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6 ABSTRACT

7 160 oblique impact tests were performed to study the relationship between the kinematic response of a 

8 helmeted headform and impact severity caused by the change of speed (Group 1) and anvil angle (Group 

9 2). For this work, the kinematic response of a helmeted headform is evaluated by measuring linear 

10 acceleration, rotational acceleration, and rotational velocity of the headform. In Group 1, a football helmet 

11 was tested at 45o anvil angle at four different impact speeds ranging from 4.5m/s and 7.4m/s on five 

12 impact locations. Results showed that for all cases, the relationship between impact speed and helmeted 

13 headform kinematic response was linear, with an average R2 value of 0.98. At each impact location, a 

14 prediction line was generated using the data points of the lowest and the highest speeds. For the speeds of 

15 5.5m/s and 6.5m/s, the prediction of the helmeted headform kinematic response was validated with an 

16 average error of 4.7%. In Group 2, the helmeted headform was tested at 5.5m/s impact speed at six 

17 different anvil angles between 15o and 55o, and the response was fitted with a second-degree polynomial 

18 (curve) with an average R2 value of 0.96. The kinematic response of the higher and lower impact speeds 

19 was obtained experimentally for one angle, and the fitted curve for 5.5m/s was offset to pass through the 

20 obtained kinematic response. The predicted helmeted headform kinematic response was validated 

21 experimentally, and the average error was found to be 8.3%. The results showed that it is possible to 

22 predict the kinematic response of a helmeted headform by interpolating or extrapolating the data without 

23 having to perform extra impact test. Analysis on other research works also showed similar predictable 

24 behaviour for headform equipped with other helmet models. Therefore, the number of tests during the 

25 process of evaluating a helmet performance can be reduced.

26 KEYWORDS

27 Biomechanics, head injury, kinematic response, linear acceleration, rotational acceleration, football 
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29 INTRODUCTION

30 The protective helmet was initially developed to protect the head against severe impacts that may lead to 

31 death (Hoshizaki, et al., 2014; Becker, 1998). Many studies have demonstrated that helmets are effective 

32 in preventing severe head injuries such as skull fracture (McIntosh, et al., 2011; McIntosh & McCrory, 

33 2005; Haider, et al., 2012; Sone, et al., 2017). However, the most common types of head injuries in sports 

34 are mild traumatic brain injuries (mTBI) such as concussions (Noble & Hesdorffer, 2013). In the past, 

35 head injury was thought to be caused only by the linear acceleration of the head (Hodgson & Thomas, 

36 1971) However, research studies have shown that rotational acceleration plays a significant role in 

37 causing head injury and concussion (King, et al., 2003; Holburn, et al., 1943; Kleiven, 2013) and majority 

38 of the impacts to the head result in both linear and rotational motion of the head (Otte, 1991). Rotational 

39 acceleration and velocity have a significant correlation to the brain strain response (Kleiven, 2007; 

40 Rowson, et al., 2012; Ji, et al., 2014; Patton, et al., 2012), as they render shearing force to the brain 

41 tissues. The brain is more susceptible to shearing forces as the bulk modulus of the brain tissues 

42 (resistance to the uniform compression) is approximately one million times higher than that of the shear 

43 modulus (McElhaney, et al., 1976). Furthermore, the brain deformation is more severe when the linear 

44 and rotational motion were applied together (Gennarelli, et al., 1972; Ueno & Melvin, 1995; Pellman, et 

45 al., 2003). Yet, helmets for decades have been tested and certified only for linear acceleration (Consumer 

46 Product Safety Commission, 1998; NOCSAE, DOC, 2019; NOCSAE, DOC, 2016; UN ECE Regulation 

47 22/05, 2002), and the focus has been on protecting the head against skull fractures (King, et al., 2003). 

