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A B S T R A C T   

Modeling plays an important role in the additive manufacturing (AM) process and quality control. In practice, 
however, only limited data are available for each product due to the relatively high AM cost, which brings 
challenges in building either a high-quality physics-based or data-based model. Transfer learning (TL) is a new 
and promising group of approaches where the model of one product (source) may be reused for another product 
(target) with limited new target data. This paper focuses on reviewing applications of TL in AM modeling to help 
advance research in this area. First, notations, definitions, and categories of TL methods are introduced along 
with their application scenarios. Then current applications of TL in AM modeling are summarized along with 
their limitations. Based on reviewed applications, recommendations are given on how to apply TL for a certain 
AM problem, from the perspectives of source domain determination, TL method selection, target data generation, 
and data preprocessing. Finally, future research directions about TL in AM modeling are discussed in the hope to 
explore more potential of TL in improving the AM model quality with limited data.   

1. Introduction 

Additive manufacturing (AM), or three-dimensional (3D) printing, 
refers to a product construction process by adding successive layers of 
materials according to computer-aided design (CAD) models [1]. AM 
has been applied widely in various industrial fields, such as electronics 
(i.e., batteries [2]), medical (i.e., hearing aids and biomanufacturing) 
[3], automotive (i.e., car frame, body, and door) [4], aerospace (i.e., 
Airbus bracket, NASA turbopump stator, and thrust chamber) [5], mil
itary [6], architecture (i.e., concrete beam, bench, and house) [7], and 
others. However, the unstable AM processes have brought about 
disparate mechanical properties, resulting in low productivity and poor 
quality. AM modeling is promising to alleviate these problems, consid
ering its potential to reveal correlations among processes, structures, 
and properties. These models are then used for AM process optimization 
and control to achieve better and consistent product qualities. According 
to different sources for modeling, AM models could be classified into 
physics-based models and data-based models, whose comparisons are 
shown in Fig. 1. 

1.1. Physics-based models 

Physics-based models are those describing the underlying physical 
relationship between conditions and responses in AM process by 

mathematical/differential equations, which could be solved by numer
ical methods or simulation such as finite element analysis (FEA). For 
example, Flach and Chartoff [8] constructed a polymer shrinkage model 
for the stereolithography (SLA) process, by analyzing the observed 
shrinkage and the conversion process from monomer to polymer. Based 
on the prior knowledge of physical phenomena in selective laser sin
tering (SLS) and assumptions about powder geometry, laser, absorption 
coefficient, and powder bed, Wang and Kruth [9] proposed a new 
analytical ray-tracing model to simulate the energy absorption and 
penetration when metal powder mixtures are adopted. Similarly, to 
control the material composition of multi-material parts, a simulator of 
the direct laser deposition (DED) process was constructed by modeling 
all manufacturing steps mathematically, including part/path descrip
tion, numerical control, process operation, bead deposition, and man
ufactured part [10]. To investigate dominant SLS process parameters 
affecting the sintering depth and the liquid pool geometry, Chen and 
Zhang [11] developed a two-dimensional temperature-transforming 
model, by simplifying the enthalpy-based energy equation as a nonlinear 
equation dependent on temperature only. Panagiotis [12] proposed a 
hybrid inactive/quiet element method with a transient conductive heat 
transfer function to efficiently simulate the thermal history of the se
lective laser melting (SLM) process. 

The advantages of these models are that they can be transferred to 
various relevant processes with only a limited number of expensive 
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experiments for calibration and validation. However, their accuracies 
are restricted by prior knowledge and underlying assumptions (i.e., 
simplification of the process) [13]. Therefore, as shown in Fig. 1, 
although the transferability is high for physics-based models, the 
requirement for prior knowledge is also high whilst the demand for 
experiments/simulation is relatively low. As one can see in the figure, 
data-based models demonstrate opposite characteristics to 
physics-based models. 

1.2. Data-based models 

Data-based models are those constructed based on data collected 
from different sources, which need less prior knowledge about AM 
processes. The purpose of these models is to predict observations (i.e., 
process and product quality) from interested variables (i.e., process 
parameters or signatures) directly. Based on the selection of model 
formula, this category consists of experiment-based empirical/regres
sion models and machine learning (ML) models learned from simula
tions and/or experiments. 

The experiment-based empirical/regression model has a manually 
defined mathematical formula, whose parameters are approximated by 
data from existing experiments or newly designed experiments. For 
instance, Raghunath and Pandey [14] adopted the Taguchi method to 
design 16 SLS experiments considering five process parameters, 
including laser powder, scan speed, hatch spacing, part bed tempera
ture, and scan length. Then three simplified linear regression model 
formulas were defined based on ANOVA analysis and trained with 
collected experiment data to predict the shrinkage at X, Y, and Z di
rections respectively. Similarly, the central composite design method 
was used to design 32 experiments for fused deposition modelling (FDM) 
process concerning five important parameters [15]. Then, a quadratic 
response surface model (QRSM) was constructed to predict the 
compressive strength from process parameters (i.e., orientation, layer 
thickness, raster angle, raster width, and air gap) and the significance of 
each parameter was analyzed with ANOVA. Also, the relationship be
tween the melt pool depth and parameters (laser powder and scan 
speed) in laser foil printing (LFP) was extracted by QRSM [16], and the 
dependency between the melt pool depth and parameters was also 
quantified by ANOVA. Another similar work was Chikkanna et al. [17], 
where two QRSM models were constructed based on 18 experiments to 
predict FDM static and dynamic flexural properties according to the 
temperature and annealing time, respectively. Although the above 
empirical/regression methods complete both model construction and 
sensitivity analysis, these models constructed with certain formulas only 
perform well in specific processes with certain conditions [13]. In other 
words, it is difficult to transfer them to different processes with 
acceptable model quality. 

Different from pre-defined mathematical formulation in the above 
empirical/regression models, ML models estimate AM process behavior 
by various ML techniques from experiments, simulations, or a combi
nation of both [18]. For instance, the random forest method was used to 
analyze the energy performance in FDM, where the energy consumption 
was predicted based on features extracted from G-code files [19]. This 

model provides a way to control the energy cost when designing new 
FDM products but has limited applicability in other AM processes 
considering only features from G-code files of the FDM process. Olleak 
and Xi [20] constructed a Gaussian process regression (GPR) model to 
predict the melt pool geometry according to SLM process parameters 
and adopted the u-Pooling metric strategy to calibrate the uncertainties 
in powder absorptivity and spot diameter. This framework is promising 
for different AM modeling problems with uncertainties. But the final 
model accuracy is affected greatly by the initial assumptions of inter
ested uncertainties, as only one-step uncertainty calibration is per
formed in the framework. If the initial assumptions are far from the 
actual uncertainty parameters, the final calibrated model could be 
unreliable. 

To improve the product geometry accuracy in wire arc additive 
manufacturing (WAAM), Ding et al. [21] adopted support vector 
regression (SVR) to find the correlation between welding parameters (i. 
e., wire feed rate, travel speed, and inter-pass temperatures) and product 
properties (i.e., overlapping distance and bead height). Then an SVR 
backward model was designed to suggest appropriate welding parame
ters to produce parts with high accuracy, given the desired geometry. 
Such a model could control the WAAM process layer-by-layer to reduce 
the overbuilt volume, which in turn reduces the material waste and the 
machining cost. However, its applicability in complex geometries and 
various printing paths should be further studied, as only a hollow 
frustum with a concentric-circle printing path is tested in their case 
study. 

To reveal the correlation between laser scanning patterns and ther
mal history distribution in laser-aided additive manufacturing (LAAM), 
Ren et al. [22] developed a recurrent neural network and deep neural 
network model to predict the thermal history of a single layer with 
arbitrary geometries. Then, Zhou et al. [23] extended their work to 
simulate the thermal history in the multi-layers gas metal arc welding 
process, by considering the thermal diffusion among adjacent finite el
ements. Both models are promising in solving path planning problems in 
LAAM considering different geometries, but their reliability is limited by 
the fixed matrix size to represent AM parts. If the new part is much larger 
than those generating the training data, the data matrix would be too 
sparse to accurately represent the new part for training and prediction. 

For porosity problems in various SLM products constructed by 
different machines, a set of physics-informed models integrated with 
linear regression, GPR and SVR, were developed to correlate porosity 
levels with physical effects defined by machine settings (i.e., laser en
ergy density and laser radiation pressure) [24]. Also, the self-organizing 
map method was adopted to project the high-dimensional spatial 
distortion distribution (i.e., 3-dimensional cloud data) to a 
low-dimensional feature, whose relationship with process parameters 
was constructed by a hybrid group method of data handling and genetic 
programming [25]. With accessible molten pool images and tempera
ture data in wire-feed LAAM, Jamnikar et al. [26] developed a con
volutional neural network (CNN) model to predict geometries of the 
bead and fusion zone simultaneously. These models could be used for 
in-situ process monitoring to detect geometry properties, but their online 
prediction accuracy is difficult to maintain as only limited offline data 
with certain AM process scenarios are used for training. 

Apart from several works mentioned above about quality and process 
control, more details about current ML applications in AM design, pro
cess/performance optimization, and in-situ process monitoring/control 
could be found in several review papers, where the potential of ML in 
solving AM modeling problems has been sufficiently demonstrated 
[27–29]. More importantly, references [27,28] pointed out that 
exploring the design space for better properties of new products would 
benefit from data sharing among different infrastructures or in/ex-situ 
processes. 

The idea of data sharing is similar to transfer learning (TL), which 
improves the learning performance of the target model by reusing the 
source knowledge in the target domain [30]. In recent decades, 

Fig. 1. Comparison of physics-based models and data-based models.  
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successes of TL applications have been observed in numerous research 
areas, such as medical tests [31], bio-information analysis [32], trans
portation [33], recommendation systems [34], and defect detection 
[35]. Compared with conventional ML methods, TL methods are more 
promising in solving AM modeling problems considering the following 
two factors:  

• Requires much less training data and thus reduces time and cost. 
Currently, the modeling of different AM products is isolated from 
each other. More specifically, given a new AM product, one needs to 
collect data from experiments or simulations, and then perform ML- 
based modeling. This procedure is time-consuming as AM experi
ments or simulations would take hours or days. Besides, to construct 
an acceptable model, a reasonable number of experiments or simu
lations are required, which means massive time expenses are used for 
different products. For this problem, TL could break the isolation 
among different-but-similar products by transferring knowledge 
from historical products to new products. Therefore, the modeling 
procedures would be simplified by reducing the required number of 
experiments or simulations whose compatibility could be verified by 
the similarity metrics in TL, which reduces the requirement of expert 
verification and improves the process efficiency. More details about 
applications of TL in AM and criteria for applying TL in AM will be 
discussed in the next sections.  

