn ∈ [−2, 2]
n= 10 (A9)

CF7

F1(x)= x1 +
∑
j∈J1

hj(yj)

F2(x)= (1− x1)2 +
∑
j∈J2

hj(yj)

g1(x)= x2 − sin 6πx1 +
2π
n

( )

− sign(0.5(1− x1)− (1− x1)2)
�������������������������
|0.5(1− x1)− (1− x1)2|
√

≥ 0

g2(x)= x4 − sin 6πx1 +
4π
n

( )

− sign(0.25(1− x1)− 0.5(1− x1))
�����������������������������
|0.25(1− x1)− 0.5(1− x1)|
√

≥ 0

J1 = { j|j is odd and 2≤ j ≤ n}
J2 = { j|j is even and 2≤ j≤ n}

yj =
xj − cos 6πx1 +

jπ

n

( )
if j ∈ J1

xj − sin 6πx1 +
jπ

n

( )
if j ∈ J2

⎧⎪⎪⎨
⎪⎪⎩

h2(t)= h4(t)= t2

hj(t)= 2t2 − cos(4πt)+ 1; for j= 3, 5, 6, . . . , n

x1 ∈ [0, 1]; x2, . . . , xn ∈ [−2, 2]
n= 10 (A10)

P113mod. The P113 is a 10-variable test problem with 8
constraints from Hock and Schittkowski [54]. We modified it to

take the following form:

f1(x) = x21 + x22 + x1x2−14x1−16x2 + (x3−10)2 + 4(x4−5)2

+ (x5−3)2 + 2(x6−1)2 + 5x27 + 7(x8−11)2 + 2(x9−10)2

+ (x10−7)2 + 45

f2(x) = −105 + 4x1 + 5x2−3x7 + 9x8
g1(x) = 10x1−8x2−17x7 + 2x8 ≤ 0

g2(x) = −8x1 + 2x2 + 5x9−2x10−12 ≤ 0

g3(x) = 3(x1−2)2 + 4(x2−3)2 + 2x23−7x4−120 ≤ 0

x ∈ [−10, 10] (A11)

TP3 [56] and TP3mod. The following is the TP3 problem mod-
ified to have two objectives:

F1(x) = 5
∑4
i=1

xi − 5
∑4
i=1

x2i −
∑13
i=5

xi

F2(x) = 2x1 + 2x2 + x10 + x11 − 10

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(x) = −8x1 + x10 ≤ 0

g5(x) = −8x2 + x11 ≤ 0

g6(x) = −8x3 + x12 ≤ 0

g7(x) = −2x4 − x5 + x10 ≤ 0

g8(x) = −2x6−2x7 + x11 ≤ 0

g9(x) = −2x8 − x9 + x12 ≤ 0

x1, . . . , x9 ∈ [0, 1]; x10, . . . , x12 ∈ [0, 100]; x13 ∈ [0, 1]

(A12)

The TP3mod problem is the same as the above with the last 6
constraints disabled.

P106mod. The P106mod is based on the P106 problemmodified
to have two objectives [54]

f1(x) = x1 + x2 + x3

f2(x) = 0.0025(x4 + x6) − 1

g1(x) = 0.0025(x5 + x7 − x4) − 1 ≤ 0

g2(x) = 0.01(x8 − x5) − 1 ≤ 0

x1 ∈ [1e2, 1e4], { x2, x3} ∈ [1e3, 1e4],
{x4, x5, x6, x7, x8} ∈ [10, 1e3] (A13)

P116mod. The P116mod is based on the P116 problem in
Ref. [54] and modified to have three objectives

f1(x) = x11 + x12 + x13
f2(x) = x2 − x3
f3(x) = x1 − x2

g1(x) = 0.002x7 − 0.002x8 − 1 ≤ 0

g2(x) = 50 − x11 − x12 − x13 ≤ 0

g3(x) = x11 + x12 + x13 − 250 ≤ 0

g4(x) = 1.262626x10 − 1.231059x3x10 − x13 ≤ 0

g5(x) = 0.03475x2 + 0.975x2x5 − 0.00975x22 − x5 ≤ 0

g6(x) = 0.03475x3 + 0.975x3x6 − 0.00975x23 − x6 ≤ 0

{x1, x2, x3} ∈ [0.1, 1], x4 ∈ [1e − 4, 0.1],
{x5, x6} ∈ [0.1, 0.9], {x7, x8} ∈ [0.1, 1e3],
x9 ∈ [500, 1000], x10 ∈ [0.1, 500],
x11 ∈ [1, 150], {x12, x13} ∈ [0.0001, 150] (A14)
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Beam. Same as the Beam problem in Ref. [26] with the follow-
ing added objective

∑d
i=1

bihili (A15)

where d is the number of sections. This objective represents the
total volume of the structure.
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