48 Since an mTBI happens more often than a skull fracture, the general populace is more concerned about 

49 the concussion than the skull fracture (Vastag, 2002). As a result, standard bodies and independent 

50 researchers have started to measure and analyze the rotational acceleration and rotational velocity of the 

51 head, in addition to the linear acceleration, to better gauge the safety level and performance of a helmet 

52 (NOCSAE, DOC, 2019; Whyte, et al., 2019). In addition, technologies were developed in recent years to 

53 mitigate the injurious effects of rotational motion of the head during impacts (Aare & Halldin, 2003; 

54 Halldin, et al., 2003; Abram, et al., 2019; Bliven, et al., 2019). In 2011, Virginia Tech introduced a 

55 Summation of Tests for the Analysis of Risk (STAR) rating system where helmets are rated based on 

56 factors such as linear acceleration, rotational acceleration, and rotational velocity response during impact 

57 (Rowson, et al., 2015; Bland, et al., 2018; Rowson & Duma, 2011). Peter Halldin of MIPS also proposed 

58 an oblique impact testing method in 2015 (Halldin, 2015). National Operating Committee on Standards 

59 for Athletic Equipment (NOCSAE) Standard for Newly Manufactured Football Helmets introduced 

60 rotational acceleration-based testing that will come into effect in November 2019 (NOCSAE, DOC, 

61 2019). 

Page 2 of 20

© The Author(s) or their Institution(s)

Transactions of the Canadian Society for Mechanical Engineering



Draft

3

62 Some of the helmet testing protocols require the helmet to be tested multiple times at different severity 

63 levels gauged by the impact speed. This results in many trials, which can be expensive and time-

64 consuming. Finite Element Analysis (FEA) has been widely used to simulate helmet impact (Zhang, et 

65 al., 2004; Willinger & Baumgartner, 2003; Aare, et al., 2004; Mills, et al., 2009). FEA is a great tool for a 

66 preliminary impact study (Fernandes & Alves de Sousa, 2013). However, in some cases, FEA results may 

67 not be sufficiently accurate, and a physical sample of headgear is needed to experimentally validate its 

68 performance (Fernandes & Alves de Sousa, 2013).

69 Several studies of helmet response showed that there are linear relationships between linear acceleration 

70 and impact severity. DeMarco performed impact tests of various motorcycle and cycling helmets showing 

71 a linear relationship between linear acceleration and impact severity as long as the helmet impact-

72 absorbing liner is functional and it is not bottomed-out (DeMarco, et al., 2010; DeMarco, et al., 2016). 

73 Cripton, Rowson, and COST 327 performed drop tests on cycling, football, and motorcycle helmets, 

74 respectively (Cripton, et al., 2014; Rowson, et al., 2013; Chinn, et al., 2001). However, Cripton, Rowson, 

75 and COST 327 did not assess the relationship between impact severity and head kinematic response. 

76 Furthermore, no studies have been done on the relationship between impact severity and head rotational 

77 acceleration and velocity (Whyte, et al., 2019). In this work, the relationship between the impact severity 

78 and the helmeted headform’s kinematic response: linear acceleration, rotational acceleration, and 

79 rotational velocity, is studied.

80 METHODS

81 An impact test rig was used to perform oblique impact tests at different speeds and different anvil angles. 

82 The patent-pending impact test rig (Abram, et al., 2018) was developed and built at the Head Injury 

83 Prevention (HIP) Lab at Simon Fraser University (SFU), Surrey, Canada. Figure 1 details the test rig. A 

84 Hybrid III 50th percentile male dummy headform without neck was used to perform the tests. 
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(a)

(b)

Figure 1. (a) CAD model of the Oblique Impact Test Rig at the HIP Lab and (b) Oblique Impact Test 

Rig at the HIP Lab.

85

86 The Hybrid III headform was equipped with nine single-axis linear accelerometers (ENDEVCO 7264C, 

87 Meggitt Sensing Systems Irvine, California) arranged on a 3-2-2-2 block array. The rotational 

88 accelerations of the head in x, y, and z-axes during an impact were calculated with an algorithm described 

89 in Padgaonkar (Padgaonkar, et al., 1975). Data were collected at a sampling rate of 20 kHz. 