• Bridge among various data sources. Although various modeling 
methods have been proposed, it is still difficult to guarantee their 
performance in all AM problems involving different machines, ma
terials, products, or processes, due to expensive data collection and 
complicated physical relationships. In current applications, various 
data sources have been collected with different fidelities. For 
example, experimental results are usually limited and expensive but 

have the highest fidelity. Computer simulations, such as finite 
element analysis and computational fluid dynamics, are relatively 
inexpensive but their predictions could deviate significantly from 
real-world experiments. These data sources can reveal some infor
mation about parameters of interest but cannot be applied directly to 
new products when a different machine, material, and AM process is 
used. TL provides a possibility to connect various data sources with 
limited new data and construct an informed model with high 
transferability. 

Based on these considerations, this paper aims to reveal how to 
construct acceptable AM models when only limited data on new prod
ucts are available but sufficient data on historical products are acces
sible. For clarification, this paper wants to explore directions about 
applying TL in AM modeling via analyzing existing relevant works, 
where various products (i.e., different geometries) are fabricated with 
different printers (i.e., EOS M290 and MSU Renishaw AM 400) [36], 
materials (i.e., Ti-6Al-4 V and 316 L stainless steel) [37], and AM pro
cesses (i.e., bead-on-plate process and bead-on-powder process) [38]. 

The general connection between TL techniques and AM application 
scenarios are shown in Fig. 2. Generally, the instance-based and feature- 
based TL techniques are only applied in quality prediction and process 
optimization, while the model-based TL and multi-task learning are 
applied widely in quality prediction and inspection, defect detect, and 
process monitor. More details are discussed in the following sections. 
The background of TL is briefly reviewed in Section 2 with its definition, 
categories, and theoretical comparisons. Section 3 discusses their con
nections in detail with a review of applications of TL techniques in AM 
modeling. In Section 4, a discussion on how to apply TL to a certain AM 
problem is presented in detail from four different aspects. Based on the 
above analysis, several potential future research directions are proposed 

Fig. 2. Connections between transfer learning and additive manufacturing scenarios: (a) quality prediction of printed line [39], (b) process optimization [40], (c) 
quality prediction of geometry deviation [41], (d) quality prediction of melt pool size [38], and (e) process monitor & defect detect & quality inspection [42]. 
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in Section 5, as well as suggestions on how to select TL frameworks for 
different AM modeling problems. Section 6 provides a summary of this 
paper. 

2. Introduction of transfer learning 

In this section, the background of TL is briefly reviewed about its 
notations, definitions, and categories. 

2.1. Notations and definitions 

Some notations and definitions about TL are listed below.  

• Domain D : A domain consists of a feature space X and a marginal 
distribution P(X), represented as D = {X ,P(X)}. The symbol X = {

xi ∈ X |i ∈ [1, n]} denotes the tuple of input variable x, and n is the 
size of input variables.  

• Task T : A task T is composed of a label space Y and a decision 
function f , denoted as T = {Y , f}. The function f can be learned 
from the training data (X,Y) where Y = {yi ∈ Y |i ∈ [1, n]} is the 
tuple of output variables. For regression problems, yi = f(xi|θ) where 
θ includes all model parameters to be learned. In classification, the 
outputs are conditional distributions, and the model can be formu
lated as f(xi) = P

(
yi
⃒
⃒xi; θ

)
. For example, in a binary classification 

task, the output yi is “True” or “False”.  
• Source/Target: In reality, different domains and tasks are observed 

with data of different sizes and output conditions. Generally, the 
source domain D s and task T s are defined as the one with sufficient 
data Ds = {(xs

i ,ys
i )|i ∈ [1,ns]}. By contrast, the target domain D t and 

task T t usually contain limited data Dt = {(xt
i , yt

i)|i ∈ [1, nt ], nt≪ns}

or some unstructured data without labels.  
• Transfer learning (TL): Given source and target domains, TL aims to 

improve the learning performance of the target task T t by extracting 
knowledge from D s and T s. 

2.2. Categories of TL 

This section aims to provide a brief high-level classification of 
various TL frameworks, including instance-based, feature-based, model- 
based TL, and multi-task learning (MTL). More details about their 
mathematical backgrounds and various application scenarios could be 
found in review papers [30,43]. 

2.2.1. Instance-based TL 
The instance-based TL assumes that source and target domains have 

different marginal distributions Ps(X) ∕= Pt(X) but with the same con
ditional distribution Ps(Y|X) = Pt(Y|X). Its fundamental idea is the 
instance weighting strategy, where different weights w are assigned to 
each source and target data directly [44] or iteratively [45], so that the 
target model is constructed with the combination of target data and 
weighted source data. For instance, a kernel mean matching is proposed 
to estimate the weights by minimizing the difference between means of 
source and target domain data in a reproduced kernel Hilbert space 
[44]; a Kullback-Leibler importance estimation procedure is designed to 
minimize the Kullback-Leibler divergence of source and target domains 
[46]. Both direct estimation methods could be incorporated into many 
other methods, but the estimation accuracy of weights depends on the 
designed distance matrix. 

Different from direct estimation methods, the iterative methods want 
to find a procedure to reduce the weights of source data with negative 
effects on the TL performance. One representative work is TrAdaBoost in 
classification [45], where the source dataset Ds and target dataset Dt 

were combined to train weak classifiers iteratively. During each itera
tion, the weights of source data were modified based on a designed 
constant value and their classification results, while the weights of target 

data were updated according to their classification results and error. As 
a result, the relative weights were increased gradually for source data 
with correct classification results, as well as target data with incorrect 
classification results. These data would have a higher possibility to be 
selected to construct new weak classifiers in the next iteration. Such 
framework has been explored and extended in many different tasks, i.e., 
multi-source classification [47]. To extend TrAdaBoost in regression, 
Pardoe and Stone [48] proposed a Two-stage TrAdaBoost.R2 (T2ABR2 
for short) method, where the first stage aimed to increase only the 
relative weights of target data with a larger prediction error according to 
AdaBoost.R2 [49], and the second stage updated all weights of source 
and target data simultaneously to increase the relative weights of source 
data with more similarities with the target data. 

2.2.2. Feature-based TL 
The feature-based TL can tackle source and target domains with 

different marginal or conditional distributions (Ps(X) ∕= Pt(X) or 
Ps(Y|X) ∕= Pt(Y|X)). The underlying idea is a kind of data transformation 
method, where the source and target features are transformed into a 
common feature space to minimize their difference. Generally, the 
feature space is a new representation of the dataset D (i.e., F = ϕ(D)), 
where ϕ(⋅) is a designed representation operation, such as eigenvalue 
decomposition [50] and feature augmentation [51]. 

Different in transformation structure, the asymmetric [52] and 
symmetric [53] feature-based TL methods are shown in Fig. 3. 

The asymmetric feature-based TL transfers the source feature by 
finding the optimal transformation matrix Hs→t . One representative 
method is the subspace alignment (SA) method [50], whose optimiza
tion problem is to minimize the Bregman matrix divergence between the 
target feature and the transformed source feature: 

min
Hs→t

‖MsHs→t − Mt‖
2
F (1)  

where Ms and Mt are the bases (i.e., eigenvectors) of source and target 
subspaces respectively; ‖⋅‖2

F is the Frobenius norm. After obtaining the 
optimal Hs→t , a learning machine could be trained based on the com
bination of the target data and the transformed source data directly. 
Apart from Bregman matrix divergence, various criteria have been 
applied widely in feature-based TL methods to measure the feature 
difference, including the maximum mean discrepancy [54], 
Hilbert-Schmidt independence criterion [55], and Wasserstein distance 
[56]. 

The symmetric feature-based TL tries to construct a new common 
feature space, where the source and target features have a small dif

Fig. 3. Frameworks of asymmetric and symmetric feature-based methods.  
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ference after their respective transformation. The general optimization 
problem can be formulated as: 

minDist(Fs,Ft,Hs,Ht) = min
Hs ,Ht

Dist(Ds,Dt,Hs,Ht,ϕ(⋅)) (2)  

where Dist(⋅) represents the selected feature difference measurement 
with/without regularizers; Hs and Ht are the source and the target 
transformation matrices respectively. In most cases, the common feature 
space is defined manually according to criteria. For instance, the transfer 
component analysis method [57] was proposed to extract the common 
latent features, by minimizing the maximum mean discrepancy of source 
and target domains in a kernel Hilbert space. The proposed spectral 
domain-specific feature alignment method [58] identified 
domain-specific and domain-independent features from the source and 
target dataset directly, based on which a bipartite graph was constructed 
to find the co-occurrence relationship between two features. Then a 
spectral clustering algorithm was applied to the graph to split 
domain-specific and domain-independent features into clusters that 
represented the new common feature space. Similarly, the heteroge
neous spectral mapping method [59] found the common feature space 
by minimizing the difference between projected domains, while main
taining the original data structure. 

2.2.3. Model-based TL 
Different from knowledge represented as data in the instance-based 

TL and feature space in the feature-based TL, the model-based TL aims 
to facilitate the target model construction and training process, by using 
source model structures or parameters. 

From the perspective of model construction, the source model could 
be a sub-structure in the target model, i.e., f t = extend(f s). The repre
sentative work is fine-tuning framework [60], which shares certain 
structures of the pre-trained source model and their corresponding pa
rameters in the target model directly. Then new substructures are 
designed according to the target tasks and tuned with limited target 
data. Considering its easy implementation, it has been applied success
fully in image classification [61], disease detection [31], communica
tion [62], and so on. Besides, with several source domains available at 
the same time, the target model could be represented as an ensemble of 
source models, i.e., f t = ensemble({f s

i |i = 1, …, k}), where k is the 
number of source domains. Yao and Doretto [47] extended TrAdaBoost 
to multiple source domains, where a group of candidate weak classifiers 
were trained for each source domain at each iteration. And the target 
classifier was a weighted average of optimal source weak classifiers with 
the minimal classification error at each iteration. Different from the 
above global weighting, a locally weighted ensemble framework was 
designed to assign adaptive weights to each source model according to 
the similarity between target domain and the corresponding source 
domain [63]. 