90 Accelerometers data were filtered through a 4th order Butterworth low-pass filter with 1000 Hz cut-off 

91 frequency according to SAE Recommended Practice J11a (Consumer Product Safety Commission, 1998; 

92 NOCSAE, DOC, 2017). The change in the rotational velocity was calculated through the integration of 

93 the rotational acceleration graph.

94 The impact surface was a 42 Shore A Modular Elastomer Programmer (MEP) pad installed on angled 

95 support. The MEP pad was selected as it resembles common impact surfaces in football games (Post, et 

96 al., 2017; Hoshizaki, et al., 2012). The impact speed was measured using a photoelectric time gate 

97 adjacent to the rail guide. A high-speed camera (Edgertronics SC2+) was used to record the impact tests 

98 at 4,000 frames/sec in high definition.

99 A Riddell Speed football helmet (Figure 2a), Size L, was fitted according to the manufacturer's 

100 specifications. All tests were performed without using a facemask or other accessories. The helmeted 

101 headform was placed onto the test rig, where its orientation, position, and height were secured based on a 

102 given impact scenario.
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103 The first part of this study (Group 1) focused on changing the speed of impact while keeping the angle of 

104 impact fixed at 45o. Five impact locations were selected for Group 1 based studies on the most prevalent 

105 impact locations (Pellman, et al., 2003; Crisco, et al., 2010; Daniel, et al., 2012): Front-Top (FT), Front-

106 Boss (FB), Front-Y (FY), Lateral-X (LX), and Side-Back (SB). The impact locations can be seen in 

107 Figure 2b-d. At each impact location, data points was obtained at speeds of 4.5, 5.5, 6.5, and 7.4 m/s. To 

108 obtain a data point, five tests with results within 10% of each other are required. In total, 100 tests were 

109 conducted for Group 1 testing. 

(a) (b) (c) (d)

Figure 2. (a) The Riddell Speed football helmet, (b) front-top FT impact location, front FY impact 

location, front-boss FB impact location, (c) side-back SB impact location, and (d) lateral LX impact 

location.

110 The results of Group 1 testing, including linear acceleration, rotational acceleration, and rotational 

111 velocity at different speeds, were examined while keeping the impact angle fixed. A regression analysis 

112 was performed on the result of Group 1. The data were fitted with a first-order polynomial (Equation 1). 

113 (1)𝑦 = 𝑎1𝑥 + 𝑎0   ,   𝑎𝑛 ≠ 0

114 Then, for each kinematic response at every impact location (one set of data), in Group 1, any combination 

115 of two out of four data points was selected, and Equation 1 was fitted through the two selected data points 

116 to obtain the prediction line. 

117 The experimental and predicted values of the kinematic response for the other two points were compared. 

118 The percent (%) error represents the difference between experimental and predicted values and was 

119 calculated with Equation 2.

120 (2)% 𝐸𝑟𝑟𝑜𝑟 = |𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 ― 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 | × 100%

121 Also, COST 327 reported oblique impact testing of four different models of motorcycle helmets for five 

122 different speeds from 6m/s to 12m/s without analyzing the relationship between impact speed and 
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123 kinematic response (Chinn, et al., 2001). As a part of this study, the results of COST 327 were also 

124 analyzed.

125 In the second part of this study (Group 2), the angle of impact varied while the speed of the impact was 

126 fixed, at speed recommended by NOCSAE, 5.5m/s (NOCSAE, DOC, 2019). One impact location, FY, 

127 was chosen for all tests. One set of impact test was conducted on six anvil angles between 15o, 22o, 30o, 

128 37o, 45o, and 55o, yielding six data points for each set. In addition, two sets of impact tests, one tested at 

129 4.5m/s and the other 6.5m/s were also conducted on three anvil angles (15o, 30o, and 45o), yielding three 

130 data points per set. With five trials for each impact scenario, 60 tests were conducted in total. 