During the training process, a new loss function was defined 
considering source knowledge: 

Lt = lt + lt,s (3)  

where Lt is the updated loss function for the target model; lt is the 
conventional loss function based on target model prediction and target 
data, such as the mean square error in regression tasks, or cross-entropy 
and hinge loss in classification tasks; lt,s is a regularizer constructed 
based on both domains. For instance, the domain-dependent regularizer 
[64] was designed to control the difference between target and source 
predictions on the target data, i.e., lt,s = λ

⃦
⃦f t(Xt) − f s(Xt)

⃦
⃦2

2, where λ is a 
regularizer hyperparameter. Compared with source model parameters, 
the target model parameters can be restricted directly in the regularizer, 
i.e., lt,s = λ

⃦
⃦θt − βθs⃦⃦2

2, where β is the weighting parameter to control the 
degree of transfer [65]. By assuming source and target domains are 
similar to some extent, these methods can restrict the target 

performance or parameters in the vicinity of source counterparts to 
improve the accuracy of the target model. 

2.2.4. Multi-task learning (MTL) 
As an inductive TL method [43], MTL learns from multiple tasks {

T i|i = 1,…,m} simultaneously to improve the learning performance of 
each task by using the knowledge contained in all/some tasks [66]. 
Different from explicit definitions of source and target in the above three 
TL categories, each task in MTL can be regarded as a source or target to 
others. In most cases, MTL tasks can be completed by a hard or soft 
parameter sharing mechanism [67]. 

In the hard parameter sharing, different tasks share the input layer 
and some hidden layers to project to a common latent space, and have 
their task-specific layers [68], shown in Fig. 4(a). Such a mechanism 
could reduce the risk of overfitting for each task when a common feature 
presentation is captured with more tasks involved [67]. Considering the 
common layers applied, the hard parameter sharing could be applied 
only in homogeneous TL tasks where the target and source input spaces 
are the same. Conversely, each task has its own model in the soft 
parameter sharing mechanism, while the model parameters of all tasks 
are controlled simultaneously by regularizers or constraints. As no strict 
restriction is required for input spaces and model structures of various 
tasks, soft parameter sharing could solve both homogeneous and het
erogeneous tasks where the target and source input spaces are different. 

In both mechanisms, the MTL loss function is formulated as: 

LMTL =
∑m

i=1
li + lr (4)  

where LMTL is the MTL loss function; li is the conventional loss function 
of the task T i; m is the number of tasks; lr is an optional regularizer, such 
as Frobenius norm [69], {lp|p = 1, 2,∞} norm [70–72], capped-lp norm 
[73] of model parameters, and the trace of a square matrix defined with 
model parameters and feature covariance in all tasks [74]. During 
training, information in all tasks is shared mutually to update all pa
rameters together, which represents the knowledge transfer process. 
Besides, if a certain task is focused, the loss functions of other tasks serve 
as noise or bias, which would improve the generalization performance of 
a certain task [75]. 

2.3. Summary remarks 

According to the underlying assumptions or theories, each TL cate
gory has its preferable application scenarios.  

• Instance-based TL: Considering the sampled target and source data 
are applied directly, both domains are required to have the same 
feature space, i.e., X s = X t, which is also known as homogeneous 
TL. In other words, the source and target inputs should consider the 
same variables. Besides, this category performs best when the source 
and target domains have an identical conditional distribution [76]. 

• Feature-based TL: Without the restriction of feature space, this cate
gory could be applied in both homogeneous and heterogeneous 
(X s ∕= X t) TL tasks [59]. More specifically, the feature-based TL has 
potential to solve tasks with any combination of Ps(X) ∕= Pt(X), 
Ps(Y|X) = Pt(Y|X), X s ∕= X t , or Y S ∕= Y t . This merit is attributed 
to the transformation matrix, which could map the source and target 
features with different dimensions to a common feature space. 

• Model-based TL: Similarly, the model-based TL also has wider ap
plications in both homogeneous and heterogeneous TL tasks, as it 
allows construction of the target model by combining target-specific 
input and output layers with sub-structures in the pre-trained source 
model. 

• Multi-task learning: Although MTL is applicable for both homoge
neous and heterogeneous TL tasks, it would be preferred when only a 
few relevant historical data are accessible. Without the prerequisite 
of sufficient source data, MTL can combine insufficient data in 
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several source domains to improve the performance of the target 
(main) task. If aiming to obtain an acceptable performance for each 
task, MTL could lower the total computation cost for training all the 
tasks separately [75]. 

Although the above TL frameworks have been applied widely and 
successfully with various characteristics, they are still afflicted with two 
common challenges.  

• Similarity: The most important factor affecting the TL performance is 
the similarity between the source and target domains. When the 
similarity is low, transferring source knowledge would hurt target 
learning, which is known as negative transfer [77]. To mitigate this 
problem, feature-statistic-based, test-performance-based, and 
fine-tuning-based similarity estimations have been proposed and 
studied widely [78]. However, further work is still required to pro
vide a theoretical answer on how to quantify the domain similarity 
and its effects on the selection and design of TL frameworks [30,43].  

• Source and target data size: When ML models (i.e., network structures) 
and source/target domains are determined, the TL performance 
would be affected by source and target data sizes [79]. For instance, 
an overfitting problem could be observed when the target data size is 
small, resulting in a set of sub-optimal parameters. Also initializing a 
target model from a source model trained with a large source dataset 
would improve the target learning performance and reduce the risk 
of overfitting. However, it is difficult to determine how many target 
and source data are enough for TL [80]. Especially in real-world 
engineering problems with expensive experiments or simulations, 
where the source data size has been determined according to 
completed source tasks, how much target data should be generated is 
still uncertain for different problems. From the authors’ experiments, 
the target training data size should be 20~70% of the source data, to 
reach a balance between TL performance and the expense of data 
collection. More details are discussed in Section 4. 

3. Transfer learning in AM modeling 

In this section, the definition of the reviewed topic is presented for 
clarification, after which the literature review about TL in AM modeling 
is organized and discussed. 

3.1. Problem definition 

Based on the general definitions in TL, the specific counterparts in 
AM modeling are provided.  

• Domain D : For a certain AM product, the domain refers to the 
manufacturing setting, including the choice of printer machine, 
material, AM process, process parameters, etc. In each domain, the 
“input variable X” is a set of parameters whose relationship with 
product properties is to be studied. 

• Task T : The AM task is to construct a product with certain re
quirements, such as mechanical properties and in-situ manufacturing 
qualities. The property/quality of interest is defined as the “output 
variable Y”, represented as a function of input variables X, i.e., Y =

f(X|θ), where θ is model parameters to be learned from (X,Y).  
• Source/Target: The AM source refers to available completed products, 

while the AM target refers to new similar-but-not-identical products 
to be fabricated with the assistance of knowledge extracted from the 
AM source. 

With available information (Xs,Ys, f s) from source products, where 
the superscript ’s’ indicates the source, the reviewed topic in this paper 
is how to use them and TL methods to improve the AM modeling performance 
for target products in other domains, where only limited target data (Xt ,Yt)

are accessible. To find all relevant papers possible, the authors searched 
with keywords “additive manufacturing”, “modeling”, and “transfer 
learning (or knowledge transfer)” in Google Scholar to cast a larger net. 
Then a manual selection is done carefully to find highly-cited relevant 
papers, and ignore irrelevant papers. For instance, a TL-based multi-fi
delity point-cloud neural network was proposed to predict the thermal 
profile of melt pools, where the source model was constructed based on 
the low-fidelity data from analytical models [81]. Then the target model 
was obtained by fine-tuning the source model with high-fidelity simu
lation data. However, both low-fidelity and high-fidelity data are 
generated from the same domain. Therefore, this work is closer to 
multi-fidelity modeling than the reviewed topic. Similar works involving 
TL within the same AM domain could be found (i.e., Xia et al. [82], Liao 
et al. [83], etc.), but these works are not reviewed here. In other words, 
only works involving different domains will be reviewed in this paper. 
Besides, some papers applied TL to improve the accuracy of material 
microstructure reconstruction models [84,85], but the connections be
tween the material and AM are not mentioned. Therefore, these works 
are also ignored, although the material design is an important area in 
AM. Based on these considerations, the final selected papers are sum
marized from Tables 1–5, and the details are presented as follows. 

3.2. Instance-based TL 

Considering the strict requirement of the same input space in both 
source and target domains, the instance-based TL only has few appli
cations in quality modeling of AM, shown in Table 1. 

Zhang et al. [39] integrated the GPR model with the T2ABR2 
framework to predict electrical performances (i.e., the line width, line 
thickness, and edge roughness) of aerosol jet printing (AJP) under 
various operating conditions. With abundant data from the source 
operation condition (e.g., print velocity, tip diameter, atomizer current, 
and standard cubic centimeters per minute) and limited data from the 
target operation condition, the target model can predict three perfor
mances with a mean relative error smaller than 20% in most cases. 
However, such a large error is not acceptable, as a 10% error is the 
threshold to accept a model for optimization and path planning [39]. 

Fig. 4. Commonly applied MTL frameworks [67].  
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Compared with feature-based and model-based TL frameworks, this 
instance-based TL framework performs worst in their case studies. 

Similarly, an extended sequential minimum energy design method 
was proposed to utilize data from prior studies of the laser-based AM 
(LBAM) process [40]. In this method, the Bayesian updating framework 
was adopted to construct the target model, based on the source data 
collected from published papers (different steel powders and different 
machines) with increasing target data. Specifically, at the i-th iteration, 
the target model was constructed on source data and collected (i − 1)
pieces of target data. An optimization was then performed based on the 
target model to get the process parameters for printing at the current 
iteration. Their case study showed that this modeling framework enables 
obtaining target products with over 99% relative density after five trials 
of target printing, which illustrates the efficiency of the designed 
instance transfer mechanism to solve process optimization problems. 

3.3. Feature-based TL 

Similar to the instance-based TL, there exist few applications of 
feature-based TL that are relevant to quality modeling, shown in Table 2. 

Considering the discrepancy between source and target data sizes in 
real-world AM cases, Zhang et al. [39] applied a simplified trans
formation matrix [86] to solve the optimization problem in subspace 
alignment (shown as Eq. (1)), whose new solution is formulated as: 

Hs→t =
(
AT A

)− 1AT B (5)  

where A = [Xt , f s(Xt), 1 ]nt×(nd+2), B = [Yt ]nt×1, f s is the pre-trained source 

model, and nd is the dimension of the input variable. Then the initial 
source feature representation Ds,0 = [Xs,Ys, 1]ns×(nd+2) is used to 
construct the transformed source data Ds,1 =

[
Xs,Ds,0Hs→t]

ns×(nd+1), 

where Ds,0Hs→t can be regarded as the transformed source outputs. 
Finally, [Xt ,Yt ] and Ds,1 are fed to the GPR model integrated with 
T2ABR2 to construct the target model. This combination of feature- 
based and instance-based TL frameworks brings better modeling accu
racy than only using the instance-based TL in their case study. 

Different from the above asymmetric feature-based method, Cheng 
et al. [41] decomposed the geometry deviation of FDM products into 
shape-dependent and shape-independent parts. In this method, the 
shape-dependent part of various geometries was assumed to be located 
in a common latent space about the local shape features, whose formulas 
were learned from data collected from different geometries. After 
training, this model could predict the shape-dependent deviation of new 
geometries based on boundary point positions, which could be used in 
property control to design compensations for geometry deviations. 

3.4. Model-based TL 

Compared with the instance-based and feature-based TL, the model- 
based TL has wider applications in AM modeling, summarized in Ta
bles 3 and 4. 

3.4.1. Source model ensemble & transformation 
The idea of source model ensemble applied in AM modeling is to 

directly reuse the source model whose corresponding domain has the 
largest similarity with the target domain. One application is about FDM 
products’ geometry deviation, which is divided into shape-independent 
and shape-dependent ones [41,87]. Both works approximated 
shape-independent components by deviations of points inside various 
products, based on the assumption that the shape-independent deviation 
model would be identical for different products. But this assumption is 
risky and hard to extend to other different AM modeling problems. Even 
for the geometry deviation prediction problem, the validity of this 
assumption should be checked by experiments. 

The idea of constructing the target model as a transformation of the 
source model is mainly applied in modeling in-plane or out-of-plane 
deviations of AM products. For instance, to improve the modeling ac
curacy and efficiency, Sabbaghi and Huang [88] proposed a model 
transfer framework for SLA products involving different lurking vari
ables xlur which refers to those that are uncontrollable but affect the 
interested responses. In this framework, the target model f t was defined 
as a transformed source model with the function Tt→s: 

f t = f s(Tt→s
(
Xt, xt

lur

)
, xt

lur) (6)  

where the formula of Tt→s is defined manually according to prior 
knowledge, and the parameters can be learned from limited data of 
target products. Based on the same framework, Francis et al. [37] 
studied LPBF products fabricated by the EOS M290 machine with two 
different materials, Ti-6Al-4 V alloy and 316 L stainless steel. In their 
work, Tt→s was defined according to material differences (i.e., thermal 
conductivity), product size difference, and in-plate point locations, 
which captured the effect of domain differences on the point locations. 
As stated in [37], it is promising to consider other material information 
or process difference in Tt→s, which could improve the transformation 
accuracy. At the same year, Francis [36] extended their work to transfer 
models among different machines (i.e., EOS M290 and MSU Renishaw 
AM 400) with the same material. Such a transformation framework is 
promising, but the accuracy of the final target model depends on the 
reliability of the designed Tt→s, which requires expert knowledge about 
differences and relationships between 2 AM domains. 

Similarly, assuming that AJP processes with different operating 
conditions would follow a similar material deposition mechanism and a 

Table 1 
Summary of instance-based TL in AM modeling.  

Source 
domain 

Target domain Input x Output y AM Ref.  

• printed line 
with 
operation 
condition 1  

• printed line 
with operation 
condition 2  

• sheath 
gas flow 
rate  

• carrier 
gas flow 
rate  

• line width  
• thickness  
• edge 

roughness 

AJP [39]  

• GP1 
powder 
+ EOS 
M270 
machine  

• AISI-630 SS 
powder 
+ M2 Laser 
CUSING 
machine  

• GP1 
powder 
+ in-house 
developed 
SLM 
machine  

• PS4542A 
powder 
+ ProX100™ 
machine  

• laser 
power  

• laser 
velocity  

• hatch 
spacing  

• layer 
thickness  

• relative 
density 

SLM [40]  

Table 2 
Summary of feature-based TL in AM modeling.  

Source 
domain 

Target domain Input x Output y AM Ref.  

• printed line 
with 
operation 
condition 1  

• printed line 
with 
operation 
condition 2  

• sheath 
gas flow 
rate  

• carrier 
gas flow 
rate  

• line width  
• thickness  
• edge 

roughness 

AJP [39]  

• product 
with 
geometry 1  

• product 
with 
geometry 2  

• point 
location  

• shape- 
dependent 
deviation 

FDM [41]  
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similar overall trend of the response surface, Zhang et al. [39] proposed a 
general extension framework for the source model, shown as: 

f t = M1f s(M2Xt +B2)+B1 (7)  

where (M1,B1) are the global scale vector and shift vector respectively in 
the source response surface, (M2,B2) represents the local scale and shift 
vector respectively to map the target feature space X t to source feature 
space X s. With the optimal transformation vector (M1,B1,M2,B2) ob
tained by minimizing the target prediction error with a genetic algo
rithm (GA), the extended model outperformed the instance-based 
method and falls behind the feature-based method in terms of the pre
diction accuracy of line width, thickness, and edge roughness. Based on 
Eq. (7), the target model in their work could be regarded as a linear 
transformation of the source model. However, this modeling framework 
would fail when the relationship between the target and the source 
domain is nonlinear. 

3.4.2. Fine-tuning framework 
Apart from the above two methods, another commonly applied 

method is the fine-tuning framework. From the perspective of involved 
source domains, its applications in AM can be classified as AM-related 
and AM-unrelated (i.e., ImageNet [89]) datasets.  

• AM-related dataset 

For fine-tuning frameworks with AM-related datasets, most appli
cations aim to explore the transferability from process to process, from 
machine to machine, from product to product, and from material to 

material. 
To investigate the performance of TL among different processes, 

Pandita et al. [38] first constructed a multi-fidelity GPR model based on 
high-fidelity and low-fidelity data collected from the bead-on-plate 
process with Inconel 625 material. Then a probabilistic deep neural 
network was trained based on abundant data generated by the regres
sion model. For the bead-on-powder process with the same material, the 
former three layers of the trained network were frozen and the last 
several layers were retrained with limited new data. Similarly, Mehta 
and Shao [90] trained a source defect detection model for LPBF under 
the federated learning framework and transferred it to the binder jetting 
(BJ) process by fast fine-tuning only with four images. The final target 
model is acceptable for defect detection, although the accuracy degrades 
a little compared with that of the source model in LBPF. Both works 
demonstrate that the knowledge of different AM processes could be 
transferred to other similar-but-different processes. But more work 
should be conducted to explore their capabilities further. 

To facilitate designing the geometric deviation compensation strat
egy among different machines of direct metal deposition (DMD) process, 
Knuttel et al. [91] designed a conventional CNN model to predict the 
deposition height based on laser power, scan speed, and seven curva
tures in the single-layer printing path. After pre-training the model with 
43,921 data collected from a Prima Power Laserdyne 430 3-axis CNC 
machine with a four-nozzle Optomec DMD head, the model was 
fine-tuned with 14,000 pieces of data collected from a 5-axis DMD 
machine prototype (“Symbionica”) and reaches a root mean square error 
(RMSE) around 0.017 mm. Although this method works well in tests, the 
differences between the two machines are not considered. As a result, 

Table 3 
Summary of model-based TL in AM with AM-related dataset.  

Source domain Target domain Input x Output y AM Ref.  

• printed line with operation condition 1  • printed line with operation condition 
2  

• sheath gas flow rate  
• carrier gas flow rate  

• line width  
• thickness  
• edge roughness 

AJP [39]  

• product with geometry 1  • product with geometry 2  • point location  • shape-independent 
deviation 

FDM [41, 
87]  

• product with process 1  • product with process 2  • point location with 
lurking variables  

• in-plane deviation SLA [88]  
• products with Ti-6Al-4 V  • products with 316 L stainless steel  • in-plane deviation LPBF [37]  
• products fabricated with EOS M290 machine  • products fabricated with MSU 

Renishaw AM 400 machine  
• in-plane deviation LPBF [36]  

• LBPF products  • BJ products  • gray images defect label and 
location  
• Powder  
• Part   

• Defect 

BJ [90]  

• Prima Power Laserdyne 430 3-axis CNC machine 
with a four-nozzle Optomec DMD head  

• 5-axis DMD machine prototype 
(“Symbionica”)  

• laser power  
• scan speed   

• curvatures in the printing 
path  

• deposition height DMD [91]  

• bead-on-plate process  • bead-on-powder process  • laser power  
• scan speed  

• melt pool size LPBF [38]  

• products by printers with a kinematic model  • products by printers with different 
kinematics  

• feed speed  
• acceleration  

• line width FDM [92]  

• products with initial process and shape  • products with different processes and 
shapes  

• point location with 
lurking variables  

• in/out-of-plane 
deviation 

SLA [93, 
94]  

• historical surfaces with HDM measurements  • new surfaces with LDM 
measurements  

• multi-definition 
metrology data  

• surface height  
• surface roughness 

FDM [95]  

• material 316 L stainless steel  • material CuSn8  • spectrogram images of 
acoustic signals  

• balling  
• lack of fusion pores  
• conduction mode  
• keyhole pores 

LPBF [96]  

• low-carbon steel  
• stainless steel 316 L  

• stainless steel 316 L  
• Inconel 625  

• current/voltage data  
• video frame data  
• thermal properties of the 

material 

anomaly detection:  
• normal bead shape  
• abnormal bead shape 

WAAM [97]  

• continuous and short carbon fibers  • continuous carbon fiber  
• continuous glass fiber and short 

carbon fiber  

• structure parameters  
• time  

• strain-stress curve FFF [98]  
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the design framework could fail when testing on different machines. 
Different from the common fine-tuning framework, Ren et al. [92] 
proposed a transfer mechanism according to the kinematic properties of 
different FDM printers. They separated the printing process into five 
phases according to the kinematic features and defined a five-phase 
model to predict the line width. The parameters in the model were 
assumed to follow a Gaussian Process with a zero mean and a non-zero 
covariance. After training the source model and obtaining the source 
covariance Σs, the target covariance was defined as a scaled source one 
with a parameter q, i.e., Σt = qΣs. When training the target model, the 
scaled covariance provided an auxiliary minimization objective about 
parameters, i.e., min

⃦
⃦f t ( Xt |θt) − Yt ⃦⃦2

2 +
(
θt)T

(Σt)
− 1θt , which contrib

uted to the learning of the target model. 
In real-world AM applications, different products are often con

structed under the same AM process. To explore the knowledge among 
different SLA products with different geometries, Sabbaghi et al. [93] 
adopted a manually defined formula of the geometry deviation as the 
source model and defined it as the global deviation feature for any target 
products. Then, the target model was structured as a combination of the 
source model and a new model f ′ , i.e., f t = f s + f ′ . The purpose of f ′ was 
to capture the specific deviation feature of a target product from its 
limited data, which captures the differences between the target geom
etry and the common latent geometry. Similarly, Ferreira et al. [94] 
constructed a source Bayesian extreme learning machine to predict the 
in/out-of-plane deviation at each boundary point. Then a new Bayesian 
extreme learning machine was selected as f ′ , whose outputs were inte
grated with the hidden and output layers of the source model to form the 
final target prediction. In addition, considering the expensive 
high-definition metrology measurements for surface quality inspection 
in FDM, Ren and Wang [95] proposed a TL-based surface variation 
modeling framework, where a source regression model and a source 
neural network model were trained for surface height and roughness 
respectively. When training the target regression model, the target 
prediction loss was combined with differences among model parameters 
⃦
⃦θt − θs⃦⃦2

2, which posed a constraint on the target model parameter. For 
the target neural network, the former three layers in the source model 
were shared and frozen, while the remaining target layers were tuned 
with the limited target FDM data. These three works only consider 
products with simple geometries during their tests, as an arbitrary ge
ometry would bring new challenges and require delicate designs of the 
transfer mechanism. 