131 Similar to Group 1 test, the results of Group 2 testing, including linear acceleration, rotational 

132 acceleration, and rotational velocity at different angles, were examined while keeping the impact speed 

133 fixed. To obtain a data point, five tests with results within 10% of each other are required. In total, 60 

134 tests were conducted for Group 2 testing. A regression analysis was performed on the result  of Group 2 

135 from fixing the speed at 5.5 m/s. The 5.5 m/s data were fitted with a second-order polynomial (Equation 

136 3). 

137 (3)𝑦 = 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0   ,   𝑎𝑛 ≠ 0

138 The generated curve from 5.5m/s impact speed was used to predict the kinematic response for 4.5m/s and 

139 6.5m/s impact speeds. At each speed level, the curve was offset to pass through one experimental data 

140 point. The prediction line was used in three different scenarios. In scenario 1, the prediction line passed 

141 through the experimental data points of 15o. In scenario 2, the prediction line passed through the 

142 experimental data points of 30o, in scenario 3, the prediction line passed through the experimental data 

143 points of 45o. For example in scenario 2, as shown in Figure 5a-c, the curve obtained from 5.5m/s speed 

144 was offset to pass through only the 30o data points to predict the kinematic response for impact speeds of 

145 4.5m/s and 6.5m/s for the 15o and 45o. Then, the prediction was validated by comparing the predicted and 

146 experimental values. The percent (%) error was calculated with Equation 2.

147 RESULTS

148 Group 1 comprises of testing on five locations of the football helmet for four different speeds between 

149 4.5m/s and 7.4m/s. The results of the impact tests at different impact locations were summarized in Table 

150 1. The Coefficient of Variation (CV) was computed from the standard deviations and mean values of each 

151 measured kinematic parameter.

152
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153 Table 1. Average responses of the headform when impacting different areas of the helmet at various speeds.

Impact 
speed (m/s)

Lin.Acc. 
(g)

Lin. Acc 
CV (%)

Rot. Acc. 
(krad/s2)

Rot. Acc. CV 
(%)

Rot. Vel. 
(rad/s)

Rot. Vel. 
CV (%)

FY

4.5 81.52 3.13 3.53 9.37 24.25 1.86

5.5 94.60 2.74 5.02 2.59 29.57 7.05

6.5 124.73 3.76 6.28 8.24 36.06 4.20

7.4 142.00 0.98 7.78 7.17 39.90 3.36

LX

4.5 68.64 2.57 3.32 8.21 23.71 3.25

5.5 73.84 3.69 4.18 4.91 29.79 6.72

6.5 103.84 3.22 5.30 5.17 36.74 3.34

7.4 125.72 1.41 6.67 9.78 36.18 2.49

FT

4.5 64.58 2.19 3.01 2.26 24.00 1.43

5.5 81.76 2.38 3.82 3.87 29.22 1.01

6.5 100.60 1.32 4.68 8.41 34.08 2.57

7.4 120.57 3.83 5.97 4.53 40.48 1.52

FB

4.5 86.85 2.21 3.75 8.64 26.83 5.67

5.5 107.39 2.83 4.46 3.88 31.64 2.79

6.5 125.30 3.05 5.53 1.88 37.10 3.44

7.4 139.18 2.47 6.58 2.80 40.62 2.32

SB

4.5 53.05 2.22 3.47 4.54 24.56 3.18

5.5 67.87 2.19 3.79 3.12 25.63 3.82

6.5 81.94 3.83 5.70 3.60 39.99 4.09

7.4 98.90 4.69 6.17 1.99 43.94 2.61

154
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155 Figure 3a-c show the Group 1 data points fitted with Equation 1. The R2 values for the best-fitted line for 

156 all five impact locations were calculated. The average R2 values for linear acceleration, rotational 

157 acceleration, and rotational velocity were 0.9855, 0.9809, and 0.9595, respectively. The equation 

158 parameter and the R2 values were summarized in Table 2. The equation parameter p-value was also 

159 calculated. A p-value less than 0.05 is statistically significant.