For knowledge transfer among materials, Vigneashwara et al. [96] 
designed a TL-based classification framework to detect defects in LPBF, 
i.e., balling, lack-of-fusion pores, conduction mode, and keyhole pores. Two 
CNN models (VGG16 and ResNet18) of the source were first trained 
based on the spectrogram images of acoustic signals, collected from line 
tracks with stainless steel 316 L. Then, the target models were obtained 
by fine-tuning the last several layers of both source models with the 
target data of spectrogram images of bronze (CuSn8). In other words, the 

Table 4 
Summary of model-based TL in AM with AM-unrelated dataset.  

Source domain Target domain Input x Output y AM Ref.  

• ImageNet 
dataset  

• optical tomography/melt pool monitoring 
sensor data  

• AM-related images obtained in the target 
domains  

• melt pool 
performance 

DMLS [104]  

• images from laser scribes quality characteristics  
• debris  
• scribe width  
• scribe straightness 

LS [106]  

• digital camera figures  • porosity defect SLM [42]  
• quality spectra  • quality fluctuation – [107]  
• layer-to-layer sensor images  • Discontinuity  

• Nonuniformity  
• irregularity 

3D- 
bioprinting 

[108]  

• SEM images of surface fracture  • vertical fracture  
• horizontal fracture 

PBAM [105]  

• Line camera images about powder bed powder bed quality:  
• balling  
• incomplete spreading  
• groove  
• ridge  
• spatters  
• protruding part  
• scattered powder 

LPBF [109]  

• camera images about FDM products  • spaghetti-shape error FDM [114]  
• camera images of melt pool anomalies of melt pool  

• robot suspend  
• normal  
• humping  
• spattering 

WAAM [113]  

• COCO dataset  • camera images of FFF products warp deformation:  
• Detection  
• localization 

FFF [110]  

Table 5 
Summary of MTL in AM modeling.  

Source 
domain 

Target 
domain 

Input x Output y AM Ref.  

• products with 
different 
geometries and 
processes  

• sensor signal 
feature  

• manufacturing 
feature  

• in-plane 
deviation 

SLM [115, 
117]  

• products with 
different shapes 
and sizes  

• point location,  • in-plane 
deviation 

FDM [118]  

• products with 
different process 
parameters  

• optical signal 
features  

• porosity LDED [119]  

• interconnected 
printers on a cloud 
platform  

• speed  
• acceleration  

• printing line 
variations  

• infill defects 

EAM [120]  

• LPBF products 
fabricated by 
different clients  

• gray image defect label 
and location  
• Powder  
• Part  
• Defect 

LPBF [90]  
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target images were used to update the fully connected layers in the 
source VGG16, as well as the last three convolution layers and the fully 
connected layer in the source ResNet18. During their experiments, both 
target models trained with less time and data can reach a comparable 
accuracy with those trained with full-size data and longer time. How
ever, the prediction accuracy of such a homogeneous model structure 
would degrade when transferring between various materials, as 
different materials could demand different model complexity. To miti
gate this problem, Shin et al. [97] developed an anomaly detection 
model including three modules, i.e., (i) feature extraction module (i.e., 
DenseNet169) to learn features from time-series numerical current/
voltage data and video data during WAAM process, (ii) material prop
erty concatenation module to consider primary thermal properties (i.e., 
thermal conductivity, melting point, and specific heat capacity) as 
partial inputs, and (iii) classification module to detect whether the bead 
shape is normal or abnormal. After constructing the source model, the 
target model could be obtained by reusing source parameters in the 
former two modules and fine-tuning the classification module based on 
limited data about the new material. Their classification model achieved 
an accuracy about 82.95%, 88.55%, and 84.22% when transferring 
knowledge from low-carbon steel to stainless steel 316 L, from 
low-carbon steel to Inconel 625, and from stainless steel 316 L to Inconel 
625, respectively. Both works [96,97] only test on single-line track or 
single-layer bead deposition, however. The interaction between layers is 
not considered in their model, which could limit their capability in 
printing products with complex geometries. To further explore the 
applicability of TL in fused filament fabrication (FFF) products with 
different materials, Zhang et al. [98] proposed an optimal transport in
tegrated long short-term memory model to predict the stress-strain 
curves based on product structures under the fine-tuning framework. 
In the designed experiments, i.e. transferring from continuous and short 
carbon fibers to (i) continuous carbon fiber or (2) continuous glass fiber 
and short carbon fiber, this model can reach an RMSE below 5.7% in 
both tests.  

• AM-unrelated dataset 

Apart from the above works whose source domain is related to AM, 
the general-purpose and high-performance CNN backbones (i.e., Alex
Net [99], ResNet [100], VGG Net [101], GoogLeNet [102], EfficientNet 
[103], etc.) trained on the ImageNet database [89] have attracted at
tentions from AM researchers recently. All these models are transferred 
to construct the image-property model of AM, as sensor/digital images 
are available during the in-situ monitoring and control, with the 
assumption that the feature extraction layers in CNN backbones can be 
transferred to other tasks including AM. 

Generally, most CNN backbones are used in AM-related classification 
problems, such as defect detection and quality control. For instance, 
with images from the optical tomography sensor or the melt pool 
monitoring sensor respectively, the pre-trained AlexNet can predict the 
melt pool performance (i.e., “good”, “under-melting”, or “over-melting”) in 
direct metal laser solidification (DMLS) after modifying the network 
structure and retraining [104]. In the test cases, both fine-tuned AlexNet 
models have an overall accuracy of over 70% and their accuracies in
crease to 90% after performing a cross-validation scheme. 

To detect the porosity of products during the SLM process, Li et al. 
[42] used a high-resolution digital camera to collect the layer-wise vi
sual images, which were fed to a restructured VGG16 model. The pa
rameters and structures of the pre-trained VGG16 model were frozen 
and the output layer was modified according to the target classes. 
Compared to the VGG16 model trained from scratch, the fine-tuned 
model reached a comparable average accuracy of about 99% with 
only half the training time. By removing the softmax layer in the output, 
Andrew and Elizabeth [105] utilized the pre-trained VGG16 model to 
extract features from microstructure images, which were then fed into 
the unsupervised learning methods (t-distributed Stochastic Neighbour 

Embedding and k-means) for classification. Based on the In-718 Charpy 
Fracture Surface dataset about powder bed additive manufacturing 
(PBAM) products, this framework could classify surface fractures into 
“vertical” and “horizontal” categories with 88.4% accuracy. By reusing 
the feature extraction layers in the pre-trained VGG16 model, Bisheh et 
al. [106] designed some new convolution layers to construct a quality 
monitor model, whose parameters were learned from 14 images of a 
laser scribing (LS) process. This model could reach an overall accuracy 
(96%) to identify debris, part background, and scribe line. And the 
output pixels could be used to determine the width and straightness of 
the scribe line. 

Hu et al. [107] proposed a TL-based quality spectra fluctuation 
model, where the output layer of ResNet34 was modified according to 
the quality spectra categories. During the fine-tuning process, the former 
layers were frozen and the weights of the remaining layers were learned 
from the constructed quality spectra sets. Compared with AlexNet and 
ResNet34 trained from scratch, the TL-based ResNet34 had a better 
model accuracy of over 97% on the test dataset. As the same fine-tuning 
method in [107], the pre-trained ResNet50 was updated with 
layer-by-layer sensor images, to detect the disparity between the desired 
designs and the printed shapes during the 3D bioprinting process [108]. 

Considering the effects of powder bed homogeneity on final part 
qualities, Felix et al. [109] proposed a powder bed quality classification 
model based on the pre-trained Xception network. The output layers of 
the pre-trained CNN model were redesigned and fine-tuned based on 
over 45,000 images obtained by line cameras in eight LPBF experiments. 
After training, the classification accuracy 99% was observed in the 
proposed model, which is promising to provide reasonable guidance 
during the LPBF process, i.e, adapting the powder amount or recoater 
speed to correct some inhomogeneities (i.e, scattered powder, ripples, 
grooves, and incomplete spreading), replacing the recoating tool if ridges 
exist, or stopping the process early to save resources when balling, 
spatters, and protruding part occurs. 

To correct or prevent warp deformation in FFF, Brion et al. [110] 
trained an object detection model based on the YOLOv3 model [111] 
which is initialized by learning from a large-scale COCO dataset [112]. 
This pre-trained model was then fine-tuned by thousands of FFF images 
to detect and localize the warp deformation, with a detection accuracy 
of 88.72%. Integrated with expert-informed heuristics, this model en
ables estimating the warpage (i.e., minor, moderate, major), which is used 
to analyze and correct printing and slicing parameters to reduce the 
warp in future prints. 

Different from the above works that only applied one certain CNN 
structure, Xia et al. [113] selected four CNN backbones (i.e., ResNet, 
EfficientNet, VGG16, and GoogLeNet) for anomaly detection in WAAM. 
In their work, all models were updated with the same fine-tuning 
strategy, where all convolutional layers were fixed and all fully con
nected layers were tuned based on limited WAAM images. Their test 
results showed that all selected models can identify the robot suspend, 
normal, humping, and spattering with an accuracy over 97% after 
fine-tuning, which demonstrates their effectiveness. But some model 
hyperparameters need careful selections to reach such a high accuracy 
given a certain problem; otherwise, the classification accuracy after 
fine-tuning is not acceptable, i.e., 14.09% accuracy in ResNet with 
learning rates 0.1 and 0.05. 

To further understand the effects of fine-tuning strategies on 
different models, Kim et al. [114] proposed a systematic deep TL method 
considering four ImageNet pre-trained CNN backbones (i.e., VGGNet, 
GoogLeNet, ResNet, EfficientNet) to detect the spaghetti-shape error in 
FDM process. A systematic learning matrix was designed by dividing 
structures of pre-trained models into five training sections, based on 
which different fine-tuning strategies could be defined. During their 
experiments, all models with various fine-tuning strategies receive 
higher classification accuracies than their corresponding baseline 
models. More importantly, their comparisons demonstrate that given a 
certain problem, different models with different fine-tuning strategies 
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should be selected carefully to reach a balance between accuracy, 
computing time, and memory size. 

Although the model-based TL methods have the most applications, 
the above works only involve a narrow application scenario. For 
instance, the source model transformation is mainly applied in geometry 
deviation compensation problems, and most applications of ImageNet- 
based fine-tuning framework are AM-related classification problems, i. 
e., in-situ process monitoring and defect detection to determine whether 
there is a defect, or which type the defect belongs to. The potential of 
these frameworks needs to be explored further by solving other AM 
modeling problems. 

Although all these TL-based CNN models could be tailored and 
applied to various AM classification problems, it is seldom discussed in 
the literature about which CNN model should be trained on and which 
large-scale dataset should be selected. This would give readers a 
misleading message that all pre-trained CNN models have potential to 
solve all AM classification problems, regardless of differences between 
AM tasks and others (i.e., ImageNet and COCO). To guarantee the TL 
performance for different AM problems, the differences should be 
considered and discussed further. 

3.5. Multi-task learning 

Inspired by MTL, Wang et al. [115] proposed a Family Learning 
framework to efficiently use limited data of each SLM product. In this 
method, the geometric deviation of each layer in one product was 
assumed as a linear function of the signal features of the corresponding 
layer. During the learning process, the regularizer contained two parts, 
i) the LASSO regularization term [116] that makes parameters of all 
insignificant variables zero; and ii) a penalty function about the differ
ence between each model parameter and the weighted average param
eter of all models, which enables more information to be collected from 
other models. To share more information among relevant products, a 
similarity coefficient was defined based on the manufacturing features, 
including the scanning path and process settings. Given a new product, 
the pre-trained model of the product with the largest similarity is reused 
directly to predict the geometry deviation of each layer. Similarly, the 
Family Learning framework is also applied to SLM products with 
different geometries and processes [117], where l1 norm and l2 norm are 
both applied in order to encourage learning from similar products. 

Zhu et al. [118] developed an MTL-based GPR framework for FDM 
products with different shapes (circular, regular pentagon, and regular 
hexagon) and sizes (small, medium, and large). The relationship be
tween the in-plane deviations and point locations is captured by a GPR 
model, but the model parameters are learned without the regularization 
of model parameters in the objective function. For products manufac
tured by the laser-directed energy deposition (LDED) method, Sun et al. 
[119] applied the MTL framework to train a set of semi-supervised 
clustering methods to predict the part quality according to the optical 
spectrum signal features. Two penalty regularization terms are adopted 
in the training, including i) the penalty about the weighted average of 
the difference between the objective quality labels and the predicted 
labels, and ii) the penalty of the pairwise disparity between cluster pa
rameters. In the test case, the clustering accuracy on a new product 
reached 100% with a set of training data occupying only 3.6% of the 
dataset, which demonstrates the effectiveness of the work [119]. 

To solve the quality control problem efficiently in extrusion-based 
AM (EAM), Wei et al. [120] extended the TL-based kinematic-quality 
model [92] to a more generalized one to measure the relatedness be
tween processes. Based on the calculated relatedness, a bidirectional and 
unidirectional co-learning framework was proposed for interconnected 
printers on a cloud platform, where each printer only performed a 
limited number of experiments. This modeling framework used limited 
data from various printers to train the quality prediction model simul
taneously, under a proposed hybrid metaheuristic training process. In 
their tests, the co-learning model outperforms the TL-based model in 

terms of prediction accuracy and performance improvement compared 
with the baseline model. 

Mehta and Shao [90] designed a semantic segmentation model based 
on the U-Net structure for defect detection in LPBF under the federated 
learning framework. Their work aimed to combine limited data from 
different clients (i.e., machines and manufacturers) to alleviate the data 
scarcity problem. During the training procedure, a global model was 
sent to each client for pre-training, after which the model parameters 
from all clients were averaged to define the new global model until 
convergence. Such a model shows better defect detection performance 
than conventional centralized learning and individual learning for gray 
images of products fabricated by ConceptLaser M2 LPBF machine with 
Stainless Steel 316 L powder. However, this work considers all defects as 
one classification label, which restricts its applicability when specific 
defect types are of interest. 

Different from sufficient source data in the applications reviewed in 
Sections 3.2–3.4, the reviewed applications of MTL focus on problems 
where each AM domain only has limited data available. But their 
applicability is restricted by the number of found AM domains. If the 
number is smaller, the data scarcity problem also exists and deteriorates 
the modeling performance. 

3.6. Summary remarks 

With available datasets of AM products from publications or online 
repositories, different TL frameworks have been successfully explored to 
improve the modeling performance and reduce the requirements of 
expensive data about new products. However, current studies have two 
common limitations.  

• Different from that in computer science and fault diagnosis [35], the 
applications of TL in AM modeling are relatively few. Current studies 
focus on process-structure-property modeling for performance pre
diction (or optimization), process control, and defect detection, 
where each aspect has few relevant works. Therefore, how to apply 
TL widely in the whole AM lifecycle still requires more exploration.  

• Most applications have the simple assumption that the target and 
source domains are relevant to some extent but the similarity be
tween domains is seldom discussed. In real-world applications, it is 
important to measure these similarities quantitatively or qualita
tively so that the appropriate TL frameworks could be selected ac
cording to their characteristics and capacities. 

4. Discussions and recommendations 

Unfortunately, the reviewed works seldom answer these questions: 
which source domain to use, which TL framework to adopt, how much 
target data we need, and whether to apply data preprocessing tech
niques for a given AM modeling problem. Consequently, when 
encountering new problems, researchers would spend a significant 
amount of time in trial-and-error to find the best choices. Therefore, this 
section aims to present some relevant discussions to shed light on these 
issues. 

4.1. Which source domain to use? 

As mentioned in Section 2.3, the similarity between the source and 
target domains has a great impact on TL performances. When studying a 
target AM modeling problem, the first work is to determine which source 
domain could be selected for data collection. Generally, the higher the 
similarity, the better the source domain. However, the similarity be
tween two domains is difficult to quantify, especially when only few 
data are accessible for the target AM problem. Therefore, qualitative 
similarity could be an alternative criterion to tell us where to find 
possible relevant source data. In other words, given a certain target AM 
problem, it is better to find source domain data from products fabricated 
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with geometries, materials, AM processes, or machines that belong to 
the same series as the target product. But in real-word applications, 
qualitative similarity should be carefully defined considering both 
source and target domains, as it represents a different metric compared 
with quantitative similarity. Besides, to identify which part of the source 
data should be transferred, a quantitative similarity would be more 
helpful, which however needs delicate design and further development. 

4.2. Which TL framework to adopt? 

After determining the source domain, the matching TL frameworks 
for real-world target AM problems could be found by comparing source 
and target domains in detail, according to the underlying characteristics 
discussed in Section 2.3:  

• Xs = Xt and Ys = Yt : When the source and target problems involve 
the same input (i.e., process parameters) and output (i.e., product 
properties) variables, conventional modeling methods (i.e., GPR) 
integrated with instance-based TL or source model transformation 
frameworks are preferred. The reason is that compared with various 
TL-based ANN models, they have fewer parameters to be learned 
from limited target data, which reduces the risk of negative effects 
caused by insufficient target data. 

• Xs ⊆ Xt or Xs ⊇ Xt: Sometimes, the accessible source AM task con
siders more/fewer input variables than the target AM task, such as 
thermal predictions with or without considering material properties. 
For these AM problems, the feature-based and model-based TL 
frameworks would perform better, as both frameworks can tackle the 
disparity among X s and X t.  

• Xs = Xt and Ys ∕= Yt : In some cases, the accessible source data and 
target data involve the same input variables but different outputs, 
such as constructing the relationships between process parameters 
and melt pool geometries (i.e., height, weight, and depth). In these 
problems, the feature-based TL, model-based TL, and MTL are all 
applicable as they share common knowledge about the input feature 
space by different mechanisms. 

• Few (Xs, Ys): In reality, sufficient relevant source data are inacces
sible for some target tasks. For example, when AM techniques are 
applied in a new industrial field, or a new product completely 
different from existing products is studied, obtaining sufficient 
source data would be difficult and expensive. In these cases, MTL 
would outperform another three TL frameworks. By utilizing insuf
ficient data from several source domains, MTL can solve them 
simultaneously to reach an acceptable performance for each task 
with a lower average budget [75]. 

4.3. How much target data is needed? 

Based on collected source data and selected TL frameworks, the next 
work is to determine how much target data (including training, vali
dation, and testing data) should be generated for the AM modeling. 
According to the authors’ knowledge and experience, the negative 
transfer could occur in two different data size conditions.  

(i) When the amount of target training data is much less than that of 
the source training data (i.e., nt≪ns), it would be difficult to 
extract relevant knowledge from the source data according to the 
scarce information in the limited target data. Therefore, a lack of 
sufficient target data could cause inappropriate source knowl
edge transfer, which in turn misleads the construction process 
and results in negative transfer.  

(ii) When the target training data size is close to the source training 
data size (i.e., nt ≈ ns), a target model could be constructed based 
on target data alone with acceptable accuracy. Then, the differ
ence between source and target domains would be amplified 

when integrating source data, leading to negative effects on the 
training of the target model. Besides, generating target data with 
a similar size to the source data implies high costs, which is not 
preferable in TL-based applications. 

Therefore, in real-world AM problems, the data size ratio nt/ns 

should be in an appropriate range to reach a tradeoff among computa
tional expense, modeling accuracy, and TL performances. According to 
the authors’ experiments, the ratio of target to source training data 
should be in the range of [0.2, 0.7]. 