160 Table 2. Equation parameters and the coefficients for the best fit lines of the response for Group 1.

Lin. Acc.
Loc. 𝒂𝟏 p-value 𝒂𝟎 p-value R2

FY 21.6104 0.0033 -18.4855 0.1414 0.9867

LX 20.6462 0.0203 -29.6601 0.2432 0.9545

FT 19.2042 0.0029 -22.8203 0.0796 0.9993

FB 18.5087 0.0056 3.7941 0.3664 0.9973

SB 15.3209 0.0051 -15.6712 0.1415 0.9899

Rot. Acc.
Loc. 𝒂𝟏 p-value 𝒂𝟎 p-value R2

FY 1.4200 0.0055 -2.8365 0.0492 0.9879

LX 1.1397 0.0077 -1.9073 0.0908 0.9924

FT 1.0020 0.0117 -1.6165 0.1503 0.9883

FB 1.0042 0.0036 -0.9365 0.1928 0.9855

SB 1.0359 0.0250 -1.3744 0.3068 0.9505

Rot. Vel.
Loc. 𝒂𝟏 p-value 𝒂𝟎 p-value R2

FY 5.4588 0.0019 -0.1927 0.9443 0.9997

LX 4.5123 0.0563 4.7947 0.5735 0.8683

FT 5.5777 0.0068 -1.3656 0.8329 0.9956

FB 4.9605 0.0020 4.3257 0.0472 0.9993

SB 7.5144 0.0332 -11.1584 0.3193 0.9347

161

162 Figure 3d-f showed the prediction line obtained from fitting the data points of the lowest and higest speed 

163 with Equation 1. Table 3 compares the experimental and predicted values of the helmeted headform 

164 kinematic response for the other two points. 

165
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166

167 Table 3. Comparison of the experimental versus predicted values of Group 1.

Lin. Acc. (g) Rot. Acc. (krad/s2) Rot. Vel. (rad/s)
Speed 
(m/s) Experi

ment
Predict

ion
% 

Error
Experi
ment

Predict
ion

% 
Error

Experi
ment

Predict
ion

% 
Error

FY

5.5 94.60 101.47 7.3 5.02 4.93 1.8 29.57 29.41 0.5

6.5 124.73 126.22 1.2 6.28 6.67 6.2 36.05 35.81 0.7

LX

5.5 73.84 86.23 16.8 4.18 4.35 4.1 29.79 27.56 7.5

6.5 103.84 106.68 2.7 5.30 5.55 4.7 36.74 32.02 12.8

FT

5.5 81.76 81.68 0.1 3.82 3.91 2.4 29.22 29.04 0.6

6.5 100.60 101.88 1.3 4.68 4.98 6.4 34.08 34.98 2.6

FB

5.5 107.39 104.85 2.4 4.46 4.72 5.8 31.64 31.57 0.2

6.5 125.30 124.46 0.7 5.53 5.78 4.5 37.10 36.74 1.0

SB

5.5 67.87 66.47 2.1 3.79 4.26 12.4 25.63 30.23 17.9

6.5 81.94 85.49 4.3 5.70 5.38 5.6 39.99 38.27 4.3

168

(a) (b) (c)
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(d) (e) (f)

Figure 3. Plots of speeds versus (a) linear acceleration, (b) rotational acceleration, and (c) rotational 

velocity fitted with a polynomial degree 1 through all points and plots of speeds versus (d) linear 

acceleration, (e) rotational acceleration, and (f) rotational velocity fitted with a polynomial degree 1 

through points from speeds of 4.5m/s and 7.4m/s.

169 The results of COST 327 were plotted, as shown in Figure 4a-b. The R2 values for the rotational 

170 acceleration of the four helmet models were between 0.9903 and 0.9991. For rotational velocity, the R2 

171 values were between 0.8995 and 0.9952. 

(a) (b)

Figure 4. Plots of speeds versus (a) rotational acceleration, (b) rotational velocity of four motorcycle 

helmets from COST 327 report (Chinn, et al., 2001).
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172

173 Group 2 comprises of testing on six different anvil angles between 15o and 55o at a fixed impact speed of 

174 5.5m/s and one impact location, FY. The results of the impact tests were summarized in Table 4.