4.4. Whether to apply data preprocessing techniques? 

Before feeding source and target data to the modeling process, data 
preprocessing techniques should be selected carefully according to the 
ML methods employed; otherwise, it would deteriorate learning per
formances [121]. For instance, given one source data (xs,ys), one target 
data (xt , yt), and xs ∕= xt, the preprocessed source and target input vari
ables may be too close or even the same after normalization (i.e., both 
being normalized to the same range [0,1]). As a result, some inherent 
information between this data pair would degenerate. When trans
ferring source data as knowledge directly (i.e., the combination of 
source/target data in instance-based TL [39]) or comparing source and 
target data directly (i.e., space alignment in feature-based TL, and model 
scale/shift in model-based TL [39]), such a pair of normalized data 
would deteriorate modeling performances. Although both fine-tuning 
and multi-task learning frameworks transfer the implicit source 
knowledge represented as model parameters or structures, the negative 
transfer could also be observed if the data are normalized. Besides, when 
considering different data size ratio nt/ns, the effect of data pre
processing such as normalization would vary significantly. 

Therefore, in real-world AM applications, whether to use data pre
processing techniques (i.e., normalization) should be determined ac
cording to which TL framework is used and how much target data are 
available. 

5. Future research 

According to the above discussions, future research on TL-assisted 
AM modeling can be conducted from the perspective of the modeling 
framework and the type of knowledge to be transferred. 

5.1. Modeling framework 

As discussed in Section 3, current studies only involve a few stages in 
the AM lifecycle, and the applied frameworks are correlated strongly to 
the research objectives. The potential of these frameworks is seldom 
explored in other problems. This would cause expensive and inefficient 
information transfer among different AM research objects when the AM 
lifecycle is studied. Hence, it is important to develop a general TL- 
assisted AM modeling framework, which covers most aspects of the 
AM lifecycle and can be tailored to specific problems. 

Besides, current studies pay little attention to the effect of domain 
relevance on the choice and design of TL frameworks. As a result, the TL 
framework with great performance on test cases would perform worse 
on a new similar task. Therefore, one important future research is to 
construct a similarity quantification framework for different AM do
mains, which could provide some guidance for designing a TL-assisted 
modeling framework. 

Another future research direction is online TL-assisted modeling. 
Different from offline TL with available target domains in advance, 
online TL aims to tackle real-world problems where the target domain is 
received sequentially during the learning procedure. Recently, it has 
been explored widely in classification problems containing multiple 
source domains [122,123], where the increasing online target data is 
applied to fine-tune the model gradually. However, current studies in 

Y. Tang et al.                                                                                                                                                                                                                                    



Additive Manufacturing 61 (2023) 103357

13

AM mainly train the target models offline and validate them with limited 
expensive data, after which the trained models are used directly in the 
target domain without any further modifications. This mechanism poses 
a risk to the rationality of target models, as the limited target data is 
unable to fully represent the product performance. To solve the problem, 
the online TL-assisted modeling framework will be helpful, due to its 
potential in improving the model performance online with in-situ data. 

5.2. Knowledge to be transferred 

According to the definition of knowledge by Wu and Wang [124], the 
information transferred in most relevant studies, such as data, model 
structures, and model parameters, belongs to algorithmic knowledge. 
Apart from this, there are several other kinds of knowledge in AM. For 
instance, expert experience and physical laws are used as a constraint to 
make the prediction model of FDM product qualities more reasonable 
[125] via training a physics-informed neural network [126]. The causal 
relationship between AM process parameters and product properties has 
been studied to help select the main parameters for monitoring certain 
performances [127,128]. However, these applications do not focus on 
knowledge transfer among different domains. Therefore, how to transfer 
different knowledge simultaneously is a promising research direction for 
AM modeling. 

6. Summary 

Unlike general-purpose reviews about machine learning in AM, this 
paper reviews a specific topic, i.e., how to improve AM modeling perfor
mance by transfer learning techniques. To clarify the topic, some notations, 
definitions, and categories in transfer learning are first discussed. Based 
on their underlying assumptions or theories, the instance-based methods 
are suggested for problems with the same input feature space, while the 
feature-based and model-based methods are recommended for problems 
involving different input/output feature spaces and conditional or 
marginal distributions. Without requirements of sufficient source data, 
multi-task learning is a better choice when few data are accessible in 
several source domains. Then some AM-specific notations and defini
tions are presented, and current works about transfer learning-assisted 
AM modeling are summarized according to four categories of transfer 
learning technologies along with their limitations. Based on the 
reviewed applications, for a target AM modeling problem, discussions 
are presented to answer questions including which source domain to use, 
which TL framework to adopt, how much target data to use, and which data 
preprocessing technique should be selected. Generally, the source domain 
could be determined according to qualitative similarities when a 
quantified similarity is hard to obtain. The transfer learning framework 
could be selected by mapping their preferred application scenario to 
AM: (a) the instance-based framework integrated with the conventional 
modeling method is recommended for AM problems involving the same 
input and output variables; (b) the feature-based and model-based 
frameworks are better for AM problems involving different input/ 
output variables; (c) the above two frameworks and multi-task learning 
are applicable when same inputs but different outputs are studied in AM 
problems; (d) the multi-task learning may be the best choice when only 
insufficient data are accessible in several source AM problems. Besides, 
the target data size should be selected carefully according to the source 
data size, to balance the computational expense, modeling accuracy, and 
TL performances. And the data preprocessing techniques should be 
selected carefully considering the TL framework and target data size. 
Finally, future research directions are presented and discussed, 
including the general modeling framework for AM lifecycle, similarity 
quantification framework, online transfer learning-assisted modeling 
framework, and the application of various types of knowledge available 
in AM. 

Based on the above discussions, the main contributions of this paper 
are summarized as follows:  

• According to the knowledge of the authors, this review paper is the 
first one focusing on the utilization of transfer learning in AM 
modeling. In this paper, most papers relevant to this topic are sum
marized and critically reviewed according to the categories of 
transfer learning techniques.  

• Based on the literature review, discussions and recommendations are 
given on the selection of the transfer learning framework, choosing 
the right source domain, determining the target data size, and se
lection of data preprocessing technique, to shed light on how to 
apply transfer learning in modeling AM processes. 

• Future research directions are discussed concerning applying trans
fer learning in the modeling of additive manufacturing processes. 
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K. Wasmer, Deep transfer learning of additive manufacturing mechanisms across 
materials in metal-based laser powder bed fusion process, J. Mater. Process. 
Technol. 303 (2022), https://doi.org/10.1016/j.jmatprotec.2022.117531. 

[97] S.-J. Shin, J.-H. Lee, J. Sainand, D.B. Kim, Material-adaptive anomaly detection 
using property-concatenated transfer learning in wire arc additive manufacturing. 
https://doi.org/10.2139/ssrn.4242808. 

[98] Z. Zhang, Q. Liu, D. Wu, Predicting stress–strain curves using transfer learning: 
knowledge transfer across polymer composites, Mater. Des. 218 (2022), 110700, 
https://doi.org/10.1016/j.matdes.2022.110700. 

[99] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep 
convolutional neural networks, Adv. Neural Inf. Process. Syst. (2012) 1097–1105. 
https://doi.org/10.1145/3065386. 

[100] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 
IEEE Conf. Comput. Vis. Pattern Recognit., Las Vegas, NV, USA, June 27–30, 
2016, pp. 770–778. doi: 10.1109/CVPR.2016.90. 

[101] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale 
image recognition, in: 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track 
Proc., San Diego, California, USA, May 7–9, 2015, pp. 1–14. https://doi.org/10. 
48550/arXiv.1409.1556. 

[102] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception 
architecture for computer vision, in: IEEE Comput. Soc. Conf. Comput. Vis. 
Pattern Recognit. (2016) pp: 2818–2826, https://doi.org/10.1109/ 
CVPR.2016.308. 

[103] M. Tan, Q. Le, EfficientNet: rethinking model scaling for convolutional neural 
networks, in: Proc. 36th Int. Conf. Mach. Learn. PMLR, 2019, pp. 6105–6114. htt 
ps://doi.org/10.48550/arXiv.1905.11946. 

[104] Y.M. Ren, Y. Zhang, Y. Ding, Y. Wang, P.D. Christofides, Computational fluid 
dynamics-based in-situ sensor analytics of direct metal laser solidification process 
using machine learning, Comput. Chem. Eng. 143 (2020), 107069, https://doi. 
org/10.1016/j.compchemeng.2020.107069. 

[105] A.R. Kitahara, E.A. Holm, Microstructure cluster analysis with transfer learning 
and unsupervised learning, Integr. Mater. Manuf. Innov. 7 (2018) 148–156, 
https://doi.org/10.1007/s40192-018-0116-9. 

[106] M.N. Bisheh, X. Wang, S.I. Chang, S. Lei, J. Ma, Image-based characterization of 
laser scribing quality using transfer learning, J. Intell. Manuf. (2022), https://doi. 
org/10.1007/s10845-022-01926-z. 

[107] S. Hu, Z. Li, S. Zhang, Quality spectra fluctuation modeling for manufacturing 
process based on deep transfer learning, J. Phys. Conf. Ser. 1983 (2021) 01201, 
https://doi.org/10.1088/1742-6596/1983/1/012101. 

[108] Z. Jin, Z. Zhang, X. Shao, G.X. Gu, Monitoring anomalies in 3D bioprinting with 
deep neural networks, ACS Biomater. Sci. Eng. (2021), https://doi.org/10.1021/ 
acsbiomaterials.0c01761. 

[109] F.G. Fischer, M.G. Zimmermann, N. Praetzsch, C. Knaak, Monitoring of the 
powder bed quality in metal additive manufacturing using deep transfer learning, 
Mater. Des. 222 (2022), 111029, https://doi.org/10.1016/j. 
matdes.2022.111029. 

[110] D.A.J. Brion, M. Shen, S.W. Pattinson, Automated recognition and correction of 
warp deformation in extrusion additive manufacturing, Addit. Manuf. 56 (2022), 
102838, https://doi.org/10.1016/j.addma.2022.102838. 

[111] K.J. Kim, P.K. Kim, Y.S. Chung, D.H. Choi, Performance enhancement of YOLOv3 
by adding prediction layers with spatial pyramid pooling for vehicle detection, in: 
Proc. AVSS 2018 - 2018 15th IEEE Int. Conf. Adv. Video Signal-Based Surveill., 
IEEE, 2018, pp. 14–19. https://doi.org/10.1109/AVSS.2018.8639438. 