175 Table 4. Average responses of the helmeted headform struck at the FY region at 5.5m/s, 4.5m/s, and 6.5 

176 m/s with varying angles.

Impact 
angle 

(˚)

Linear Acc 
(g)

Lin. 
Acc. 
CV

Rot. Acc 
(krad/s2)

Rot. 
Acc. 
CV

Rotational 
velocity 
(rad/s)

Rot. 
Vel. CV

5.5m/s

15 44.74 2.78 4.69 4.39 34.23 2.20

22 65.24 2.69 5.16 4.37 35.99 3.06

30 82.10 1.90 5.36 1.36 34.24 0.92

37 90.85 1.78 5.13 6.14 31.72 4.17

45 95.98 5.41 4.94 2.41 28.94 3.68

55 110.45 2.73 3.88 6.94 27.56 5.73

4.5m/s

15 32.97 2.90 3.42 5.47 27.50 1.88

30 62.19 4.33 4.51 4.01 27.49 4.19

45 81.52 3.13 3.53 9.37 24.25 1.86

6.5m/s

15 53.93 9.73 5.46 7.97 41.28 1.14

30 94.26 4.88 6.39 3.71 39.72 3.62

45 124.73 3.76 6.28 8.24 36.05 4.20

177

178 Group 2 results were plotted in Figure 5a-c, including the fitted polynomial and the prediction line (of 

179 scenario 2). The equation parameter and the R2 values were also summarized in Figure 5a-c. The 

180 experimental and the predicted values for all scenarios were compared shown in Table 5.
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(a) (b) (c)

Figure 5. Plotting scenario 2 prediction results: (a) linear acceleration, (b) rotational acceleration, and 

(c) rotational velocity.

181

182 Table 5. Comparison of the experimental versus predicted values of Group 2.

Lin. Acc. (g) Rot. Acc. (krad/s2) Rot. Vel. (rad/s)
Angle 

(o) Experi
ment

Predict
ion

% 
Error

Experi
ment

Predict
ion

% 
Error

Experi
ment

Predict
ion

% 
Error

4.5m/s

30.0 62.19 66.16 6.4 4.51 4.04 10.5 27.49 25.82 6.1

45.0 81.52 87.31 7.1 3.53 3.55 0.8 24.25 22.40 7.6

6.5m/s

30.0 94.26 87.12 7.6 6.39 6.08 4.8 39.72 39.61 0.3

Sc
en

ar
io

 1

45.0 124.73 108.27 13.2 6.28 5.60 10.9 36.05 36.18 0.4

4.5m/s

15.0 32.97 29.01 12.0 3.42 3.89 13.8 27.50 29.17 6.1

45.0 81.52 83.34 2.2 3.53 5.03 14.2 24.25 24.07 0.7

6.5m/s

15.0 53.93 61.07 13.2 5,46 5.77 5.7 41.28 41.39 0.3

Sc
en

ar
io

 2

45.0 124.73 115.40 7.5 6.28 5.91 5.9 36.05 36.30 0.7

4.5m/s

Sc
en

ar
io

 3

15.0 32.97 27.19 17.5 3.42 3.39 0.9 27.50 29.35 6.7
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30.0 62.19 60.38 2.9 4.51 4.01 11.1 27.49 27.67 0.7

6.5m/s

15.0 53.93 70.39 30.5 5.46 6.14 12.5 41.28 41.15 0.3

30.0 94.26 103.58 9.9 6.39 6.77 5.9 39.72 39.48 0.6

183

184 DISCUSSION

185 When the speed of impact is increased, linear acceleration, rotational acceleration, and rotational velocity 

186 of the helmeted headform increase proportionally. As shown in the results of Group 1 in Table 1, while 

187 keeping the anvil angle fixed at 45o, increasing the speed of impact from 4.5m/s to 7.4m/s increased the 

188 linear acceleration from 81.52 g to 142.00 g for the FY location, 68.64 g to 125.72 g for the LX location, 

189 64.58 g to 120.57 g for the FT location, 86.85 g to 139.18 g for  the FB location, and 53.05 g to 98.90 g 

190 for the SB location. A similar increasing trend can be observed for rotational acceleration and rotational 

191 velocity. When the speed of impact was increased from 4.5m/s to 7.4m/s, the rotational acceleration of 

192 FY, LX, FT, FB and SB test increased respectively from 3.53 krad/s2 to 7.78 krad/s2, 3.32 krad/s2 to 6.67 

193 krad/s2, 3.01 krad/s2 to 5.97 krad/s2, 3.75 krad/s2 to 6.58 krad/s2, 3.47 krad/s2 to 6.17 krad/s2. The linearity 

194 observed was in concert with the results presented by Cripton, Rowson, and DeMarco. 

195 As shown in Figure 3d-f, the result showed that the overall best result for predicting the other two speeds' 

196 kinematic response was achieved when the data points from the lowest (4.5m/s) and the highest speeds 

197 (7.4m/s) were chosen. The average error generated from predicting the helmet response at 5.5m/s and 

198 6.5m/s in all impact locations was 4.7%, with a minimum error of 0.1% and a maximum error of 17.9%. 

199 The results of COST 327 also showed that, when the speed of impact varies, the kinematic response of a 

200 helmeted headform behaves linearly. The linear behaviour was observed for the peak rotational 

201 acceleration and the peak rotational velocity versus the speed of impact.However, COST 327 did not 

202 report peak linear acceleration in their study. 

203 In Group 2, as shown in Table 4, fixing the speed at 5.5m/s while increasing the angle from 15o to 55o 

204 resulted in an overall increase of linear acceleration from 44.74 g to 110.45 g. On the other hand, a mixed 

205 trend in rotational kinematics was observed. Rotational acceleration, unlike linear acceleration and 

206 rotational velocity, did not always increase. There was a maximum (most severe) rotational acceleration 

207 within the specidied angles of impact (between 15o to 55o), which happened at around 30o . The rotational 

208 acceleration increased from 4.69 krad/s2 (at 15o) to 5.46 krad/s2 (at 30o), then decreased to 3.88 krad/s2 (at 

209 55o). The rotational velocity increased from 34.23 rad/s (at 15o) to 35.99 rad/s (at 22o) and then decreased 

210 gradually to 27.56 rad/s (at 55o). The results of Group 2 testing showed a relationship between the 
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211 kinematic response and the anvil angle when the speed of impact was fixed at 5.5m/s. The relationship 

212 was best described by a second degree-polynomial (Equation 3).

213 According to the results shown in Figure 5a-c, a second degree-polynomial was adequate with R2 values 

214 of 0.99, 0.98, and 0.90 for linear acceleration, rotational acceleration, and rotational velocity, respectively. 

215 The equation parameters, a2, a1, and a0, for linear acceleration are -0.0268, 3.4169, and 1.2784, 

216 respectively. For rotational acceleration, the equation parameters are -0.0025, 0.1523, and 2.9726, 

217 respectively. The equation parameters for rotational velocity are -0.0039, 0.0625, 35.1562, respectively. 

218 The results in Table 5 showed that in scenario 1, the response was predicted with an average error of 

219 6.3%. In scenario 2, the average error of the prediction response was 6.9%. In scenario 3, the average 

220 prediction error was 8.3%.

221 In total, 160 impact tests were performed with one type of football helmet. It was also observed that the 

222 kinematic response of the headform equipped with that specific helmet can be predicted. The prediction 

223 model can be used to reduce the number of data points that need to be obtained experimentally. Since the 

224 results presented from the other studies on different helmets showed linear behaviour, one can conclude 

225 that kinematic response of the helmeted headform can be predicted in most cases as long as the shock-

226 absorbing liner of the helmet is functional and is not bottomed out. 