[112] T.Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C. 
L. Zitnick, Microsoft COCO: Common objects in context, in: D. Fleet, T. Pajdla, 
B. Schiele, T. Tuytelaars (Eds.), Lecture Notes in Computer Science, 8693, 
Springer, Cham, 2014, https://doi.org/10.1007/978–3-319–10602-1_48. 

Y. Tang et al.                                                                                                                                                                                                                                    

https://doi.org/10.48550/arXiv.1411.1792
https://doi.org/10.48550/arXiv.1411.1792
https://doi.org/10.48550/arXiv.1902.00751
https://doi.org/10.1145/1401890.1401928
https://doi.org/10.1145/1553374.1553411
https://doi.org/10.5244/C.23.80
https://doi.org/10.1109/TKDE.2021.3070203
https://doi.org/10.18653/v1/d19-1227
https://dl.acm.org/doi/10.5555/1046920.1194905
http://proceedings.mlr.press/v9/zhou10a/zhou10a.pdf
http://proceedings.mlr.press/v9/zhou10a/zhou10a.pdf
https://doi.org/10.1007/s10994-007-5040-8
https://doi.org/10.1145/1553374.1553458
https://doi.org/10.1145/1553374.1553458
https://dl.acm.org/doi/10.5555/2567709.2567756
https://dl.acm.org/doi/10.5555/2981562.2981566
https://dl.acm.org/doi/10.5555/2981562.2981566
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1186/s40537-016-0043-6
http://arxiv.org/abs/2009.00909
https://doi.org/10.1007/978-3-319-46349-0_5
https://doi.org/10.1016/j.compag.2018.08.013
https://doi.org/10.1115/1.4051749
https://doi.org/10.1109/TIM.2022.3186688
http://arxiv.org/abs/2206.07756
http://arxiv.org/abs/2206.07756
https://doi.org/10.1038/s41598-018-31571-7
https://doi.org/10.1115/1.4041371
https://doi.org/10.1115/1.4041371
https://doi.org/10.1016/j.ijmachtools.2018.10.003
https://doi.org/10.1016/j.ijmachtools.2018.10.003
https://doi.org/10.1109/LRA.2017.2713238
https://doi.org/10.1214/18-AOAS1158
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1016/j.jmsy.2022.06.010
https://doi.org/10.1016/j.procir.2022.05.076
https://doi.org/10.1109/TASE.2021.3063389
https://doi.org/10.1080/00401706.2017.1391715
https://doi.org/10.1080/00401706.2017.1391715
https://doi.org/10.1109/TASE.2019.2936821
https://doi.org/10.1109/TASE.2019.2936821
https://doi.org/10.1115/1.4041425
https://doi.org/10.1016/j.jmatprotec.2022.117531
https://doi.org/10.2139/ssrn.4242808
https://doi.org/10.1016/j.matdes.2022.110700
https://doi.org/10.1145/3065386
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.48550/arXiv.1905.11946
https://doi.org/10.48550/arXiv.1905.11946
https://doi.org/10.1016/j.compchemeng.2020.107069
https://doi.org/10.1016/j.compchemeng.2020.107069
https://doi.org/10.1007/s40192-018-0116-9
https://doi.org/10.1007/s10845-022-01926-z
https://doi.org/10.1007/s10845-022-01926-z
https://doi.org/10.1088/1742-6596/1983/1/012101
https://doi.org/10.1021/acsbiomaterials.0c01761
https://doi.org/10.1021/acsbiomaterials.0c01761
https://doi.org/10.1016/j.matdes.2022.111029
https://doi.org/10.1016/j.matdes.2022.111029
https://doi.org/10.1016/j.addma.2022.102838
https://doi.org/10.1007/978&ndash;3-319&ndash;10602-1_48


Additive Manufacturing 61 (2023) 103357

16

[113] C. Xia, Z. Pan, Y. Li, J. Chen, H. Li, Vision-based melt pool monitoring for wire-arc 
additive manufacturing using deep learning method, Int. J. Adv. Manuf. Technol. 
120 (2022) 551–562, https://doi.org/10.1007/s00170-022-08811-2. 

[114] H. Kim, H. Lee, S.H. Ahn, Systematic deep transfer learning method based on a 
small image dataset for spaghetti-shape defect monitoring of fused deposition 
modeling, J. Manuf. Syst. 65 (2022) 439–451, https://doi.org/10.1016/j. 
jmsy.2022.10.009. 

[115] L. Wang, X. Chen, D. Henkel, R. Jin, Family learning: a process modeling method 
for cyber-additive manufacturing network, IISE Trans. 54 (2021) 1–16, https:// 
doi.org/10.1080/24725854.2020.1851824. 

[116] R. Tibshirani, Regression shrinkage and selection via the Lasso, J. R. Stat. Soc. 
Ser. B 58 (1996) 267–288, https://doi.org/10.1111/j.2517-6161.1996.tb02080. 
x. 

[117] Y. Zhang, L. Wang, X. Chen, R. Jin, Fog computing for distributed family learning 
in cyber-manufacturing modeling, in: 2019 IEEE Int. Conf. Ind. Cyber Phys. Syst. 
ICPS 2019, IEEE, Taipei, Taiwan, China, 6–9 May, 2019, pp. 88–93, doi: 10.1109/ 
ICPHYS.2019.8780264. 

[118] Z. Zhu, N. Anwer, Q. Huang, L. Mathieu, Machine learning in tolerancing for 
additive manufacturing, CIRP Ann. 67 (2018) 157–160, https://doi.org/10.1016/ 
j.cirp.2018.04.119. 

[119] W. Sun, Z. Zhang, W. Ren, J. Mazumder, J.J. Jin, In situ monitoring of optical 
emission spectra for microscopic pores in metal additive manufacturing, J. Manuf. 
Sci. Eng. Trans. ASME 144 (2022) 1–13, https://doi.org/10.1115/1.4051532. 

[120] A.T. Wei, H. Wang, T. Dickens, H. Chi, Co-learning of extrusion deposition quality 
for supporting interconnected additive manufacturing systems, IISE Trans. 
(2022), https://doi.org/10.1080/24725854.2022.2080306. 

[121] J. Huang, Y.F. Li, M. Xie, An empirical analysis of data preprocessing for machine 
learning-based software cost estimation, Inf. Softw. Technol. 67 (2015) 108–127, 
https://doi.org/10.1016/j.infsof.2015.07.004. 

[122] Q. Wu, H. Wu, X. Zhou, M. Tan, Y. Xu, Y. Yan, T. Hao, Online transfer learning 
with multiple homogeneous or heterogeneous sources, IEEE Trans. Knowl. Data 
Eng. 29 (2017) 1494–1507, https://doi.org/10.1109/TKDE.2017.2685597. 

[123] Z. Kang, B. Yang, S. Yang, X. Fang, C. Zhao, Online transfer learning with multiple 
source domains for multi-class classification, Knowl. Based Syst. 190 (2020), 
105149, https://doi.org/10.1016/j.knosys.2019.105149. 

[124] D. Wu, G.G. Wang, Knowledge-assisted optimization for large-scale design 
problems: a review and proposition, J. Mech. Des. 142 (2020), 010801, https:// 
doi.org/10.1115/1.4044525. 

[125] B. Kapusuzoglu, S. Mahadevan, Physics-informed and hybrid machine learning in 
additive manufacturing: application to fused filament fabrication, JOM 72 (2020) 
4695–4705, https://doi.org/10.1007/s11837-020-04438-4. 

[126] G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics- 
informed machine learning, Nat. Rev. Phys. 3 (2021) 422–440, https://doi.org/ 
10.1038/s42254-021-00314-5. 

[127] R. Chen, Y. Lu, P. Witherell, T.W. Simpson, S. Kumara, H. Yang, Ontology-driven 
learning of Bayesian network for causal inference and quality assurance in 
additive manufacturing, IEEE Robot. Autom. Lett. 6 (2021) 6032–6038, https:// 
doi.org/10.1109/LRA.2021.3090020. 

[128] B.J. Simonds, J. Tanner, A. Artusio-Glimpse, P.A. Williams, N. Parab, C. Zhao, 
T. Sun, The causal relationship between melt pool geometry and energy 
absorption measured in real time during laser-based manufacturing, Appl. Mater. 
Today 23 (2021), 101049, https://doi.org/10.1016/j.apmt.2021.101049. 

Y. Tang et al.                                                                                                                                                                                                                                    

https://doi.org/10.1007/s00170-022-08811-2
https://doi.org/10.1016/j.jmsy.2022.10.009
https://doi.org/10.1016/j.jmsy.2022.10.009
https://doi.org/10.1080/24725854.2020.1851824
https://doi.org/10.1080/24725854.2020.1851824
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1016/j.cirp.2018.04.119
https://doi.org/10.1016/j.cirp.2018.04.119
https://doi.org/10.1115/1.4051532
https://doi.org/10.1080/24725854.2022.2080306
https://doi.org/10.1016/j.infsof.2015.07.004
https://doi.org/10.1109/TKDE.2017.2685597
https://doi.org/10.1016/j.knosys.2019.105149
https://doi.org/10.1115/1.4044525
https://doi.org/10.1115/1.4044525
https://doi.org/10.1007/s11837-020-04438-4
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1109/LRA.2021.3090020
https://doi.org/10.1109/LRA.2021.3090020
https://doi.org/10.1016/j.apmt.2021.101049

	Review of transfer learning in modeling additive manufacturing processes
	1 Introduction
	1.1 Physics-based models
	1.2 Data-based models

	2 Introduction of transfer learning
	2.1 Notations and definitions
	2.2 Categories of TL
	2.2.1 Instance-based TL
	2.2.2 Feature-based TL
	2.2.3 Model-based TL
	2.2.4 Multi-task learning (MTL)

	2.3 Summary remarks

	3 Transfer learning in AM modeling
	3.1 Problem definition
	3.2 Instance-based TL
	3.3 Feature-based TL
	3.4 Model-based TL
	3.4.1 Source model ensemble & transformation
	3.4.2 Fine-tuning framework

	3.5 Multi-task learning
	3.6 Summary remarks

	4 Discussions and recommendations
	4.1 Which source domain to use?
	4.2 Which TL framework to adopt?
	4.3 How much target data is needed?
	4.4 Whether to apply data preprocessing techniques?

	5 Future research
	5.1 Modeling framework
	5.2 Knowledge to be transferred

	6 Summary
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data Availability
	Acknowledgements
	References