227 In this study, impact tests were performed using the oblique impact drop test rig with a neckless Hybrid 

228 III headform. The NOCSAE standard for newly manufactured football helmet recommend both the linear 

229 impactor test and the drop test. However, unlike drop test, linear impactor tests produce little tangential 

230 force (Willinger, et al., 2015), a crucial contributor to the rotational acceleration of the head (Finan, et al., 

231 2008). NOCSAE linear impactor test also calls for the use of a Hybrid III neck. Studies on the Hybrid III 

232 neck showed that Hybrid III neck is too stiff (Herbst, et al., 1998) compared to the human neck. In 

233 addition, the Hybrid III neck is designed only for flexion and extension (Svensson & Lovsund, 1992) and 

234 its behaviour for other types of motion such as lateral is not known (Aare & Halldin, 2003; Bartsch, et al., 

235 2012; Myers, et al., 1989; Gwin, et al., 2009). A study on helmeted head impact suggested that for the 

236 first 10 ms of an impact, the effect of the neck is minor (Willinger, et al., 2015). Another study showed 

237 that it takes 13–14 ms for the muscles of the human neck to respond to an impact to the head (Kuramochi, 

238 et al., 2004). A typical acceleration pulse in football helmet impact lasts for approximately 15 ms and may 

239 not result in a resisting response from the neck muscles (Pellman, et al., 2003; Zhang, et al., 2004; Deck 

240 & Willinger, 2008). Also, there is an atlanto-occipital zone where the neck joint can have motion in the 

241 range of 10o without affecting the kinematic response of the head (Ivancic, 2014; Camacho, et al., 1997). 

242 Therefore, using a drop test and a neckless headform seems to be more realistic than using a linear 

243 impactor test with a Hybrid III head and neck for performing oblique impact tests.
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244 This study also comes with some limitations, with the main limitation being only one helmet type was 

245 used: football helmet. In Group 1, results from other research studies on motorcycle and bicycle helmets 

246 were analyzed and similar linearity was observed. However, in Group 2, testing at more angles, locations, 

247 and speeds with different helmet models is required. Tests with different apparatus, such as NOCSAE 

248 headform which is more anthropomorphically correct than a Hybrid III, may also be done in the future.

249 CONCLUSION

250 The relationship between impact speed, impact angle and the kinematic response of a helmeted headform 

251 was studied. It was observed that when the speed of impact was varied, and the angle of impact was fixed, 

252 the kinematic response behaved linearly. This linear behaviour was then used to predict the response for 

253 different speeds with an average error of 4.7%. On the other hand, when the angle of impact was varied, 

254 and the impact speed was fixed, the kinematic response of the helmeted headform was best described with 

255 a second-degree polynomial (curve). Then, the kinematic response was predicted and validated at 

256 different speeds. The result showed that the average error of the prediction was from 6.3% to 8.3%. The 

257 prediction model can be used to reduce the number of data points that need to be obtained experimentally. 

258 When examining and rating a helmet performance, one can test the helmet at different speeds or angles 

259 and use this prediction method to obtain more data points at other speeds and angles. Although, it is 

260 known that by increasing the speed, the linear and rotational acceleration increase as well, but the rate of 

261 change is not one-to-one. In this study, three different helmet types (football, motorcycle, and bicycle) 

262 were examined, and the results can help other researchers to have an educated guess regarding the 

263 performance of a helmet in different impact speeds. Particularly, this study shows that the rotational 

264 acceleration of a football helmet does not have a linear behaviour when the angle of impact increases. A 

265 peak rotational acceleration can be expected when the angle of impact is around 35o. This helps other 

266 researchers or tester to know at what range of angles should expect the highest rotational acceleration, and 

267 consequently the most severe head injury due to the rotational acceleration. For example, one can test a 

268 helmeted headform at 4.5 m/s and 7.4 m/s and interpolate the results to find the helmeted headform’s 

269 performance at the speeds in between without performing the test. Also, one can test a helmeted headform 

270 at different angles, fixing the speed, and extrapolate the data to find the helmeted headform’s performance 

271 at different speeds without performing the test.

272
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